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Abstract

Prioritizing areas for management of non-native invasive plants is critical, as invasive plants can negatively impact plant
community structure. Extensive and multi-jurisdictional inventories are essential to prioritize actions aimed at mitigating the
impact of invasions and changes in disturbance regimes. However, previous work devoted little effort to devising sampling
methods sufficient to assess the scope of multi-jurisdictional invasion over extensive areas. Here we describe a large-scale
sampling design that used species occurrence data, habitat suitability models, and iterative and targeted sampling efforts to
sample five species and satisfy two key management objectives: 1) detecting non-native invasive plants across previously
unsampled gradients, and 2) characterizing the distribution of non-native invasive plants at landscape to regional scales.
Habitat suitability models of five species were based on occurrence records and predictor variables derived from
topography, precipitation, and remotely sensed data. We stratified and established field sampling locations according to
predicted habitat suitability and phenological, substrate, and logistical constraints. Across previously unvisited areas, we
detected at least one of our focal species on 77% of plots. In turn, we used detections from 2011 to improve habitat
suitability models and sampling efforts in 2012, as well as additional spatial constraints to increase detections. These
modifications resulted in a 96% detection rate at plots. The range of habitat suitability values that identified highly and less
suitable habitats and their environmental conditions corresponded to field detections with mixed levels of agreement. Our
study demonstrated that an iterative and targeted sampling framework can address sampling bias, reduce time costs, and
increase detections. Other studies can extend the sampling framework to develop methods in other ecosystems to provide
detection data. The sampling methods implemented here provide a meaningful tool when understanding the potential
distribution and habitat of species over multi-jurisdictional and extensive areas is needed for achieving management
objectives.
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Introduction

As a leading threat to global biodiversity, non-native plant

invasions can reduce species richness and facilitate changes in

ecosystem structure and functioning [1–3]. In arid and semi-arid

ecosystems, the positive interaction between annual and perennial

invasive grass cover, increased loading of fine-fuels, burning

frequency, and fire severity illustrates the potential for plant

invasion to substantially alter disturbance patterns, especially

regional fire regimes [4,5]. Increases in fire frequency, size, and

intensity facilitated by invasive species can promote ongoing

invasion while populations of non-fire adapted native plants are

slow to recover or show a decline [5,6]. Because disturbances in

arid ecosystems involve slow vegetation recovery and a loss of

native biodiversity [7,8], targeted and adaptive management

activities are critical in order to mitigate the negative impacts of

non-native invasive plants.

Ideally, adaptive management entails determining invasion risk

as well as prioritizing management actions to prevent new

introductions to suitable but uncolonized habitats. Precisely

determining the occurrence of non-native invasive plants is

essential for robust prioritization and mitigation efforts [9]. These

data can, in turn, be used to develop and refine probability of

occurrence (i.e. ‘‘early-warning’’) maps that help to target control

and prevention activities. Most land management agencies,

however, do not have the capacity to survey more than 1–2% of

land within their ownerships [10]. Therefore, a multi-jurisdictional

sampling approach can play a critical role in integrating resources

and evaluating the extent of plant invasions. This type of sampling

can accommodate management needs and accomplish multiple

survey objectives, such as detecting invasions in early stages,

locating populations of multiple invasive species, or detecting large

and problematic populations from a fire and fuels management

perspective [9,10].
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Invasive plant sampling frequently takes place opportunistically

based on expert knowledge, where investigators explore areas

known to have infestations, or along roadsides and in residential

areas in semi-regular increments of distance along transportation

corridors [11–13]. Although rapid and opportunistic sampling can

inform coarse-level species distribution, this approach will typically

incorporate non-detection sampling bias (i.e. species may be

present but undetected) [14,15], especially for species that can

occur away from transportation routes. Additionally, because

sampling in areas known to be invaded may not reflect the species’

true realized niche [16], a more suitable design should sample

across environmental gradients to capture conditions that influ-

ence species distributions by leveraging existing plant occurrence

records and knowledge regarding potential habitat characteristics

and plant phenology [17,18].

Statistically based habitat suitability models (HSMs) use

empirical relationships between species occurrence and environ-

mental factors to predict habitat suitability across the landscape

[19–21]. Sampling across wide ranges of predicted habitat

suitability can facilitate characterization of the environmental

attributes of locations where a species can potentially establish

[22]. A HSM-informed sampling approach is also feasible for

increasing species detectability by identifying locations of relatively

high habitat suitability [23,24]. It can help focus search efforts to

locations of suitable but previously undetected habitats to refine

understanding of the current extent of invasions and reduce time

and transportation costs by avoiding areas of extremely low

habitat suitability. Furthermore, iterative HSM-informed sampling

efforts can improve existing HSMs with new field data to better

characterize the distribution of invasive species [25]. A study that

employed this approach with targeted sampling efforts showed

better model performance and greater species detection than non-

targeted sampling [26]. Drawing from previous work, we explored

a generalizable iterative process of using HSMs (fit using ancillary

geospatial data) to guide initial targeted sampling efforts,

integrating new data to improve HSMs, and compiling refined

models to help direct more rigorous future sampling efforts, as well

as improve sampling efficiency and detection rates.

Here we present a HSM-informed and targeted sampling design

to gain efficiencies in sampling and improve detection rates over

extensive areas and multiple land management jurisdictions. For

five non-native invasive plant species in the Sonoran Desert region

of the southwestern U.S., our specific objectives were to: 1) use

existing non-native invasive plant data to model relationships

between environmental characteristics and the occurrence of each

species; 2) identify highly suitable habitats and areas of previously

undetected but with potential for invasion by each species using

HSMs; 3) improve knowledge of the range of environmental

conditions occupied by each species by simultaneously sampling in

low-medium suitability areas; and 4) develop an iterative and

targeted sampling framework by coupling existing and newly

collected data to improve HSMs and detections of invasive species

in the field. Our design aimed to satisfy the pressing need of land

managers to detect previously unknown non-native invasive plant

populations and characterize their distribution over extensive and

less accessible areas.

Materials and Methods

Study area and focal species
Our study area in the Sonoran Desert of Arizona encompassed

multiple land ownerships, including lands administered by the

U.S. Army Yuma Proving Ground (YPG; authorized by L.

Merrill), Barry M. Goldwater Air Force Range (BMGR) East

(authorized by R. Whittle and T. Walker), BMGR West

(authorized by A. Rosenberg), Bureau of Land Management

(BLM; authorized by E. Faulkner), Kofa National Wildlife Refuge

(KNWR; authorized by S. Henry), Cabeza Prieta National

Wildlife Refuge (CPNWR; authorized by S. Barclay), Organ Pipe

Cactus National Monument (OPCNM; authorized by S. Rutman),

Tohono O’odham Nation (TON; authorized by K. Howe),

Saguaro National Park (authorized by D. Backer), Sonoran Desert

National Monument (authorized by R. Hansen), and Ironwood

National Monument (authorized by D. Tersey) (Figure 1). The

total area available for field sampling was 66,541 km2 after

excluding inaccessible areas in private properties, state trust lands,

and a small number of Native American lands. The study area

included Arizona Upland and Lower Colorado River Valley

subdivisions of the Sonoran Desert vegetation [27], as well as

extensive areas dominated by native and non-native invasive plant

species recently impacted by large-scale fire events. Most of the

low-lying desert ecosystems in this region had received extremely

low annual rainfall. Notably, long-term (1952–2007) average

annual precipitation at the YPG and KNWR was 93 mm and

175 mm, respectively (i.e. the military and the U.S. Fish and

Wildlife Service lands between Yuma and Quartzsite shown in

Figure 1) (http://www.prism.oregonstate.edu/). The study area

also encompassed considerable topographic relief resulting from

mountain ranges separated by expansive desert valleys, plains, and

broad alluvial aprons (bajadas), with an elevation range from 25 m

in the western lowlands to approximately 1,500 m in the KNWR.

We focused on five non-native invasive plants identified as

important or of current and future management concern by

scientists and regional land managers within our study area,

including two annual C3 grasses: red brome (Bromus madritensis var.

rubens; hereafter referred to as Bromus) [28,29] and Mediterranean

grass (including Schismus arabicus and S. barbatus that are

indistinguishable in the field and have been assessed as one plant

group by desert botanists [30]; hereafter referred to as Schismus)

[31,32]; two annual cruciferous forbs: Sahara mustard (Brassica

tournefortii; hereafter referred to as Brassica) [33,34] and arugula

(Eruca vesicaria ssp. sativa; hereafter referred to as Eruca); and one

perennial C4 grass: buffelgrass (Pennisetum ciliare; hereafter referred

to as Pennisetum) [35,36]. Spring wildfires in the Sonoran Desert

occurring in the last several decades have shown association with

positive El Niño Southern Oscillation events [37,38]. In particular,

Pennisetum is reliant on summer monsoonal precipitation and is

recognized as a potential threat in this ecosystem because of its

drought hardiness and tendency to accumulate hazardous levels of

flammable biomass throughout the dry season [39,40]. Bromus,

Schismus, and Brassica can potentially create a continuous fine fuel

loads in areas where fuels are spatially scarce and increase fire

return intervals [28,31,34].

Development of habitat suitability models
We compiled known locations of non-native invasive plants

from published and unpublished databases, including the South-

west Environmental Information Network (SEINET; http://

swbiodiversity.org/seinet/index.php), the Southwest Exotic Map-

ping Program (SWEMP; http://sbsc.wr.usgs.gov/research/

projects/swepic/swemp/swempA.asp), multi-year invasive survey

data from managers of the BLM and National Park Service, and

unpublished research data from local and regional biologists.

Using these data, we retained only geographic locations (n = 9,713;

2,783 for Bromus, 615 for Schismus, 1,476 for Brassica, 95 for Eruca,

and 4,744 for Pennisetum) at which plant density of .2 individuals

per hectare was documented to address potential errors introduced

by the uncertainty of species occurrence information.

Habitat Suitability-Informed Plant Sampling Design
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We used environmental variables that reflected principal

biophysical characteristics of the study area that were previously

defined as important for habitat suitability modeling of non-native

invasive plants, including topographic [39], precipitation [41],

spectral [42], and road variables [43]. We obtained the

environmental data from the National Elevation Dataset (NED;

http://ned.usgs.gov/), terrain and radiometrically calibrated

Landsat Thematic Mapper (TM) imagery from August 2009

(U.S. Geological Survey EROS Data Center; http://edc.usgs.gov),

precipitation from the Parameter-elevation Regressions on Inde-

pendent Slopes Model (PRISM; http://www.prism.oregonstate.

edu/), and rasterized road data derived from the 2003 TeleAtlas

Dynamap Transportation version 5.2 product (Spatial Insights,

Inc.) (Table 1). For topographic variables, we smoothed the digital

elevation model to reduce visually discernible contour and point

artifacts and derived slope and aspect variables (sine- and cosine-

transformed to represent slope eastness and northness, respective-

ly). To capture precipitation patterns, we summarized winter

(December-March) and summer (June-September) months and

derived mean annual, winter, and summer precipitation layers

from 2000–2009 using the PRISM data. To characterize soil

substrate types, we used the continuous spectral information

obtained from six TM bands (bands 1–5 and 7) of eight Landsat

image scenes (path/row p36/r37, p36/r38, p37/r36, p37/r37,

p37/r38, p38/r36, p38/r37, and p38/r38) from August 2009. The

rationale was that spectral characteristics of soil substrates of high

sand content or loose texture soils appeared to be highly related to

the presence of three focal species (Brassica, Schismus, and Eruca).

We converted the digital numbers of these radiometrically

corrected TM images into spectral reflectance values and then

mosaicked images by using ENVI version 4.7.1 (ITT Visual

Information Solutions, Inc.). We also generated the summer

Normalized Difference Vegetation Index (NDVI) using reflectance

information of TM red and near-infrared (NIR) bands (NIR-Red/

NIR+Red) to represent patterns of vegetation greenness. To

quantify road proximity, we calculated the Euclidian distance from

a raster cell to the nearest road. We obtained or derived all

variables at a 30-m pixel resolution using ArcGIS version 10 (Esri,

Inc.).

We developed five separate HSMs for each species (total = 25

models) using a maximum entropy algorithm and the Maxent

software package version 3.3.3e (http://www.cs.princeton.edu/

,schapire/maxent/) [44,45]. For HSMs that rely solely on

presence-only data, environmental conditions are typically repre-

sented by occurrence records and background data randomly

drawn from the entire region, whereas species occurrence data

tend to be spatially biased toward locations with easy access. To

account for such bias, Phillips et al. proposed to select background

Figure 1. Boundary and land jurisdictions of our study area in the Sonoran Desert of Arizona. Specific land ownerships highlighted by
abbreviations and include: the U.S. Army Yuma Proving Ground (YPG), Barry M. Goldwater Air Force Range (BMGR), Kofa National Wildlife Refuge
(KNWR), Cabeza Prieta National Wildlife Refuge (CPNWR), Organ Pipe Cactus National Monument (OPCNM), and the Tohono O’odham Nation (TON).
doi:10.1371/journal.pone.0101196.g001

Habitat Suitability-Informed Plant Sampling Design
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sample locations with the same sampling bias as species presence

records [46]. We employed a ‘‘bias prior’’ approach in our

background data based on the density of sampled locations of all

focal species across our study area and an estimate of relative

sampling effort as recommended by Merow et al. [47]. We

assigned raster cell value = 1 for cells with presence records of all

focal species to represent sampling intensity and a ‘‘no data’’ value

for the remaining cells [48]. For each focal species we constructed

five separate HSMs that each combined environmental variables

as follows: Model 1) topography, spectral bands, NDVI, and

precipitation data; Model 2) topography, spectral bands, NDVI,

precipitation layers, and road distance; Model 3) topography,

spectral bands, NDVI, and road distance; Model 4) topography,

spectral bands, NDVI, and winter or summer (for Pennisetum)

precipitation; and Model 5) topography, spectral bands, NDVI,

winter or summer (for Pennisetum) precipitation, and road distance

(Table 1).

Each model included a bias estimate and employed the hinge

algorithm (i.e. piece-wise linear regression) to develop HSMs with

ten replicates at the convergence threshold of 1025 (i.e. where

model training terminated in terms of log loss per iteration). We

used 60% of the occurrence data for model training and the

remaining 40% for testing [44,49]. We evaluated the contribution

for each variable by randomly permuting the values of that

variable among the presence and background training points and

measuring the resulting decrease in training area under the

receiver operating characteristic curve (AUC) [50]. A large

decrease indicated a strong dependence on that particular

variable. We also evaluated variable importance by omitting each

variable in turn and then using it in isolation [50]. The results

based on training and test gain informed how the variable, when

omitted or used alone, affected model gain. The result based on

AUC informed how the variable influenced the model in

predicting presences in the data.

Model performance evaluation took place using three threshold

independent assessment measures to avoid using arbitrary binary

threshold presence/absence when the assumption for the thresh-

old could not be validated. We first constructed null models using

randomly created sampling points to confirm that all our HSMs

for each species had significantly higher values of training AUC

than random models (a= 0.05) [51]. We then used the AUC

values of .0.70 to determine acceptable model performance

[52,53]. We also calculated the point biserial correlation (COR) as

Pearson’s correlation coefficient r between predicted suitability

and presence/pseudo-absence of the test data to examine how well

calibrated the predicted suitability was in correspondence to the

probability of presence of each focal species. (a= 0.05) [49].

Sampling location stratification and selection in 2011
Stratified random and targeted sampling has been a well-

recognized approach for estimating landscape-level infestation and

characterizing invasion [10,26,54] Previous stratification studies

applied ensemble forecasting to combine multiple model outputs

into a single projection for reducing individual model errors

[24,55,56]. However in our study, locations with the highest

habitat suitability (i.e. 90th percentile) that were completely

overlapped by all five HSMs for each species only covered ,5%

of the study area, making these areas less representative of habitat

conditions across the region. Therefore, we combined multiple

models described above and stratified the highly suitable habitats

suggested by at least one of the five HSMs for each species to

identify potential sampling locations. We randomly selected field

sampling locations within areas of the 90th percentile of separate

HSMs for each focal species but confined them within areas of low

slopes and proximity to improved paved and unimproved dirt

roads in more remote locations. The rationale for selecting areas

based on slope (#20 degrees) and proximity to roads (250 m-

2 km) was to reduce the amount of effort required to access field

locations and increase sample size. Additionally, most of our focal

species prefer soil conditions on low slopes to area of steep rocky

terrain. The road proximity threshold was based on the influence

of roads (e.g. enhanced moisture, fertilization, and dispersal of

invasives) which could extend from an unimproved road or major

highway in the Sonoran Desert [32]. We included all access roads

Table 1. List of environmental variables used in habitat suitability models at cell size = 30 m for stratifying our sampling locations
in the Sonoran Desert of Arizona in the 2011 field season.

Variable type Variable

Topography Elevation

Slope

Aspect (eastness)

Aspect (northness)

Spectral (August 2009) TM band 1

TM band 2

TM band 3

TM band 4

TM band 5

TM band 7

NDVI

Precipitation (2000–2009) Mean annual

Mean summer (7–81 mm)

Mean winter (10–103 mm)

Road proximity Euclidean distance to the nearest road

TM = Landsat Thematic Mapper imagery; NDVI = Normalized Difference Vegetation Index.
doi:10.1371/journal.pone.0101196.t001

Habitat Suitability-Informed Plant Sampling Design
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visible in acquired data layers for sampling, such as rugged four-

wheel drive and off-highway vehicle roads with access to

backcountry locations. Next, we implemented a spatially balanced

approach to identify potential locations with a weighted repre-

sentation of suitable habitats based on each HSM for each species

across available sampling areas. The potential sample locations

were well distributed across remote portions of the study area. The

approach was based on using specific raster cells values (i.e.

weights of habitat suitability) to determine the inclusion probability

of a location to be sampled [57,58].

Our focal species Brassica, Schismus, and Eruca favor disturbed or

loose sandy soils in the study area [32,43]. To further prioritize

sample locations suited for these species, we discriminated sandy

soils from other soil substrates such as basalt and desert pavement

using TM imagery. We employed linear spectral unmixing (e.g.

[59]) to estimate the proportion of sand substrate within a pixel

and then applied a pixel growing technique (e.g. [60]) to extract

adjacent pixels within two standard deviations of the mean value

of seed pixels of pure sand. We then used pixel values from the

unmixing step to represent the proportion of a pixel dominated by

sand (where 0 = no sand and 1 = 100% sand) for assigning five

very low to high sandiness categories. We overlaid the sandiness

category layer with a buffer range placed around the center pixel

of a potential location to assign the sandiness based on a majority

count of pixels. We directed our crews to allocate a greater

sampling effort, when logistically feasible, to reach accessible plot

locations that occurred on sites of high to medium sandiness.

Field data collection
We collected field data from 238 plots between late January and

April of 2011, the principal growing season for most annual and

perennial herbaceous plants in the study landscape. To allow our

field data to match the spatial resolution of two differing remote

sensing platforms used for occurrence modeling (Olsson et al.,

Ecological Modelling, in review), we adopted a nested plot design to

enable the approximate alignment between sampled locations and

satellite image pixels [61]. We spatially geo-registered each plot

with a Moderate Resolution Imaging Spectroradiometer (MODIS)

image pixel (2506250 m) and five nested subplots each with a

Landsat TM image pixel (30630 m; Figure 2A). The rationale was

to precisely match field data with the pixel location and resolution

of both sensor types (i.e. MODIS and TM) used for developing

time-series and phenology-based models of non-native invasive

plant occurrence (Olsson et al., Ecological Modelling, in review).

Geographically co-registered and multi-scaled plots enabled our

capacity to reduce error introduced by mismatches of scale and

location between field and remote sensing data [62]. Crews used

the geographic coordinates of the pixel corner of subplots and then

navigated to the corner using a Magellan MobileMapper 6 Global

Positioning System (GPS) receiver. Within each subplot, crews

established 25 point intercepts where a pin flag intersected a

transect line, along five transects at every five meters (Figure 2B).

We recorded species name and substrate at each point intercept

for both native and non-native invasive plants, as well as presence/

absence of our focal species and disturbance types within each

subplot.

Relating habitat suitability models to field detections in
2011

To assess how well predicted habitat suitability corresponded to

detections of focal species in 2011, we used a generalized linear

model (GLM) to examine the relationship between detection (i.e.

binary presence/absence outcome for each focal species at each

subplot) and habitat suitability predicted by each HSM. We then

modeled the detection of each focal species with a binomial

distribution and a logit link function in the R statistical package

version 3.0.2 (http://www.r-project.org). The intent of this

analysis was to provide an indication of how well the HSM-

informed stratification directed us to sampling locations where

species detections were more likely. To assess model fit, we

calculated the difference in values of Akaike’s Information

Criterion (DAIC; [63]) between a detection model that included

predicted habitat suitability and an intercept-only model. We

considered suitability models with DAIC .10 as good approxi-

mations of the data [63].

Next iteration of targeted sampling in 2012
Based on our sampling efforts from 2011, we developed a more

rigorous and targeted sampling strategy for a 2012 (late February-

April) field season in order to increase detection rates and sample

size. This targeted strategy is extendible to other species and

ecosystems. We collected data from 506 plots by integrating a

more targeted design of: 1) adding the 2011 detection data into

species occurrence records to develop improved HSMs; 2) using a

greater range of habitat suitability (i.e. 70th percentile) to cover

more local habitat variation to stratify potential sampling

locations; 3) also stratifying sampling efforts to areas to where

the ratio of maximum spring NDVI to mean spring NDVI of

MODIS imagery between 2001 and 2010 exceeded the 60th

percentile to highlight locations with annual plant production

higher than average greenness and reflect strong herbaceous

growth during a wet growing season; 4) further allocating locations

to areas with greater than average MODIS NDVI acquired in

early 2012 to focus sampling efforts on areas that had received

sufficient precipitation in winter 2011/spring 2012 for seed

germination and seedling growth; and 5) identifying stratified

random, spatially balanced locations and then constraining these

potential locations to areas containing 4–5 plots within 450–650 m

of one another [20]. Crews aimed to sample an average of five

locations per day in these areas and maintain a minimum travel

distance between daily visits of 10–20 km. Previous work

demonstrated that despite potential bias introduced by sampling

at locations within relatively close distance, certain statistical

estimators could provide unbiased estimates of abundance and

density for species with low abundance in local populations

[64,65]. The nested pixel plot design at each plot and transect-

based point intercept data collection at each subplot remained the

same as field samples collected in 2011.

Results

Environmental attributes of sampled locations in 2011
In 2011, our five 2-person field crews sampled 238 plots and

1,171 subplots (a small number of subplots were inaccessible and

did not equal five per plot). All subplot locations selected for

sampling had an average GPS error of 3.6 m (standard deviation

= 10.3 m) by calculating distance between a GPS-recorded subplot

corner and a location of the corresponding subplot corner assigned

to crews. We sampled 157 locations (66%) on BLM lands, 35

(14.7%) on Native American reservations, 21 (8.8%) on military

lands, and 25 (10.5%) on U.S. Forest Service lands, national

wildlife refuges, and state and national parks.

Eleven vegetation types classified by the Landfire Existing

Vegetation Type 1.1.0 data (http://www.Landfire.gov/

NationalProductDescriptions21.php) appeared among our 2011

sampled locations, including the dominant Sonoran palo-verde-

mixed cacti desert scrub, Sonora-Mojave creosote bush-white

bursage desert scrub, and North American warm desert riparian

Habitat Suitability-Informed Plant Sampling Design
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and sparsely vegetated systems. Many locations were in areas

highly disturbed by animal burrowing and grazing (38% of all),

vehicular and human traffic infrastructure (18%), and fire and

erosion (17%). We detected soil disturbance in 71% of sampled

locations, which appeared to be associated with anthropogenic

factors, since our sampling locations were #2 km of roads and

were exposed to past or ongoing disturbances.

Characteristics of habitat suitability models and model
predictions

We found that Model 4 for the winter annuals and Model 5 for

Pennisetum predicted highly suitable habitats that were also well-

known areas with great focal species abundance. For example, the

environmental attributes of highly suitable habitats (i.e. 90th

percentile) for Pennisetum reflected known habitat conditions in

elevation, slope, aspect, annual precipitation, and vegetation type.

These models reflected the known importance of seasonal

precipitation events for our five focal species to green up (e.g.

initiating germination and seedling growth), as well as the known

influence of road proximity on the dispersal and colonization of

Pennisetum. Overall, elevation, winter or summer precipitation, and

slope appeared to be the most important variables for our focal

species HSMs. The most important variable was elevation for

Brassica, Schismus, and Eruca, winter precipitation for Bromus, and

summer precipitation for Pennisetum. The second most important

variable was slope for Eruca and winter precipitation for Schismus.

Elevation accounted for 65%, 51%, and 38% of model

contribution for Model 4 for Brassica, Schismus, and Eruca,

respectively. Winter precipitation showed 34% and 21%, respec-

tively, of model contribution to Model 4 for Bromus and Schismus.

Slope accounted for 31% of model contribution to Model 4 for

Eruca. For Model 5 for Pennisetum, 56% of model contribution

came from summer precipitation. Likewise, evaluation of variable

importance showed that the most important variables, when used

in isolation or when omitted, were elevation for Brassica, Schismus,

and Eruca, winter precipitation for Bromus, and summer precipi-

tation for Pennisetum.

All 25 HSMs outperformed null models constructed with

random sampling points, showing AUC values that were

significantly higher and deviated from what would be expected

by random chance (p,0.05). AUC values from training and test

data of all 25 HSMs indicated satisfactory model performance,

with all values .0.70 (0.73–0.97 for training AUC and 0.71–0.93

for test AUC; Table 2). Species presence/pseudo-absence was

significantly correlated with predicted habitat suitability of all 25

HSMs with notable variation among species (0.36–0.8 for COR,

p,0.01 or ,0.0001). Overall, COR values were the highest for

Eruca and Brassica and lowest for Bromus, reflecting different

degrees of dispersion and variability in suitability predicted at

locations where species presence was recorded (Table 2).

Model 4 for the winter annuals and Model 5 for Pennisetum

together showed that 81% of the study area was within high

predicted habitat suitability (i.e. 70th percentile) for at least one of

the five species. In particular, 38%, 29%, and 12% of the study

area corresponded to the 70th percentile of suitable habitats for

one, two, and three focal species, respectively. Only 19.3% of the

study area was not within high suitability for any given species.

Areas with low to medium suitability appeared to be widely

distributed. We found inter-model variability for all five focal

species in areas predicted with high suitability. For example, 44%

and 38% of the study area was respectively within the 70th

percentile predicted by at least one of the five HSMs for Schismus

and Brassica, but all five Schismus and Brassica HSMs only

completely overlapped in 18% and 21% of the study area,

respectively. The variability was the lowest for Eruca, showing 33%

Figure 2. Nested pixel plot design used to sample plants in the Sonoran Desert of Arizona. A) Plot were co-registered with the resolution
and location of a MODIS image pixel, and included five nested subplots, each co-registered with the resolution and location of a Landsat TM image
pixel. Target and alternate (used when the target subplot was inaccessible) subplots are in red and gray, respectively. B) Within each subplot, five
point-intercept transects were established to measure attributes of species composition at 5 m intervals.
doi:10.1371/journal.pone.0101196.g002
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of the study area covered by at least one HSM and 20%

completely overlapped by all five HSMs.

All 25 HSMs, when overlapped together, predicted 39% of the

study area with low (i.e. 30th percentile) to very high habitat

suitability for the five focal species with notable variation among

species. We found that suitable habitats for Schismus, Brassica, and

Bromus were predicted to be widespread, whereas Eruca and

Pennisetum were less common across the study area. All five HSMs

for each species predicted 59%, 64%, and 55% of the study area

with low to very high suitability for Brassica, Schismus, and Bromus,

respectively. In contrast, all five HSMs predicted 42% and 58% of

the study area to have very low suitability (i.e. below 30th

percentile) for Eruca and Pennisetum, respectively.

Sampled locations in 2011 across habitat suitability
ranges

We sampled on locations predicted to harbor very high habitat

suitability for one focal species, but low to medium suitability for

other species to capture the range of environmental conditions

occupied by each species. For instance, 28% and 62% of the

sampled locations were respectively within the 90th and 70th

percentile of Brassica habitat suitability, and were also within areas

of lower suitability for at least one of the other four species.

Likewise, 16% and 39% of the total locations that were within the

90th and 70th percentile suitability for Schismus, respectively, fell

within lower habitat suitability of at least one of the other four

species. Fewer sampled locations were within areas of high habitat

suitability for Bromus and Pennisetum.

By sampling each focal species in habitats that ranged from low

to very high predicted suitability, we retained opportunities of

detecting unknown populations or unknown areas of species

distribution. For example, approximately 37% of the sampled

subplots were within low to medium habitat suitability for Brassica

(0–0.6 in predicted suitability), thus enabling us to characterize

Brassica distributions in areas where detections were previously

unrecorded (Figure 3). Similarly, we sampled at subplots across a

wide range of habitat suitability for Schismus (0–1 in predicted

suitability), allowing us to sample populations located in areas not

known to be occupied by Schismus (Figure 3). We sampled at fewer

subplots predicted with medium to high habitat suitability for

Pennisetum, as a result of prioritizing sampling efforts in hot desert

ecosystems with sandy soils where Pennisetum was less common.

Table 2. Average training and test receiver operating characteristic curve (AUC) and average point biserial correlation (COR)
(695% confidence interval) among the ten replicates for each focal species habitat suitability model used for our 2011 sampling
location stratification in the Sonoran Desert of Arizona.

Species Model (n = 10) Training AUC Test AUC COR (Pearson’s r )

Schismus (615) 1 0.8660.01 0.8160.02 0.5160.09**

2 0.8760.01 0.7960.02 0.4560.05**

3 0.8560.01 0.7860.01 0.6160.08***

4 0.8460.01 0.7860.02 0.5460.05***

5 0.8460.01 0.7960.01 0.5760.06***

Brassica (1,476) 1 0.8460.004 0.860.01 0.6660.06***

2 0.8460.01 0.860.01 0.6660.11***

3 0.8360.01 0.860.01 0.6760.02***

4 0.8460.01 0.860.01 0.660.07***

5 0.8360.004 0.860.01 0.5460.11**

Bromus (2,783) 1 0.7560.01 0.7360.01 0.460.005***

2 0.7660.01 0.7460.01 0.4660.05***

3 0.7360.01 0.7160.01 0.3560.05**

4 0.7560.01 0.7260.01 0.3760.04**

5 0.7560.01 0.7260.01 0.3660.04**

Eruca (95) 1 0.9660.01 0.9160.02 0.860.005***

2 0.9760.01 0.9360.02 0.7560.04***

3 0.9660.01 0.9160.02 0.7460.03***

4 0.9760.01 0.9260.02 0.7760.01***

5 0.9660.01 0.960.01 0.7560.06***

Pennisetum (4,744) 1 0.7860.003 0.7660.004 0.5660.05***

2 0.7860.003 0.7660.004 0.5960.06***

3 0.7560.01 0.7460.01 0.4860.01***

4 0.7760.002 0.7560.01 0.5360.05***

5 0.7660.003 0.7560.004 0.5760.06***

Number in parenthesis after each species = number of occurrence records in the Maxent model input. Model numbers referred to variables that included: 1)
topography, spectral bands, NDVI, and precipitation data; 2) topography, spectral bands, NDVI, precipitation layers, and road distance; 3) topography, spectral bands,
NDVI, and road distance; 4) topography, spectral bands, NDVI, and winter or summer (for Pennisetum) precipitation; and 5) topography, spectral bands, NDVI, winter or
summer (for Pennisetum) precipitation, and road distance. ** = p,0.01, *** = p,0.0001.
doi:10.1371/journal.pone.0101196.t002
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Detections in 2011 and correspondence between
detections and habitat suitability models

We detected presence of at least one of our five focal species at

184 (77%) plots and 686 (59%) subplots. We detected Schismus

more frequently than the other four species, with a 56% detection

rate in 2011 at plots and 43% at subplots. Brassica was less

common, but was still detected in 47% of the plots and 28% of the

subplots (Table 3). Brassica exhibited considerable clustering, with

relatively higher abundance on subplots prioritized for measuring

sandy sites across the study area. It was also locally more abundant

than Schismus even though it was less frequently detected. Bromus,

Eruca, and Pennisetum were relatively uncommon. Locations where

we detected Bromus and Pennisetum appeared to be at the edge of

their predicted suitable habitat, whereas Eruca occurred in few

clustered populations in highly localized areas. Individual plants

were small in stature and cover was sparse, as all five focal species

showed an average percent cover ,1% based on point intercept

counts along transects in each subplot. At some xero-riparian

locations, we observed that plants sampled grew beneath

desiccated focal species from the previous year’s production that

had attained a much greater size (e.g. Brassica) and cover during a

relatively wet year.

We found high correspondence between locations where our

focal species were detected and areas of high habitat suitability.

Most of our detections fell within the 70th percentile of Model 4 for

winter annuals and Model 5 for Pennisetum (Figure 4). Among the

686 subplots with presence of at least one out of five focal species,

652 (95%) fell within the 70th percentile of at least one of these

HSMs (Figure 4). Furthermore, 206 (80%) of the 257 subplots that

had presence of multiple (n$2) focal species were within the 70th

percentile of more than one of these HSMs (Figure 4). More

specifically, for the two most common species at the plot level,

Schismus and/or Brassica was present in 70% of the sampled

locations, and 92% of these plots corresponded to the 70th

percentile of Model 4 for either or both species. Similarly, we

detected Schismus and/or Brassica in 54% of the sampled subplots,

among which 89% fell within the 70th percentile of Model 4 for

either or both species. Greater variation in habitat suitability

occurred in plots/subplots where Schismus was present. At locations

with presence of Schismus, only 54% at plots and 49% at subplots

corresponded to the 70th percentile of Schismus HSM. In contrast,

90% of the plots and 87% of the subplots where Brassica occurred

were within the 70th percentile of Brassica HSM.

Modeled detection rates for each focal species varied over the

range of habitat suitability with mixed relationships. Correspond-

ing to our field detections, Brassica models performed the best,

showing the strongest positive relationship between predicted

detection rates and habitat suitability. All five Brassica models

showed a positive trend of increasing detection with higher

suitability (e.g. predicted detection rate was .0.7 when habitat

suitability was .0.8) (Figure 5). Four of the five Bromus models

showed high predicted detection rate (.0.8) at high habitat

suitability (.0.8) and all five models predicted nearly non-

detections at low to medium habitat suitability, corresponding to

our finding of abundant Bromus populations at few locations

(Figure 5). Corresponding to the widespread field detections of

Schismus across different habitats, all five Schismus models showed

positive but less strong relationships, as predicted detection rates

ranged from low to medium (0.2–0.6) across low to very high

habitat suitability (Figure 5). Predicted detection rates were low

(less or near 0.2) across ranges of habitat suitability for Eruca and

Pennisetum models, reflecting our finding that the populations were

Figure 3. Proportion of sampled subplots in 2011 across habitat suitability ranges for each species. X-axis shows average habitat
suitability predicted by five models for each focal species. Y-axis indicates the proportion of subplots that fell within a given range of predicted
habitat suitability. We sampled all focal species in habitats that ranged from low to very high suitability to increase chances of detecting unknown
populations or unknown areas of species distribution.
doi:10.1371/journal.pone.0101196.g003
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regionally rare and locally abundant at only a few locations in the

study area (Figure 5). All 25 predictive models of detection rates

outperformed models that only included regression intercepts

when predicted habitat suitability was included in the models. The

average DAIC was .10 (i.e. our threshold of model goodness of

fit) for all five models for each focal species (average DAIC = 12.8–

229.2) (Figure 5). Brassica and Bromus models showed the strongest

fit, whereas Eruca and Pennisetum models were the weakest.

Improved sampling efficiency and detections in 2012
Despite a second year of below average rainfall following 2011,

both sample size and detection rates in 2012 increased greatly with

iterative adjustments by integrating additional HSM input data,

stratification of HSMs and other vegetation indices, and more

rigorous sampling location prioritization and targeting. We

sampled 10 and 50 plots and subplots per week in 2011 versus

18 and 92 plots and subplots per week in 2012 (i.e. 506 plots and

2,530 subplots were sampled in 2012). The overall detection of at

least one of our focal species increased from 77% in 2011 to 96%

in 2012 at plots and from 59% in 2011 to 84% in 2012 at subplots.

In particular, the detection of Schismus nearly doubled and reached

93% at plots and 80% at subplots (Table 3). All focal species had

sparse populations, with an average percent cover ,3% at

subplots because of low overall annual plant productivity for the

study area in 2011 and 2012. Among the subplots where we

detected our focal species, 93% fell within the 70th percentile of at

least one of species HSMs. More specifically, 76–78% of the

detections for Schismus and Brassica at plots and subplots occurred

within the 70th percentile of species HSMs. The correspondence

between detections and ratio of 2001–2010 maximum spring

NDVI to mean spring NDVI was slightly lower. We found that

65–68% of overall detection for at least one focal species at plots

and subplots fell within the 60th percentile of this index of

vegetation productivity.

Discussion

The environmental characteristics of invasion
Our Model 4 for winter annuals and Model 5 for Pennisetum

indicated that 81% of the study area was predicted with high (i.e.

70th percentile) habitat suitability for at least one of the focal

species. Furthermore, 42% of the study area had highly suitable

habitats for multiple ($2) species. The wide spatial distribution of

areas considered suitable habitat suggested that the extent to

which potential invasion could occur is larger than the current

species distribution, particularly for years experiencing above

average rainfall. Because we sampled across habitat suitability

gradients for each species, across environmental gradients, and

away from easily accessible roads, we were able to obtain a more

realistic estimate of the extent of invasion across the study area

despite the two relatively dry winter seasons that preceded

sampling.

Brassica appeared to dominate extremely sandy soils and dunes

[32,43], whereas Schismus was more generally distributed, occur-

ring ubiquitously as a minor component of most plant commu-

nities in the lower Colorado River desert. Given the relatively

recent introduction of Eruca, its true fundamental niche may not be

well characterized by HSMs. Eruca may be in the early stages of

expansion and can likely cover a much more extensive range than

it currently inhabits [66]. On the other hand, Bromus and Pennisetum

appear better suited to Sonoran Desert uplands with higher winter

and summer precipitation than what is typical of the lower

Colorado River subdivision [27]. Our results suggested that Bromus

and Pennisetum are likely to remain rare in the hottest desert areas

of the Sonoran Desert with extremely low summer rainfall

(Table 1). In comparison, during our preliminary sampling in

2010 at locations with great abundance of Pennisetum in south-

central Arizona where the mean annual precipitation is 32.3 cm

[35], we detected much higher presence (47%) and cover (11%)

(Wang et al., unpublished data). Sánchez-Flores found that HSMs

derived from anthropogenic variables showed relatively greater

predictive power than environmental (non-climatic) variables for

Brassica and Schismus [43]. In our study, however, we did not find

evidence that disturbance factors, such as distance to the nearest

road, was a stronger predictor than the environmental variables

(climatic and biophysical) we considered. Our finding suggested

that combining climatic, biophysical, and disturbance factors can

improve prediction performance and better characterize the

spatial extent of plant invasions that are likely to have a broader

distribution than is currently recognized without large-scale multi-

jurisdictional surveys [43,67].

Detection rates across ranges of habitat suitability
Our HSMs and field detection results indicated that a model-

informed, iterative and targeted sampling design not only

characterized important environmental attributes, but also

improved the detectability of some focal species. By sampling

across habitat suitability ranges, the detection rates in 2011 for

Schismus at plot and subplot levels and Brassica at plot level

outperformed all detection rates by another multi-species study

that used simulated field detections and multiple field sampling

methods [10]. Furthermore, by employing a rigorous targeted

approach to devising the sampling framework used in 2012, we

greatly increased the sample size and number of detections for

some focal species, especially Schismus. In addition, this sampling

approach yielded an opportunity to evaluate how well HSM-

Table 3. Number and percentage of detections of five focal species by plot and subplot sampled in the Sonoran Desert of Arizona
during our 2011–2012 field seasons.

2011 Detections 2012 Detections

Species Plot (n = 238) Subplot (n = 1,171) Plot (n = 506) Subplot (n = 2,530)

Schismus 133 (56%) 505 (43%) 473 (93%) 2020 (80%)

Brassica 113 (47%) 329 (28%) 260 (51%) 748 (30%)

Bromus 15 (6%) 54 (5%) 11 (2%) 13 (0.5%)

Eruca 14 (6%) 32 (3%) 26 (5%) 77 (3%)

Pennisetum 21 (9%) 46 (4%) 3 (0.6%) 3 (0.1%)

doi:10.1371/journal.pone.0101196.t003
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informed stratification corresponded to species detections. Overall,

modeled detection rates showed notable variation in correspon-

dence with HSM predictions among the five species studied.

Observations of high correspondence between high habitat

suitability and increasing detection rates for Brassica supported

the use of HSMs to detect populations and the potential spatial

extent of invasion. There are many suitable locations that Brassica

could colonize but has not yet reached, or where it was once

abundant but has decreased during consecutive years of low

rainfall. Eruca is less well distributed, as evidenced by its highly

localized and overall low detections in areas predominated by high

habitat suitability. This species appears to be dispersed along

recently abandoned agricultural fields and washes, but it also has

the potential to occupy relatively undisturbed locations, such as

sandy areas with surrounding rocky terrain. The detection rate for

Schismus was less variable across the range of habitat suitability,

perhaps because this species occupies a broad range of environ-

mental conditions.

Other factors that influenced field detections
Some limitations existed despite a high level of detection for

certain species achieved by our sampling design. First, we

constructed HSMs by leveraging available datasets that represent-

ed variable sampling efforts and might not fully represent the

Figure 4. Number of species (black, gray, and white circles) detected in our study area in 2011. Colored areas show the number of
habitat suitability models (Model 4 for winter annuals and Model 5 for Pennisetum) with predicted high habitat suitability (70th percentile). Darker
colors indicate greater spatial overlap of high suitability across species.
doi:10.1371/journal.pone.0101196.g004
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distribution of a given species in the study area. Both Schismus and

Eruca could be missed from roadside sampling because small

Schismus plants are often quite small in stature and less easily

identified, and Eruca is less widespread. In contrast, Brassica is

better documented because of its large and conspicuous form

especially during wet years [32,43]. We attempted to reduce bias

by sampling reasonable distances away from roadsides and across

large environmental gradients (i.e. habitat suitability ranges) to

capture variation that opportunistic sampling would not have been

able to accomplish. To treat such non-detection sampling bias, the

next iteration of HSMs could incorporate recommendation from

Hefley et al. to elicit experts to provide auxiliary data for

estimating the probability of detection [15]. Second, our HSMs

provided landscape- to regional-scale habitat suitability informa-

tion to stratify potential occurrence locations and identify

uninhabited areas that are suitable for colonization [68].

Therefore, the landscape to regional trend of suitable habitats

predicted by HSMs may not capture the local- or fine-scale

variation of colonized habitats. Third, HSMs based on presence-

only data do not imply species presence or absence because species

could be absent from highly suitable habitats or present in less

suitable habitats due to biotic, historical, or dispersal factors [69–

71]. For example, Eruca currently occupies a very low proportion

of its predicted suitable habitats, but may have great capacity to

expand its distribution during years of increased plant productivity

(e.g. El Niño events).

Fourth, our HSMs did not include process-based models to

couple predictions with dispersal dynamics and empirically

examine the effects of invasion stages on the degree of non-

equilibrium in models (e.g. [72]). We attempted to capture these

types of non-stationary factors by: 1) sampling across large

environmental gradients to capture a wide range of conditions

that could support species dispersal, colonization, and establish-

ment, and 2) sampling during two years and spring growing

periods to capture the dynamic process of dispersal, colonization,

and establishment that might have occurred in one year, but not

the other as limited rainfall in the study area was highly and

spatially heterogeneous among years. Refining future sampling

efforts could implement dispersal constraints into habitat suitabil-

ity models by quantifying the probability of dispersal as a function

of distance from the source population (i.e. location with presence

records) [73,74]. To overcome the challenge of deficiency in

empirical data required for model parameterization (e.g. [75–77]),

we could implement the simplest dispersal characteristics (e.g.

distance to the nearest source population for each pixel) and then

employ a more rigorous targeted strategy that considers the

distribution of locations within the neighborhood of invasion

hotspots identified from HSMs, expert knowledge, and previous

Figure 5. Relationship between predicted habitat suitability and modeled detection rate at subplots for each of the five habitat
suitability models for each focal species. We used a generalized linear model to fit regression line between binary field detections in 2011 and
predicted habitat suitability. Detections were modeled using a binomial distribution and a logit link function. For each focal species, we show the
average delta Akaike Information Criterion (DAIC) 695% confidence interval for models of detection rate that included predicted habitat suitability
versus models that included an intercept term only.
doi:10.1371/journal.pone.0101196.g005
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sampling efforts. For example, we could focus on areas with recent

fires or substrates that would facilitate the dispersal and

establishment of our focal species.

Finally, the low winter precipitation prior to sampling affected

our overall detection rates. Indeed, total precipitation in Yuma

County from December, 2010 to April, 2011 was 37% below the

previous ten year average (2000–2010) and 76% below the wettest

year on record (2005) (Western Regional Climate Center 2011;

http://www.wrcc.dri.edu/). Detection rates and percent cover

were lower than what might be expected during a wetter year,

therefore, focal species were absent or sparse from areas that

would ordinarily have invasive plants present or with greater

cover. We observed that most of our focal species tended to occupy

only shaded areas beneath native shrub canopies, within drainages

or at roadsides which have pseudo-riparian characteristics such as

higher soil moisture and fertilization effects [32].

Recommendations to managers
Our iterative and targeted sampling design allowed us to

improve detections for sparse and patchy populations by stratifying

locations using HSMs and other ancillary data important to focal

species establishment. Our framework is particularly important to

fragile ecosystems where varied rainfall patterns may facilitate

periodic and large increases in non-native invasive plant produc-

tion and fuel loads followed by dry periods of increased fire risk.

We demonstrate how modeling results can be used to guide the

design of management protocols by explicitly linking model-

informed sampling to management strategies [56]. Accordingly,

we identified strategies for improving detections rates that are also

applicable to other species and ecosystems. First, location selection

using strata predicted by HSMs should include a greater range of

habitat suitability that covers more local habitat variation.

Extending the HSM approach and adding other stratified

vegetation indices such as remote sensing-derived phenological

metrics in vegetation greenness can facilitate locating areas of

greater focal species productivity and abundance. Second,

implementing a stratified random and spatially confined approach

using rigorous criteria, can increase sample size and further reduce

transportation and labor costs. Third, plot prioritization for

sampling can be based on the most recent vegetation indices from

remotely sensed imagery. This information helps capture vegeta-

tion greenness by annual plants prior to field work and helps to

avoid sampling in areas with low or no annual plant production.

Finally, for focal species that show strong habitat preferences to

particular substrate types, incorporating soil substrate maps

derived from spectral mixture analysis of high resolution field

spectrometer data and satellite image classification can guide

sampling prioritization. Spectral end members from other

common substrates will also aid avoiding locations that have low

potential to support focal species establishment.

Our iterative and targeted sampling design and HSMs provide

practical use of existing invasive plan distribution data and useful

utility for developing sampling strata and detecting focal species

over large geographic areas to satisfy key management objectives:

1) detecting populations of non-native invasive plants across

previously unsampled gradients, and 2) characterizing the

distribution of non-native invasive plants at landscape to regional

spatial scales. We have rigorously examined the iterative and

targeted sampling design in a landscape where species invasions

pose a threat to native plant composition and structure that are

likely to undergo community shifts in the coming decades as a

result of climate change. Climate change may enhance processes

from introduction to spread of invasion by increasing the transport

of propagules, decreasing the resistance of native species to

invasion, reducing the space suitable for native species, and

creating shifts in ecosystem distributions [78,79]. Thus, our

sampling design framework can play a key role in facilitating

monitoring and mitigation activities by land management

agencies. Moreover, our novel approach to the nested integration

of common and freely available satellite images with field data can

be readily extended to other species and ecosystems. Our results

highlighted where potentially suitable habitats might be vulnerable

to invasion by one or more of our focal species and where

monitoring efforts might be focused. Importantly, our methods

and results provide a framework for establishing an ‘‘early warning

system’’ that is critical to helping managers to recognize the

possible extent of future problematic non-native invasive plants

across multiple land ownerships.
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