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The global incidence of genital Chlamydia trachomatis infection increased

rapidly as the primary available treatment of C. trachomatis infection being

the use of antibiotics. However, the development of antibiotics resistant stain

and other treatment failures are often observed in patients. Consequently,

novel therapeutics are urgently required. Rhein is a monomer derivative

of anthraquinone compounds with an anti-infection activity. This study

investigated the e�ects of rhein on treating C. trachomatis infection. Rhein

showed significant inhibitory e�ects on the growth of C. trachomatis in

multiple serovars of C. trachomatis, including D, E, F and L1, and in various

host cells, including HeLa, McCoy and Vero. Rhein could not directly

inactivate C. trachomatis but could inhibit the growth of C. trachomatis by

regulating pathogen-host cell interactions. Combined with azithromycin, the

inhibitory e�ect of rehin was synergistic both in vitro and in vivo. Together

these findings suggest that rhein could be developed for the treatment of

C. trachomatis infections.
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Introduction

Chlamydia trachomatis (C. trachomatis), a Gram-negative bacterial pathogen,

is a causative agent of sexually transmitted infections in humans. There are an

estimated 127 million new cases of C. trachomatis genital infection annually worldwide

(1). C. trachomatis is classified into 15 serovars, with serovars D to K causing

urinary or genital tract infections and serovars L1 to L3 being associated with

lymphogranuloma venereum (2, 3). The developmental cycle of C. trachomatis is

unique and biphasic, featuring an infective, metabolically inactive, elementary body

(EB) and a metabolically active, intracellular, reproductive reticular body (RB) (4).

Many individuals infected with C. trachomatis are asymptomatic, but chlamydia
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infections can have serious consequences. Untreated or

recurrent chlamydial urogenital infections can lead to severe

complications such as pelvic inflammatory disease and infertility

(5). Genital infection with C. trachomatis also facilitates other

sexually transmitted infections such as HIV (6) and human

papillomavirus (7, 8). Thus, the potential risk chlamydia poses

to human health should not be underestimated.

Currently, 1 g azithromycin (AZM) or 100mg doxycycline

twice a day for 7 days is the unanimously recommended, first-

line treatment for uncomplicatedC. trachomatis infections of the

urogenital tract in the United States (9), China (10, 11), Europe

(12), and Australia (13). Nevertheless, antibiotic resistance

or treatment failure is not uncommon in C. trachomatis

infections (10, 14, 15). For example, AZM treatment failure

has been reported in 5% to 23% of Chlamydia-positive men

with non-gonococcal urethritis and women with cervicitis

not at risk of reinfection (16). A partner-treatment study

reported that 8% of women had persistent chlamydial infection

despite stating they had no sexual contact after treatment

(17). These treatment failures may be due to resistance in

members of the genus C. trachomatis and persistent infection.

The tet (M) gene confers resistance to tetracycline antibiotics,

while mutations in the 23S rRNA gene confer resistance to

macrolides (18–20). The rates of 23S rRNA gene mutations

and the abundance of tet (M) in C. trachomatis were higher

in a treatment-failure group than in a treatment-success

group (21). Furthermore, following exposure to antimicrobial

drugs at sub-inhibitory concentrations, C. trachomatis can

transform into a surviving reticulate with an almost persistently

quiescent metabolism, which further increases the resistance

to antibiotics (22). The emergence of antibiotic resistance and

treatment failure indicated the need to identify novel anti-

chlamydial agents.

Phytochemicals have attracted attention in recent years

because of their therapeutic potential against a wide variety

of pathogenic microorganisms (23). Compounds extracted

from biomaterials and phytochemicals include flavones (24),

terpenoids (25), alkaloids (26), and essential oils (27), and many

of these compounds have antimicrobial properties. In a previous

study, rhubarb inhibited C. trachomatis infection (28). Rhein

(4, 5-dihydroxyanthraquinone-2-carboxylic acid; Figure 1A)

is a monomer primarily extracted from rhubarb (29, 30).

This lipophilic, naturally occurring compound has numerous

pharmacological properties, including antitumor, antioxidant,

anti-inflammatory, antimicrobial, hepatoprotective, and

nephroprotective activities (31). As an antimicrobial, rhein has

effects against Staphylococcus aureus (32, 33), Pseudomonas

aeruginosa (34), Porphyromonas gingivalis (35), and influenza

virus (36), among others. In the current study, the effects

of rhein on C. trachomatis replication in cell culture and

in mice were investigated with the aim of determining

whether rhein had potential as a novel therapeutic against C.

trachomatis infections.

Materials and methods

Cell culture and C. trachomatis strains

Human epithelial carcinoma cells (HeLa) (ATCC CCL-2.1),

mouse fibroblast cells (McCoy) (ATCC CTL-1696) provided by

Dr. Lifang Jiang (Sun Yat-sen University, China) and African

green monkey kidney cells (Vero) (CCTCC GDC062) were

maintained in Dulbecco’s modified Eagle’s medium (Gibco, St.

Louis, MO, USA) with 10% heat-inactivated fetal bovine serum

(Gibco) at 37◦C in an incubator supplied with 5% CO2 (Sanyo,

Tokyo, Japan). C. trachomatis serovars D, E, F and L1 were

provided by Dr. Joke Spaargaren (Public Health Laboratory of

the Municipal Health Service of Amsterdam, Netherlands).

To obtain sufficient quantity of C. trachomatis, confluent

HeLa cells were infected with C. trachomatis and centrifuged

for 60min at 1,000 ×g. After centrifugation, the supernatants

were replaced with 1ml maintenance medium supplemented

with 1.0µg/ml cycloheximide (MedChemExpress, Monmouth

Junction, NJ, USA). At 48 hpi, infected cells were sonicated

and resuspended in sucrose–phosphate–glutamate. Stocks were

divided into small aliquots and stored frozen at−70◦C.

Compounds and drugs

Rhein (MedChemExpress) and AZM (North China

Pharmaceutical Group Corporation, Hebei, China) were

dissolved according to the manufacturers’ instructions and

stored at −70◦C. DMSO (Sigma, St. Louis, USA) was stored

at 4◦C.

Cytotoxicity assays with rhein

Cytotoxicity of rhein in HeLa cells was assessed using a

Cell Counting Kit-8 (CCK-8) (Dojindo, Tokyo, Japan) according

to the manufacturer’s instructions. Briefly, HeLa cells were

seeded at 1 × 104 cells per well in 96-well plates and

incubated overnight. Cell monolayers were exposed to various

concentrations of rhein (0, 5, 10, 20, 40, 80, and 160µM) for

48 h, then the CCK-8 kit was utilized, measuring the absorbance

of the cells, and the results were expressed as percent viable cells.

Immunofluorescent staining

Confluent HeLa cells were centrifuged at 1,000 ×g with C.

trachomatis for 1 h and then placed at 37◦C in an incubator

supplied with 5% CO2 for 1 h. The medium was then changed

to maintenance medium in the presence of 40µM rhein or

DMSO. Infected HeLa cells were cultured on cell slides for

48 h and fixed with 4% paraformaldehyde for 20min at room
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FIGURE 1

Rhein e�ciently inhibited C. trachomatis replication. (A) Chemical structure of rhein. (B) Cytotoxic e�ect of rhein on HeLa cells assessed using a

Cell Counting Kit-8. (C) Representative transmission electron micrographs of HeLa cells infected with C. trachomatis serovar D and exposed to

40µm rhein or DMSO. Scale bars, 2µm. (D) Immunofluorescent staining of HeLa cells infected with C. trachomatis serovars D, E, F, and L1 and

exposed to 40µM rhein for 48h. C. trachomatis inclusions were stained with FITC-conjugated MOMP antibody (green) and nuclei were

counterstained with DAPI (blue). Fluorescent images were captured on a confocal microscope at ×200 magnification. Scale bars, 100µm. (E)

Infectivity. (F) Inclusion area. (G) Infectious progeny titer. Data bars in b, e, and g represent the mean ± standard deviation. *p< 0.05, **p < 0.01,

***p< 0.001.

temperature. Cells were permeabilized with 0.1% Triton X-

100 for 20min at room temperature and were then incubated

with 1% bovine serum albumin in phosphate-buffered saline

with Tween (PBS + 0.1% Tween 20) for 60min to block non-

specific binding of the antibodies. Cells were incubated with a

fluorescein isothiocyanate (FITC)-conjugated antibody against
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the major outer membrane protein (MOMP) of C. trachomatis

(Abcam, Cambridge, UK) and were then counterstained with

DAPI (Solarbio, Beijing, China).

Confocal microscopy

Samples were examined under a confocal microscopy at

×200 magnification (Nikon, Tokyo, Japan) and the number

of inclusions and nuclei were counted in 15 random fields

from triplicate samples in each experiment. The number

of inclusions and nuclei were used to assess infectivity by

calculating the inclusion/nuclei percent with Nikon AR NIS

5.02.00 software. The software was also used to measure the area

of inclusion bodies.

Electron microscopy

Infected HeLa cells were centrifuged at 1,000×g for 1 h and

then placed at 37◦C in an incubator supplied with 5% CO2 for

1 h. The medium was then changed to maintenance medium in

the presence of 40µM rhein or DMSO. At 48 hpi, cells treated

with rhein or DMSO were collected, pelleted by centrifugation

at 1,000 ×g for 5min, and were then embedded and examined

by transmission electron microscopy (Japan Electron Optics

Laboratory, Tokyo, Japan).

Titer of infectious progeny assay

C. trachomatis-infected cells were collected and sonicated.

EBs were released from the cells and used to infect fresh cell

monolayers. Total inclusions were counted, and numbers of

inclusion-forming units (IFU/ml) were calculated at 48 hpi.

Direct interaction assay

EBs of C. trachomatis were co-incubated with 40µM rhein

for 12, 24, 36, or 48 h at 4◦C before infection (37); DMSO

was used as a positive control. C. trachomatis was washed with

PBS to remove the residual rhein and was then used to infect

HeLa cells in 24-well plates. At 48 hpi, cells were fixed with

paraformaldehyde and observed by confocal microscopy.

Influence-on-cell assay

HeLa cells were seeded in 24-well plates at 1 × 105

cells/well and 40µM rhein was added to the culture medium

and incubated for 24 h. Cell monolayers were washed three

times with PBS, then the pretreated cells were infected with C.

trachomatis; DMSO treatment served as a positive control. At 48

hpi, cells were stained withMOMP antibody and observed using

confocal microscopy.

Influence-on-adsorption assay

HeLa cells were infected with C. trachomatis and

simultaneously exposed to 40µM rhein in the culture

medium; a control group received the equivalent amount of

DMSO. The culture plate was centrifuged at 1,500 ×g for 1 h

and then placed at 37◦C in an incubator supplied with 5%

CO2 for 1 h. The medium containing rhein was then discarded,

and cells were washed with PBS three times before addition of

the maintenance medium. Immunofluorescence staining was

conducted at 48 hpi.

Western blotting

Treated cells were incubated for 0, 12, 24, 36, or 48 h,

then the cellular proteins were lysed by RIPA (Invitrogen,

89900) supplemented with a protease and phosphatase inhibitor

cocktail (Invitrogen, 78440), and incubated with SDS-PAGE

loading buffer (Reducing) (Cwbio, CW0027) at 100◦C for

10min. Antibodies used for western blotting were as follows:

anti-RSK1 p90 (phospho T359 + S363) antibody (1:1,000,

ab32413, Abcam), anti-RSK1 p90 antibody (1:1,000, ab32114,

Abcam), anti-Phospho-p44/42 MAPK (Erk1/2) (1:1,000, 4370S,

Cell signaling), anti- p44/42 MAPK (Erk1/2) (1:1,000, 4695S,

Cell signaling), anti-cHSP60 (1:2,000, sc-57840, Santa Cruz),

anti-GAPDH (1:1,0000, ab181602, Abcam), anti-rabbit IgG-

HRP-linked antibody (1:5,000, 7074S, Cell signaling), and

anti-mouse IgG-HRP-linked antibody (1:5,000, 7076S, Cell

signaling). Blots were imaged on a ChemiDoc MP Imaging

System (Bio-Rad).

Animals

Female BALB/c mice (4–6-week-old) were purchased

from the Southern Medical University (Guangzhou, China).

At 10 and 7 days before infection, all mice were injected

subcutaneously with 2.5mg medroxyprogesterone acetate

(Bayunshan Pharmaceutical Company, Guangzhou, China) to

synchronize estrus (38). After treatment, the mice were vaginally

infected with 1 × 107 C. trachomatis IFU or an equal volume of

sucrose–phosphate–glutamate. Experiments were conducted in

the Experimental Animal Center of South China Agricultural

University and in accordance with the National Institutes of

Health Guide for the Care and Use of Laboratory Animals.

All procedures performed in studies involving experiments

on animals were approved by the Ethics Committee of South

Frontiers in PublicHealth 04 frontiersin.org

https://doi.org/10.3389/fpubh.2022.1002029
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Yu et al. 10.3389/fpubh.2022.1002029

China Agricultural University (SCAU, Guangzhou, China and

approval number: 2020c035).

Drug treatment in vivo

Mice were divided into five groups: negative control, positive

control, rhein treatment, AZM treatment and rhein + AZM

combined treatment. Rhein was dissolved in DMSO at 10

mg/ml, and AZM was dissolved in ethanol at 0.084 mg/ml.

Mice were treated with 120 mg/kg rhein, 1.0 mg/kg AZM or a

combination of 120 mg/kg rhein and 1.0 mg/kg AZM in 0.5%

carboxymethylcellulose sodium (CMC-Na) once daily by gavage

from day 4 to day 10. Control mice were gavaged with 0.5%

CMC-Na. Vaginal swabs were taken for cell culture on day 4

(before gavage), day 7 and day 10 after infection, and the number

of inclusions were measured.

Statistical analyses

GraphPad Prism 8 (GraphPad Software, La Jolla, CA, USA)

was used to generate graphs, and statistical analyses were

conducted using SPSS 15.0 (SPSS Inc., Chicago, IL, USA).

Quantitative data are presented as mean ± standard deviation.

The Shapiro–Wilk test was used to test the normality of

quantitative data. Fisher’s exact test and Bonferroni’s multiple

comparisons were used to assess infectivity. Kruskal–Wallis and

Dunn’s multiple comparisons tests were used to evaluate the

area of inclusions. An unpaired t-test was used to analyze the

difference in EB titer between groups. P-values were calculated

using one-way ANOVA followed by Bonferroni correction for

multiple comparisons. A nonparametric Wilcoxon test was

used for mouse model statistics. Differences were considered

significant at P <0.05 (∗), P <0.01 (∗∗) and P <0.001 (∗∗∗).

Results

Rhein e�ectively inhibited C. trachomatis

replication

Cell viability was approximately 95% in samples exposed

to 40µM rhein (Figure 1B). The anti-chlamydial effects of

rhein were investigated in HeLa cells infected with the more

prevalent serovars of C. trachomatis (serovars D, E and F) and

the L1 serovar that can lead to venereal lymphogranuloma (39).

A few aberrant RBs were observed by transmission electron

microscopy in HeLa cells infected with C. trachomatis serovar

D and treated with 40µM rhein, compared with many small,

mature EB particles within the inclusion of DMSO-treated cells

at 48 hpi (Figure 1C). Immunofluorescent staining revealed

that the inclusion bodies became smaller and the infectivity,

inclusion size and infectious progeny decreased in the presence

of 40µM rhein (Figures 1D–G). These results demonstrated

that rhein effectively inhibited the growth and reproduction of

different serovars of C. trachomatis in HeLa cells.

The e�ect of rhein on C. trachomatis was
dose- and time-dependent

The effect of different concentrations of rhein (0, 5, 10,

20, 40, and 80µM) on HeLa cells infected with C. trachomatis

was examined, and the infectivity, inclusion area and infectious

progeny are decreased in the presence of rhein in a dose-

dependent manner (Figure 2A). HeLa cells infected with C.

trachomatis were also exposed to 40µM rhein at various time

points (0, 6, 12, 18, and 24 h) after infection. C. trachomatis

inclusions were larger and more numerous with rhein exposure

at 24 hpi compared with rhein exposure at 0 hpi (Figure 2B).

The titer of infectious progeny also increased with the delay

in exposure to rhein (Figure 2B). These findings indicated that

rhein inhibited the replication of C. trachomatis in a dose- and

time-dependent manner, and suggested that the earlier cells are

treated with rhein, the better the inhibition of C. trachomatis.

Rhein did not directly inactivate C.

trachomatis elementary bodies

Rhein and other anthraquinone drugs, including emodin

and aloe-emodin, have been extracted from rhubarb. Emodin

and aloe-emodin have antibacterial or virucidal activity by

destroying the envelope of bacteria or viruses (40–43). Rhein

was previously demonstrated to directly inhibit the growth

of S. aureus (33). To determine whether rhein could directly

impair C. trachomatis activity, 40µM rhein was co-incubated

with C. trachomatis serovar D for 12, 24, 36, and 48 h,

respectively (36, 40). The infectivity and inclusion area of C.

trachomatis exposed to rhein were not significantly different

from those of the corresponding DMSO control (P > 0.05;

Figure 3). This suggested that rhein did not directly inactivate

C. trachomatis EBs.

Rhein inhibited C. trachomatis through
regulation of host cells

C. trachomatis is an obligate intracellular parasitic pathogen

that needs to combine with host surface receptors to enter a

cell. The pathogen then uses host cell nutrients to replicate

and reproduce by regulating the interaction with the host cell

(44). Rhein did not have a direct inactivation effect on C.

trachomatis. To elucidate the potential inhibitory mechanism
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FIGURE 2

Inhibitory e�ects of rhein on C. trachomatis infection were dose- and time-dependent. (A) HeLa cells were infected with C. trachomatis serovar

D at multiplicity of infection (MOI) 5 and were exposed to various concentrations of rhein (5, 10, 20, 40, and 80µM) or DMSO for 48h before

fixation and immunostaining. (B) HeLa cells infected with C. trachomatis were exposed to rhein (40µM) at 0, 6, 12, 18, and 24 hpi. Cells were

fixed, and C.trachomatis were stained with a FITC-conjugated anti-MOMP antibody (green), while host cell nuclei were counterstained with

DAPI (blue). Scale bars, 100µm. Data bars in the graphs represent the mean ± standard deviation. NS, not significant; *p< 0.05, **p < 0.01,

***p< 0.001.

of rhein, a set of influence-on-cell, influence-on-adsorption,

and influence-on-post-adsorption assays were designed (37, 45)

(Figure 4A). The first two assays were used to determine whether

rhein affected the adhesion and binding of EB particles to cell

membranes, while the third assay was used to determine whether

rhein inhibited C. trachomatis during its replication stage.

The influence-on-post-adsorption assay showed a significant

inhibitory effect of rhein (Figures 4B–D). Our previous study

demonstrated that the extracellular signaling-regulated kinase

(ERK)/ribosomal S6 kinase (RSK) signaling pathway was

important in C. trachomatis infection (46). To investigate the

mechanism of action of rhein in C. trachomatis infection, the

protein of ERK and RSK were performed by western blotting

in the current study on C. trachomatis-infected cells treated

with rhein for different times post-infection. P-RSK expression

was up-regulated at 12 h after C. trachomatis infection in the

presence or absence of rhein. P-ERK and P-RSK were both

down-regulated in the presence of rhein at 36 h and 48 h

post-infection (Figures 4E,F). The total ERK and RSK remain

constant. Moreover, in cell lines of murine (McCoy) and
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FIGURE 3

Pretreatment with rhein did not impair C. trachomatis particles. Elementary bodies of C. trachomatis were respectively co-incubated with 40µM

rhein for 12, 24, 36, or 48h at 4◦C before infection. At 48 hpi, C. trachomatis inclusions, infectivity, and inclusion areas were observed by

confocal microscopy. (A) 12h; (B) 24h; (C) 36h; and (D) 48h. Images were captured at ×200 magnification. Scale bars, 100µm. Data represent

the mean ± standard deviation of triplicate samples. NS, not significant. *p< 0.05, **p < 0.01, ***p< 0.001.

primate (Vero) origin, the antibacterial activity of rhein was

also exerted during the replication stage of C.trachomatis (47)

(Supplementary Figure S1). These observations suggest that the

inhibitory activity of rhein may not be host cell-specific and that

rhein may regulate host cells and change the environment to

inhibit C. trachomatis replication.

Rhein and AZM had a synergistic
inhibitory e�ect against C. trachomatis

AZM is a first-line drug for treating C. trachomatis

infections, but treatment failure has been reported (15, 17).

Although rhein alone impaired growth of C. trachomatis,

an experiment was conducted to investigate whether

rhein and AZM had a synergistic suppressive effect on

C. trachomatis infection. Sub-inhibitory concentrations

of 20µM rhein and 0.005µg/ml AZM were tested. The

infectivity, the area of inclusions and infectious progeny

of C. trachomatis were reduced by the two individual

treatments (rhein alone and AZM alone) (Figure 5).

However, a greater inhibitory effect on C. trachomatis

replication was observed when rhein was combined with

AZM compared with rhein alone and AZM alone (Figure 5).

Thus, the combination of rhein and AZM potentially has great

clinical value.
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FIGURE 4

Rhein inhibited C. trachomatis infection by regulating host cells. (A) Three treatment conditions (each row is a treatment): (A) influence-on-cell,

cells were pretreated with 40µM rhein for 24h; (B) influence-on-adsorption, cells were exposed to 40µM rhein for 2 h during the period of

adsorption; (C) influence-on-post-adsorption, cells were exposed to 40µM rhein for 46h after adsorption. (B–D) Immunofluorescent images

(×200 magnification), infectivity, inclusion area, and infectious progeny titer. DMSO was used as positive control. (B) Cells were pretreated with

40µM rhein for 24h (treatment a). (C) Cells were exposed 40µM rhein for 2 h during the period of adsorption (treatment b). (D) Cells were

exposed 40µM rhein for 46h after adsorption (treatment c). (E) Western blots of p-ERK, ERK, cHSP60 and GAPDH protein expression in C.

trachomatis-infected cells with or without rhein at di�erent time points post-infection. The bands were cropped from di�erent parts of the

same gel. (F) Western blots of p-RSK, RSK, cHSP60 and GAPDH protein expression in C. trachomatis-infected cells with or without rhein at

di�erent time points post-infection. The bands were cropped from di�erent parts of the same gel. Data in the graphs represent the mean ±

standard deviation of triplicate samples. NS, not significant; *p< 0.05, **p < 0.01, ***p< 0.001.
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FIGURE 5

Rhein and AZM combined had synergistic inhibitory e�ects on C. trachomatis. (A) Immunofluorescence images (×200 magnification; scale bars,

100µm) of control (DMSO), 20µM rhein, 0.005 mg/l AZM, and 20µM rhein + 0.005 mg/l AZM treatments are shown from left to right. (B)

Infectivity, (C) inclusion area, and (D) infectious progeny titer of C. trachomatis according to treatments. Data represent the mean ± standard

deviation from three independent experiments. *p< 0.05, **p < 0.01, ***p< 0.001.

Rhein combined with AZM inhibited C.

trachomatis infection in mouse models

The in vitro experiments demonstrated that rhein effectively

inhibited C. trachomatis infection, and when combined with

AZM, there was a synergistic inhibitory effect. The inhibitory

effect of rhein on C. trachomatis was therefore tested in vivo

in a mouse model. Six-week-old female BALB/c mice were

infected with C. trachomatis serovar D, then DMSO, AZM,

rhein and AZM + rhein were administered orally from day

4 to day 10 post-infection. Vaginal swabs were taken on days

4, 7 and 10 for cell culture and to determine the number of

infectious progenies. The number of infectious progenies in the

DMSO control and rhein-treated group was not significantly

different between days 4, 7, and 10 (Figures 6A,B). However,

the number of infectious progenies in the AZM-treated group

decreased significantly from day 4 to day 10 (Figure 6C), and

the number of infectious progenies in the AZM + rhein

treatment group decreased significantly from day 4 to day 7

(Figure 6D). Murine tissues were examined by hematoxylin

and eosin (H&E) staining on day 22 after C. trachomatis

infection. Edema and hypertrophy were observed in the uterus

of infected mice (Figure 6E), but the uterine edema was relieved

in the rhein and/or AZM treatment groups. There were no

pathological changes in the heart, liver, spleen, or kidney of

mice in any treatment group as revealed by H&E staining

(Supplementary Figure S2).

Discussion

Rhein significantly inhibited C. trachomatis replication

across various serovars and in HeLa, McCoy and Vero host

cells. In combination with AZM, rhein exerted a synergistic

suppressive effect on C. trachomatis infection, both in vitro

and in vivo. In addition, rhein may regulate host cells

and change the environment to inhibit C. trachomatis

replication. Taken together, the findings of this study

suggest that rhein may be a potential treatment for C.

trachomatis infection.

Rhein was previously reported to have effective antibacterial

and antiviral activity against S. aureus, Helicobacter pylori,

influenza A virus, and hepatitis B virus (HBV) (33, 36, 46).

The mechanism of action of rhein was shown to involve direct

impairment of pathogens or regulation of host cell signaling

pathways. Rhein increased the transcription of genes encoding

the iron-regulated surface determinants system and genes

involved in the ribonucleotide reductase systems of S. aureus

(33). In addition, rhein exerted its antimicrobial activity against

S. aureus by reducing the transcription of genes responsible for
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FIGURE 6

Rhein combined with AZM inhibited C. trachomatis infection in mouse models. Vaginal swabs were taken on days 4, 7, and 10 after infection for

cell culture and determination of the number of inclusion bodies. (A) Positive control group. (B) Rhein treatment group. (C) AZM treatment

group. (D) AZM + rhein treatment group. (E) Pathological changes in the gross morphology of the uterus (×200 magnification; scale bars,

100µm. ×400 magnification; scale bars, 50µm). The nonparametric Wilcoxon test was used for statistical analysis. NS, not significant; *p< 0.05,

**p < 0.01, ***p< 0.001.

anaerobic respiration and fermentation (33). Rhein inhibited

DNA polymerase activity in HBV (48). In above studies, the

mechanisms of action of rhein involve direct impairment of

pathogens. However, rhein also significantly inhibited influenza

A virus-induced oxidative stress and decreased influenza A

virus-induced expression of Toll-like receptor 2 (TLR2), TLR3

and TLR4. Moreover, rhein suppressed influenza A virus-

induced activation of host signaling pathways including the

Akt, p38/JNK MAPK and NF-κB pathways in A549 cells (36).

In the current study, rhein did not have a direct inactivating

effect on C. trachomatis, but rather inhibited this pathogen

in a post-adsorption replication stage. C. trachomatis is an
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intracellular pathogen that is heavily dependent on host cells,

thus the mechanism of rhein inhibition of C. trachomatis

may be similar to that of influenza A virus whereby host

cells are regulated to affect the growth and development of

pathogens (49).

Rhein has multiple targets and consequently regulates

multiple pathways at the molecular level, including the MAPK

signaling pathway, the PI3K-AKT signaling pathway, and the

Wnt signaling pathway (31). Among these pathways involved

in the pharmacological activity of rhein, the MAPK signaling

pathway can be considered one of the most interactive

pathways and rhein can regulate the Ras/Raf/MEK/ERK

pathway to inhibit the phosphorylation of ERK1/2 (50, 51).

The ERK pathway is considered crucial in cell proliferation and

migration and RSK is an important downstream effector of the

Ras/Raf/MEK/ERK signaling pathway (52, 53). Phosphorylated

substrates of RSK are involved in diverse cellular processes

including gene transcription, protein synthesis, cell cycle

regulation, and cell survival (54, 55). ERK signaling pathways

are the most prominent kinase signaling network utilized by C.

trachomatis and have been characterized as being instrumental

in nutrient acquisition, host cell apoptosis resistance, immune

responses, and even pathology associated with chlamydial

infections (56–58). Moreover, our previous study suggested that

ERK/RSK may be a novel target for C. trachomatis therapeutics

(46). In this study, phosphorylated ERK/RSK was reduced

upon exposure to rhein, suggesting that rhein may inhibit C.

trachomatis infection by regulating the ERK/RSK pathway.

In the process of infectious disease treatment and drug

development, host-directed therapy (HDT) is a novel strategy

for treating bacterial and viral infections. Biological products

or small molecules are used to interfere with replication or

persistence of the pathogen by regulating host factors (59).

Currently, small-molecule drugs have been proposed for the

management of tuberculosis, HBV and HIV by HDT (60–62). C.

trachomatis development requires host cell energy and nutrients

and may therefore be a suitable pathogen for the development

of HDT (63–65). The small molecule mycophenolate mofetil

was recently demonstrated to effectively inhibit C. trachomatis

growth by targeting the rate-limiting enzyme inosine-5
′

-

monophosphate dehydrogenase in the biosynthesis of guanine

nucleotides in host cells (66). In addition, our research team

reported that inhibitors targeting ERK/RSK had potential in

the treatment of C. trachomatis infection (46). Findings from

the current study indicated that rhein may regulate host

cells and change the environment to inhibit C. trachomatis

replication. Moreover, rhein and AZM had a synergistic

inhibitory effect on C. trachomatis in vitro and in vivo. Rhein

may therefore be a potential drug for a HDT strategy of

managing chlamydial infections.

Although rhein was demonstrated to inhibit C. trachomatis

infection, the precise molecular mechanism of rhein on

C. trachomatis has not yet been elucidated. Current research

suggests that rhein inhibits C. trachomatis survival most

likely through targeting host factors. Future work will

explore the molecular mechanism by which rhein affects C.

trachomatis replication.

In summary, this study provided evidence that rhein

reduced C. trachomatis replication in vitro and in vivo and

indicated that rhein may have potential in drug development for

the treatment of C. trachomatis.
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