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Abstract: Despite the recent advances in immune therapies, melanoma remains one of the deadliest
and most difficult skin cancers to treat. Literature reports that multifarious driver oncogenes with
tumor suppressor genes are responsible for melanoma progression and its complexity can be demon-
strated by alterations in expression with signaling cascades. However, a further improvement in the
therapeutic outcomes of the disease is highly anticipated with the aid of humanoid assistive tech-
nologies that are nowadays touted as a superlative alternative for the clinical diagnosis of diseases.
The development of the projected technology-assistive diagnostics will be based on the innovations
of medical imaging, artificial intelligence, and humanoid robots. Segmentation of skin lesions in
dermoscopic images is an important requisite component of such a breakthrough innovation for
an accurate melanoma diagnosis. However, most of the existing segmentation methods tend to
perform poorly on dermoscopic images with undesirable heterogeneous properties. Novel image
segmentation methods are aimed to address these undesirable heterogeneous properties of skin
lesions with the help of image preprocessing methods. Nevertheless, these methods come with the
extra cost of computational complexity and their performances are highly dependent on the prepro-
cessing methods used to alleviate the deteriorating effects of the inherent artifacts. The overarching
objective of this study is to investigate the effects of image preprocessing on the performance of a
saliency segmentation method for skin lesions. The resulting method from the collaboration of color
histogram clustering with Otsu thresholding is applied to demonstrate that preprocessing can be
abolished in the saliency segmentation of skin lesions in dermoscopic images with heterogeneous
properties. The color histogram clustering is used to automatically determine the initial clusters that
represent homogenous regions in an input image. Subsequently, a saliency map is computed by ag-
glutinating color contrast, contrast ratio, spatial feature, and central prior to efficiently detect regions
of skin lesions in dermoscopic images. The final stage of the segmentation process is accomplished
by applying Otsu thresholding followed by morphological analysis to obliterate the undesirable
artifacts that may be present at the saliency detection stage. Extensive experiments were conducted
on the available benchmarking datasets to validate the performance of the segmentation method.
Experimental results generally indicate that it is passable to segment skin lesions in dermoscopic
images without preprocessing because the applied segmentation method is ferociously competitive
with each of the numerous leading supervised and unsupervised segmentation methods investigated
in this study.

Keywords: histogram clustering; image preprocessing; melanoma diagnosis; morphological analysis;
Otsu thresholding; saliency segmentation; skin lesion

1. Introduction

Malignant melanoma is a deadly archetype of skin cancer diseases which is one
of the primary causes of increased cancer mortality rates [1–4]. The early detection of
melanoma in skin lesions is widely recommended to mitigate complications and high
mortality rates caused by the disease [5,6]. The detection of skin lesions in dermoscopic
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images using the human eyes is an arduous process because of the visual similarity between
benign and malignant skin lesions. Dermoscopy is a non-invasive system for the visual
examination of a substructure of skin to assist the investigation of amelanotic lesions [7,8].
However, the diagnostic accuracy of dermoscopy is heavily dependent on the experience
of a dermatologist and visual assessment is highly onerous, subjective, and non-productive
because of the complex nature of dermoscopic images [4]. These intrinsic curbs can be
mitigated with the help of a computerized dermoscopic analysis system that allows for
fast and accurate decisions in detecting skin lesions [4,9,10]. Computer-assisted diagnosis
is of paramount importance to increase the accuracy and efficiency of the diagnosis of
skin lesions [11,12]. The automated systems for detecting skin lesions comprise three
stages; lesion segmentation, feature extraction, and feature classification [4]. However,
efficient segmentation of skin lesions is essential among these three stages because it helps
to segregate skin lesions from the surrounding skins [7,13]. The success of the subsequent
stages is heavily dependent on the preliminary segmentation output [4–6,10,14–18]. In
addition, the segmentation process helps to identify local and global clinical features of
the region of interest [10]. The accuracy of segmentation results of skin lesions is directly
proportional to the accurate diagnosis of malignant melanoma.

The research trend in methods for segmenting skin lesions is generally focused on the
improvement of segmentation accuracy and efficiency. Myriads of image segmentation
methods have been proposed in the literature for skin lesions. They include threshold-
ing [17,19], clustering [20–23], statistical region merging [8,10], saliency [19,24–29], and
deep learning [2,30–35]. Although multifarious image segmentation methods exist in the
literature, accurate segmentation of skin lesions is still a challenging open problem because
of the heterogeneous properties of dermoscopic images. The asymmetric features such
as the irregular border, uneven shape, and colors of skin lesions can cause difficulties in
accurately segregating the regions of skin lesions from the background. Moreover, im-
ages with low contrast between skin lesions and normal skin, the presence of undesirable
artifacts such as color charts, marker ink, ruler marks, air bubbles, vignette, noise, and
inherent cutaneous artifacts such as hair and blood vessels can make the segmentation
obligation more challenging [3,5,6,12,16,32,36,37]. The artificial correlation created by these
undesirable artifacts could adversely affect the performance of segmentation methods
for skin lesions. Most of the existing studies have applied different image preprocessing
methods to mitigate the debilitating effects of undesirable artifacts in dermoscopic images.
These preprocessing methods include contrast enhancement [5,7,19,20,37], illumination
correction [3,6], and hair removal [3,9,12,26,34,36–38].

The preprocessing step is generally considered an effective way of achieving better
segmentation results, but it compromises the processing speed. Besides, most of the
existing segmentation methods are extremely dependent on the utilization of preprocessing
methods, and related parameters to match the heterogeneous properties of input images
can be hard to determine [30,34]. A generalized solitary method to handle the various types
of undesirable artifacts is still an unresolved problem in the disciplines of image processing
and computer vision. Hence, myriads of studies have relied heavily on different stages
of preprocessing to address the countless types of undesirable artifacts and uneven color
contrast of dermoscopic images [2,6,9,17,20,23,26,37,39–41]. The demand for the inclusion
of multiple preprocessing phases can adversely affect the performance of a segmentation
method while limiting its practical applications in real clinical settings. In addition, the
generalizability of different segmentation methods across a wide gamut of images is highly
restricted by the type of preprocessing steps employed.

The principal objective of this study was to investigate the effect of image preprocess-
ing on the performance of a saliency segmentation method for skin lesions. The objective
was accomplished by leveraging the collaboration of color histogram clustering [42] with
Otsu thresholding [43] to realize the CHC-Otsu algorithm. The DullRazor artifact removal
algorithm [44] and contrast limited adaptive histogram equalization (CLAHE) [45,46] are
the two famous preprocessing methods utilized for experimentation in this study. It is inter-
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esting to report that both types of preprocessing methods have not significantly increased
the segmentation performance of the CHC-Otsu algorithm. This outcome advocates the
sufficiency of the CHC-Otsu algorithm to handle undesirable artifacts and color imbalance
between the regions of skin lesions and non-skin lesions in dermoscopic images. The CHC-
Otsu algorithm has been experimentally compared to numerous leading supervised and
unsupervised segmentation methods to validate its performance. The experimental com-
parisons were based on publicly available dermoscopic datasets and standard performance
evaluation metrics. The comparative results indicate that the CHC-Otsu algorithm can pro-
duce ferociously competitive results when compared to the leading methods investigated
in this study. The core contributions of the work reported in this paper are threefold:

• The application of color histogram clustering with Otsu thresholding for automatic
identification of the number of homogeneous clusters and efficacious segmentation of
skin lesions in dermoscopic images.

• The investigation of the effect of image preprocessing on the performance of a saliency
segmentation method that leverages the collaboration of the CHC algorithm with Otsu
thresholding for skin lesions.

• The evaluation of the performance of the CHC-Otsu algorithm against numerous
leading image segmentation algorithms through extensive experimentation.

The remainder of this paper is succinctly summarized as follows. Section 2 compre-
hensively highlights the related studies. Section 3 covers the materials and methods used
for experimentation while Section 4 elucidates the experimental results. Section 5 discusses
the experimental results with a brief concluding remark.

2. Related Studies

Related studies provide the literature evidence that performances of the existing
segmentation methods for skin lesions are highly dependent on the effectiveness of the
preprocessing phases employed. However, there is no solitary preprocessing method that
can generally be applied to resolve the different types of undesirable artifacts inherent in
dermoscopic images. Consequently, several studies have incorporated multiple stages of
preprocessing to tackle the heterogeneous properties of dermoscopic images to improve
segmentation results [2,8,9,17,23,26,32,33,37,39–41,47]. The dependency on manifold stages
of preprocessing confines the generalizability of the existing segmentation methods and
increases their computational complexities. The study reported in [30] highlighted the
curbs of using preprocessing methods and proposed a supervised segmentation algorithm
based on a fully convolutional neural network that is freed from preprocessing. The visual
characteristics of dermoscopic images were inferred by an iterative learning process in
multistage fully convolutional networks to improve segmentation results, but with the
added cost of high computational complexity. The superpixel-based segmentation method
in [48] eluded the preprocessing step, but performance results are highly dependent on the
granularity of superpixels. The review of related studies is accomplished in more detail by
considering preprocessing methods and the actual segmentation methods employed for
the analysis of skin lesions.

2.1. Preprocessing Methods Used in Segmentation Processes of Skin Lesions

The accurate segmentation of skin lesions is often prejudiced by the heterogeneous
properties inherent in dermoscopic images. These heterogeneous properties include the
presence of undesirable artifacts such as hair, blood vessels, color charts, ruler marks,
marker inks, vignettes, noise, uneven illumination, and specular highlights caused by the
acquisition processes of dermoscopic images. Most of the existing segmentation methods
are highly dependent on various levels of preprocessing phases to circumvent the effects of
undesired artifacts that could compromise the accurate segmentation of skin lesions. The
occlusion resulting from undesirable artifacts can significantly hamper the accurate segmen-
tation of skin lesions in dermoscopic images [34]. This challenge has led to the development
of numerous artifact removal methods for occlusion in dermoscopic images. The artifact
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removal methods are based on thresholding [8,9,26], morphology [2,37], filtering [9], and
DullRazor [12,17,28,36,38,39,47,48].

Similarly, image enhancement preprocessing methods are widely applied to correct
the non-uniform illumination and low contrast nature of dermoscopic images. These
enhancement methods are based on contrast adjustment [9,17], filtering [8,17,26,40], adap-
tive histogram equalization [37,49], and contrast limited adaptive histogram equalization
(CLAHE) [40,41,50,51]. The CLAHE is widely recognized as the best method among the
prevailing enhancement methods for preprocessing of medical images [40]. In addition,
literature has shown evidence of preprocessing stages based on histogram [33], mean
subtraction [31], deep learning [34], multiscale decomposition [21], adaptive gamma correc-
tion [23], Z-score transformation [52], and Frangi Vesselness filter [41]. The artifact removal
and image enhancement algorithms are generally executed before the actual segmentation
and postprocessing methods are applied to suppress the leftover noise. Table 1 summarizes
the different preprocessing methods used by the related studies for the segmentation of
skin lesions.

Table 1. Image preprocessing methods used for segmentation of skin lesions.

Study Method

[2] Artifact removal using morphological operations and image enhancement with unsharp filtering.
[8] Artifact removal using thresholding and image enhancement with a median filter.

[9] Artifact removal using the bottom-hat filter, dark corner removal with thresholding, and color enhancement by the
intensity with saturation features of the HSV color model.

[12] Artifact removal using DullRazor.
[17] Artifact removal using DullRazor and image enhancement by noise filtering with intensity adjustment.

[19] Artifact removal using improved DullRazor and image enhancement with top–bottom filtering, contrast stretching,
and log transformation.

[20] Artifact removal using averaging filter and image enhancement with contrast enhancement.
[21] Artifact removal using multiscale decomposition.
[22] Image enhancement using contrast enhancement method.
[23] Artifact removal using a fast line detector and image enhancement with gamma correction.
[25] Artifact removal using DullRazor.

[26] Artifact removal using threshold decomposition and image enhancement for illumination correction with
homomorphic filtering.

[27] Image enhancement using adaptive gamma correction.
[28] Artifact removal using DullRazor.
[31] Image enhancement using mean subtraction and standard deviation-based normalization.
[32] Artifact removal and image enhancement using color constancy with shades of gray.
[33] Artifact removal and image enhancement using histogram-based preprocessing.
[34] Artifact removal using a deep learning method.
[36] Artifact removal using DullRazor.
[37] Artifact removal using morphological operations and image enhancement with histogram equalization.
[38] Artifact removal using DullRazor.
[39] Artifact removal using DullRazor and image enhancement with global-local contrast stretching.
[40] Artifact removal using median filter and image enhancement with contrast-limited adaptive histogram equalization.

[41] Artifact removal using Frangi Vesselness filter and image enhancement with contrast-limited adaptive
histogram equalization.

[47] Artifact removal using DullRazor and image enhancement with adaptive histogram equalization.
[48] Artifact removal using DullRazor with a median filter.
[49] Image enhancement using adaptive histogram equalization.
[50] Image enhancement using contrast limited adaptive histogram equalization.
[51] Image enhancement using contrast limited adaptive histogram equalization.
[52] Image enhancement using Z-score transformation.

2.2. Methods Used for Segmentation of Skin Lesions

Approaches for the segmentation of skin lesions spanning different algorithmic meth-
ods were proposed over the years. The methods can be categorized primarily into super-
vised and unsupervised segmentation approaches. The supervised segmentation methods
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use a priori knowledge of the ground truth of a large training dataset of images, while
the unsupervised methods are generally trained online during the segmentation process.
The supervised segmentation methods focus on training, learning, and extraction of hi-
erarchical image features from large image datasets using supervised machine learning
methods such as support vector machines (SVMs), and convolutional neural networks
(CNNs) [26,30–35]. The CNN-based deep learning methods have recently gained popu-
larity for the segmentation of dermoscopic images [30–35]. The supervised segmentation
methods exhibit high-performance results compared to the unsupervised complements,
but their computational complexity is the main bottleneck. Moreover, they demand a high
volume of training data with many parameters tuning for outstanding performance on the
segmentation of skin lesions. However, obtaining high-quality annotated medical imaging
data is a difficult and time-consuming obligation [25,28,53]. These requirements present a
huge constraint for eclectic applications of supervised deep learning segmentation methods
to support medical image analysis.

The approach of unsupervised segmentation mainly uses unsupervised machine learn-
ing methods such as expectation maximization, spectral clustering, and K-means clustering
methods. They use data clustering algorithms to rapidly obtain results by performing fewer
calculations in a combined model that separates the regions of interest from the background
regions. Due to their elegance and efficiency, a wide gamut of unsupervised segmentation
methods has been developed to date and applied for the analysis of skin lesions. These
methods include thresholding [17,19], clustering [20–23], region merging [8,10,39], and
saliency [19,24,25,27–29,38]. More recently, a privacy-preserving segmentation method
based on the partially homomorphic permutation ordered binary (POB) number system
was proposed for the segmentation of encrypted skin lesions [53]. Thresholding methods
use primitive image features such as color or texture to create an intensity histogram for
separating skin lesions from background regions. Even though thresholding is widely
accepted because of its simplicity, it can only produce satisfactory results with bimodal
images that present high contrast between the lesion and surrounding regions, but it is
limited by the intensity distribution of the skin lesions [24,30,38]. Region merging methods
generally apply to merge rules to iteratively discover and merge adjacent similar pixels
from the seeded pixels. However, they often suffer from poor performance on images with
heterogeneous properties, complex textures, and variegated colors [24]. Moreover, the
leakage issue in the process of region growing through the weak boundary is another draw-
back of region merging methods [54]. Color cue is an important feature commonly used in
clustering methods for skin disease identification [55] and several color-based clustering
methods were proposed over the years for segmenting skin lesions [20–23]. However,
the automatic identification of the optimum number of clusters in an image is a major
challenge experienced by clustering methods. This is because the parameters of the initial
clusters and cluster centroids have a non-trivial role in the segmentation results [18,56].
Dermoscopic images are intrinsically featured with focal regions of interest that reflect high
contrast discrimination. The features have been exploited by saliency methods to achieve a
significant advancement in the segmentation of skin lesions. This is because the features can
rapidly help locate salient objects by efficiently analyzing the image surroundings [25–29].

Regardless of the numerous types of segmentation methods developed for skin lesions,
efficiency and effectiveness are prejudiced by the presence of heterogeneous properties
inherent in dermoscopic images. The segmentation method proposed in [6] focuses on
eliminating the numerous types of artifacts innate in dermoscopic images. The authors
used continuous-time wavelet transformation with a neighborhood-based region filling
algorithm for hair detection and hair inpainting with adaptive sigmoidal function for
illumination correction. The method proposed in [20] used average filtering for artifact
removal and applied contrast enhancement to distinguish the boundaries of skin lesions.
The study in [37] used morphological operations to remove hair artifacts and histogram
equalization was applied for image enhancement. The method introduced in [26] used the
hair-removing algorithm [57] to eliminate the effect of hair and homomorphic filtering [58]
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was used for illumination correction. The unsupervised SDI+ [9] method for segmentation
of skin lesions employed preprocessing in several stages as proposed in [9]. The vignettes or
dark corners are first eliminated in images by thresholding, then intensity with saturation
features of the Hue saturation value (HSV) color model were exploited to address specular
highlights, and bottom hat filtering was finally applied to remove hair artifact [9]. Table 2
summarizes the different methods used by the related studies for the segmentation of skin
lesions on benchmarking datasets of international skin imaging collaboration 2018 (ISIC
2018), Pedro Hispano hospital (PH2), and human against machine 10,000 (HAM10000) with
numerous numbers of images used for evaluation. Small-sized datasets such as PH2 have
been widely used by many studies, while the huge HAM10000 dataset is only used in the
current study.

Table 2. Methods used for segmentation of skin lesions.

Approach Study Method Preprocessing Dataset Images

Supervised

[2] Deep regional CNN and FCM clustering Yes ISIC 2016 1279
[12] Deep convolutional network Yes PH2 200

ISBI 2017 2750
[26] Saliency based Yes ISIC 2017 2150
[30] FCN based Yes ISIC 2016 1279

PH2 200
[31] Recurrent, residual convolutional neural network Yes ISIC 2017 2000
[32] CNN based ensemble Yes ISIC 2018 2594
[33] Hybrid learning, particle swarm optimization Yes ISIC 2017 550
[34] Semantic segmentation based on u-Net Yes ISIC 2018 2594
[35] R2AU-Net No ISIC 2018 2594
[59] Deep convolutional encoder-decoder No PH2 200

Unsupervised

[8] Statistical region merging Yes Private 90
[9] Thresholding Yes ISIC 2017 600

[10] Stochastic region merging No PH2 200
ISIC 2018
validation 100

ISIC 2018 test 1000
[17] Thresholding Yes Private dataset 85
[19] Saliency and thresholding Yes PH2 18

ISBI 2016 13

[20] K-means clustering Yes

Dermatology
information

system
andDermQuest

50

[21] K-means clustering Yes Atlas dermoscopy
dataset 80

[22] Fuzzy C-Means clustering Yes UMCG 170
[23] Data clustering Yes PH2 200

ISIC (2016–2019) 5400
[24] Saliency No EDRA 566

PH2 200
ISBI 2016 900

[25] Saliency Yes PH2 200
ISBI 2016 900

[27] Saliency Yes PH2 50
ISBI 2016 70

[28] Saliency and thresholding Yes PH2 200
ISBI 2016 900

[29] Multi scale superpixel segmentation No PH2 200
ISBI 2016 900

[37] Thresholding and edge detection Yes PH2 200
[38] Saliency Yes PH2 200
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Table 2. Cont.

Approach Study Method Preprocessing Dataset Images

Unsupervised

[39] Region merging Yes PH2 200
ISIC 2017 900

[40] Thresholding Yes PH2 Mednode
DermNet 992

[50] Thresholding and GraphCut Yes DSSA 294
[52] Partially homomorphic POB number system Yes PH2 200

ISBI 2016 1279
ISBI 2017 2600

[60] Superpixel clustering and thresholding No PH2 200

Ours Saliency-based color histogram clustering with
thresholding No PH2 200

ISIC 2018 2594
HAM10000 10,015

The comprehensive review of the related studies has exposed the literature hiatus in
the following summarization. The related studies underlined the dearth of a generalized
solitary preprocessing method that can handle the numerous undesirable artifacts inher-
ent in color images. The application of unsupervised image segmentation methods that
incorporate preprocessing methods to improve performance results is pervasive for the
analysis of skin lesions. There have been research efforts to abolish image preprocessing
in supervised image segmentation, but work is continuing to achieve significant success.
The usage trend in the removal of undesirable artifacts and image enhancement has shown
DullRazor and histogram equalization-based methods to be widely used for removing
undesirable artifacts and enhancing dermoscopic images, respectively.

3. Materials and Methods

The materials for this study include the experimental dermoscopic image datasets,
algorithm implementation tools, and performance evaluation metrics. The primary method
of this study is the CHC-Otsu algorithm, which leverages the collaboration of the CHC
algorithm with Otsu thresholding. The preprocessing effect on the performance of the CHC-
Otsu saliency segmentation method for skin lesions was investigated using a paired t-test,
which is considered an adequate device for judging the significant difference between the
means of two distributions [61,62]. Thus, the two-tailed paired t-test was used to estimate
the statistical significance of the means of preprocessed and non-preprocessed performance
distributions of the CHC-Otsu algorithm. The p-value less than 0.05 (p < 0.05) is considered
to declare a hypothesis statistically significant or not. The statement formulated for the
statistical analysis of the performance of the CHC-Otsu algorithm is explicated as follows.
The performance of the CHC-Otsu algorithm for skin lesions has significantly increased by
incorporating a preprocessing stage in the segmentation method at a 5% significance level.
The null hypothesis (Ho) and alternate hypothesis (Ha) are formed based on this statement
as follows.

Ho: There is no statistically significant improvement in the performance of the CHC-Otsu algorithm
in segmenting skin lesions by incorporating a preprocessing stage.

Ha: There is a statistically significant improvement in the performance of the CHC-Otsu algorithm
in segmenting skin lesions by incorporating a preprocessing stage.

3.1. Materials

The experimental datasets for this study are the publicly available PH2, ISIC 2018, and
HAM10000. PH2 is a dataset of manual segmentation and identification of 200 dermoscopic
images of melanocytic lesions with their corresponding ground truths performed by expert
dermatologists [63]. ISIC 2018 is the largest public dermoscopic image dataset of the ISIC
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2018 challenge with 2594 images and their ground truths for the analysis of skin lesions
to detect melanoma [64]. HAM10000 is a training dataset of 10,015 dermoscopic images
recently released for training deep learning methods through the ISIC archive [65]. The
dataset is widely used for the classification of skin lesions, but literature shows no wider
evidence of the performance of the images for segmentation [66–69]. The dataset has
been used in this study to evaluate the segmentation results of skin lesions to observe
the performance of the CHC-Otsu algorithm on a huge dataset. The implementation
and evaluation of the CHC-Otsu algorithm were carried out using MATLAB (2019a, The
MathWorks, Inc., Natick, MA, USA) on a computer with an Intel(R) Core (TM) i7-8650U
CPU @ 1.90GHz 2.11 GHz and 8 GB RAM.

The evaluation metrics of accuracy, sensitivity, specificity, dice similarity, and running
time are commonly used for evaluating the performance of a segmentation method for
skin lesions [10,12,23,30,35,37,52,59]. Sensitivity is the amount of the correctly detected
pixels of skin lesions while specificity is the ratio of the correctly segmented non-lesion
pixels [10,70,71]. The dice similarity measures the association between the segmentation
output and ground truth [72]. The running time of an algorithm for a specific input is
directly dependent on the number of operations that will be executed in proportion to the
size of the input.

The DullRazor [44] and CLAHE [45] are two devices used in this study to determine
whether preprocessing based on artifact removal and image enhancement, respectively,
have effects on the performance of a saliency segmentation method for skin lesions. DullRa-
zor is a digital skin hair shaver that is widely used in many studies as a preprocessing device
developed for removing dark hair from images, and clean dermoscopic images for further
processing [12,19,34,36,38,39,48]. CLAHE is an effective and excellent preprocessing device
broadly applied for contrast enhancement of natural and medical images [40,45,46]. It uses
the local contextual region of an image to compute a pixel value instead of considering the
entire image region.

3.2. Methods

The CHC-Otsu algorithm is a saliency segmentation method used to investigate the
effect of preprocessing on its performance for the analysis of skin lesions. The algorithm
is an integration of the CHC algorithm [42] with the Otsu thresholding algorithm [43] for
saliency segmentation of skin lesions. Saliency segmentation methods were inspired by
their ability to retrieve the most conspicuous objects from the background information
in a manner reminiscent of the human visual system by observing the local or global
visual rarities such as color, intensity, contrast, and brightness [73–76]. It ideally induces a
multidimensional color image into a grayscale image that is naturally amenable to Otsu
thresholding. This ability provides a source of inspiration for the unification of the two
algorithms for the saliency segmentation of skin lesions in dermoscopic images. The CHC
algorithm presents a simple, but efficacious procedure for saliency segmentation of objects
in color images according to the following four essential steps: color image quantization,
regional feature extraction, saliency map computation, and saliency map postprocessing.

Color quantization is a widely used process of reducing the number of distinct colors
in an image by merging the less dominant colors into dominant ones with a resulting quan-
tized image that has similar visual appeal to the original image. The CHC algorithm uses
the ‘imquantize’ built-in color quantization function in MATLAB (2019a, The MathWorks,
Inc., Natick, MA, USA) to effectively acquire the desired number of dominant colors of the
input red, green, and blue (RGB) color image at level 8. This realizes a maximum number
of 512 colors that corresponds to a maximum of 512 possible homogeneous regions in a
color image. Thus, the color quantization process uses dominant and significant colors to
renew the input RGB color image and reduce the computational complexity associated
with the processing of color images [16,77–79].

The regional feature extraction is accomplished using the color histogram of the quan-
tized input RGB color image to create 8 to 512 homogeneous color clusters depending on
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the color quantization result. Homogenous regions can employ richer feature representa-
tion for saliency detection than individual pixels of a color image [80,81]. The optimum
determination of clusters using the color histogram is widely accepted by researchers. The
histogram defines the frequency distribution of color image data to symbolize the count
of pixels in the image [18]. A global color histogram with 8 × 8 × 8 bins is computed
from the quantized RGB image for the automatic creation of homogeneous clusters for
saliency computation. The four features of color contrast, contrast ratio, spatial feature, and
center prior are extracted for each cluster. The color contrast of a cluster is determined by
finding the color difference of the cluster in the normalized L*a*b* color model to all other
clusters. A cluster shows high saliency when it has a high contrast to the nearby clusters
than the distant clusters [82]. The contrast ratio is used to emphasize the high color contrast
difference between the maximum and minimum brightness of clusters [42]. The spatial
feature is the spatial correlation of a cluster to all other image clusters. The center prior is
the distance of each cluster to the image center to emphasize a low weight for the cluster
framed near the image boundary [80,83–86].

The regional saliency map is computed by agglutinating the extracted four features in
the previous stage. The integration of all these features has enhanced the segmentation of
skin lesions and made the CHC algorithm robust against the low-contrast regions, random
positioning of skin lesions, and undesirable artifacts in an image. The cluster-level saliency
is used to compute the final saliency score of each pixel as follows. Since the pixels belonging
to the same cluster have the same saliency, the saliency value of each pixel is assigned by
the saliency value of the respective cluster. Saliency map postprocessing is the last stage
of the CHC algorithm because it is customary in image processing to exclude noise or
leftovers after the final segmentation process. The CHC algorithm implements the grayscale
morphological operations as a postprocessing step to achieve a smooth and accurate
segmentation result. Morphological operations are applied in image segmentation methods
to eliminate isolated pixels by closing and filling operations [9,12,17,19,20,22,26,28,36,60,87].

The MATLAB (2019a, The MathWorks, Inc., Natick, MA, USA) implementation of
the Otsu thresholding is used in this study to complement the operation of the CHC
algorithm. The Otsu method performs non-parametric, unsupervised, and automatic
global thresholding in the segmentation process. The optimal threshold is chosen by a
discriminant criterion to maximize the separability of the resultant clusters in a grayscale
image. The procedure utilizes the zeroth-order and first-order cumulative moments of a
grayscale histogram to determine an optimum threshold. The pixels of the input grayscale
image are dichotomized into 2 clusters at a particular scale, then an optimum threshold is
determined to create a Silhouette image. The inherent merit of Otsu thresholding is that
the geometric characteristics of an image object do not affect its performance because it
performs thresholding on image intensity [88].

The CHC-Otsu algorithm presents five steps: input image quantization, regional
feature extraction, cluster saliency computation, Silhouette Otsu thresholding, and binary
morphological analysis. Binary morphological operations of fill and dilation with a disk-
shaped structural element of radius 3 are applied to the Silhouette map created by Otsu
thresholding of the grayscale saliency map generated by the CHC algorithm. The image
regions with an isolated area smaller than 30% are removed because of the fundamental
assumption that skin lesions are typically the largest objects in a dermoscopic image.
Algorithm 1 gives a full algorithmic description of the essential steps of the CHC-Otsu
algorithm for segmenting skin lesions. The algorithm is generic and is applicable in other
image segmentation assignments.

The important variables used in the algorithm are Index, Palette, and Cluster. The
Index variable is of dimensions M by N, and it stores the index value between 1 to 512
associated with the quantized input image. The parameters M and N are, respectively, the
height and width of the input image. Palette of dimension 512 by 5 stores the average L*a*b*
color features, average spatial coordinates, and count of homogeneous pixels in a region
of the input image. Cluster is a variable of dimensions K by 9 that stores the non-zero
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elements in the Palette and regional properties that characterized a cluster, where K lies
in the closed range [8, 512]. Step 2 implements the process of input image quantization.
The regional feature extraction process is implemented in steps 3 to 24. The process covers
the transformation of the input RGB image to the L*a*b* color image normalized to values
in [0, 1]. The empty clusters resulting from fewer colors detected are removed in step
25. The computation of cluster saliency score begins from step 26 to step 50 while the
clusters are rescaled to [0, 1] in step 50. The task of assigning a saliency score to each
image pixel is accomplished in steps 51 to 55. The Otsu Silhouette thresholding and binary
morphological analysis, respectively, are executed in steps 56 and 57. The MATLAB (2019a,
The MathWorks, Inc., Natick, MA, USA) norm function used in steps 30 and 44 implements
the Euclidean distance. This algorithmic description of the CHC-Otsu Algorithm 1 is based
on the mathematical formulation of the CHC Algorithm [42].

Algorithm 1. CHC-Otsu

Input: M × N × 3 RGB color image (Input), distance scaling parameter (n) such that 0.1 ≤ n ≤ 1.0
Output: M × N Silhouette image (Output), number of clusters automatically detected (K)
% Constant parameters
NIC = 3; % number of image components
IQL = 8; % image quantization level
NCD = IQLˆ3; % maximum number of desired colors
LCL = 1; % lab color light
LCA = 2; % lab color A
LCB = 3; % lab color B
PXC = 4; % pixel x-coordinate
PYC = 5; % pixel y-coordinate
PDC = 6; % pixel distance to image center
CPC = 7; % cluster pixel count
CPL = 8; % cluster pixel label
CCC = 8; % cluster color contrast
CSS = 9; % cluster saliency score
1. K = 0;
2. Index = ImageQuantization(Input, IQL);
3. Input = rgb2lab(Input);
4. Input = rescaleImage(Input, [0,1]);
5. for x = 1 to M do
6. for y = 1 to N do
7. Palette(index(x, y), CPC) = Palette(index(x, y),CPC) + 1;
8. Palette(index(x, y), LCL) = Palette(index(x, y), LCL) + Input(x, y), LCL);
9. Palette(index(x, y), LCA) = Palette(index(x, y), LCA) + Input(x, y), LCA);
10. Palette(index(x, y), LCB) = Palette(index(x, y), LCB) + Input(x, y), LCB);
11. Palette(index(x, y), PXC) = Palette(index(x, y), PXC) + x;
12. Palette(index(x, y), PYC) = Palette(index(x, y), PYC) + y;
13. end for
14. end for
15. for z = 1 to NCD
16. if Palette(z, CPC) > 0
17. K = K+1;
18. Palette(z, CPL) = K;
19. Palette(z, PXC) = Palette(z, PXC)/M;
20. Palette(z, PYC) = Palette(z, PYC)/N;
21. Palette(z, 1:PYC) = Palette(z,1:PYC)/Palette(z, CPC);
22. Cluster(K, 1:CPC) = Palette(z, 1:CPC);
23. end if
24. end for
25. Cluster(K + 1:NCD, :) = [ ];
26. Wr = Cluster(:, CPC)/(M*N);
27. for x = 1 to K
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28. Cluster(x, CCC) = 0;
29. for y = 1 to K
30. Cluster(x,CCC) = Cluster(x,CCC) + Wr(y)*norm(Cluster(x,1:NIC)-Cluster(y, 1:NIC));
31. end for
32. end for
33. for x = 1 to M
34. for y = 1 to N
35. Cluster(Palette(Index(x,y),CPL),PDC) = Cluster(Palette(Index(x,y),CPL),PDC) + (x/M-0.5)ˆ2 + (y/N−0.5)ˆ2;
36. end for
37. end for
38. for z = 1 to K
39. Cluster(z, PDC) = Cluster(z, PDC)/(n * n *Cluster(z, CPC));
40. end for
41. for x = 1 to K
42. Cluster(x, CSS) = 0;
43. for y = 1 to K
44. Ds = norm(Cluster(x, PXC:PYC)-Cluster(y, PXC:PYC));
45. Phixy = (Cluster(x, CCC) + 0.05)/(Cluster(y, CCC) + 0.05);
46. Cluster(x, CSS) = Cluster(x, CSS) + Wr(y)* Phixy*exp(-Ds);
47. end for
48. Cluster(x,CSS) = exp(-Cluster(x,PDC))*(Wr(x)*Cluster(x, CCC)+ Cluster(x, CSS));
49. end for
50. Cluster(:, CSS) = rescale(Cluster(:, CSS));
51. for x = 1 to M
52. for y = 1 to N
53. Input(x, y, LCL) = Cluster(Palette(Index(x, y), CPL), CSS);
54. end for
55. end for
56. Output = OtsuThresholding(Input(:, :, LCL));
57. Output = BinaryMorphology(Output);
end Algorithm

4. Experimental Results

This section focuses on the experimental results obtained by evaluating the effects
of DullRazor and CLAHE preprocessing methods on the performance of the CHC-Otsu
algorithm. In addition, the overall performance comparison of the algorithm against the
leading segmentation algorithms is evaluated for skin lesions. The presentation of the
experimental results is structured as preprocessing effects by visualization, preprocessing
effects by statistical testing, runtime analysis of preprocessing effects, and performance
evaluation of skin lesion segmentation. The heterogeneous properties identified in the
dermoscopic images are listed in Table 3.

4.1. Preprocessing Effects by Visualization

The simplest way to demonstrate the performance of a segmentation method is by
visual inspection. Dermoscopic images with undesirable heterogeneous properties are
orthodoxly used to visually demonstrate preprocessing effects on the performance of a
segmentation algorithm. The segmentation results achieved by the selected dermoscopic
images using the CHC-Otsu algorithm with and without the application of preprocessing
methods are illustrated in Figures 1–3 for each dataset, respectively. Since the images from
the PH2 dataset do not sufficiently cover numerous undesirable heterogeneous properties
(Table 3), only the available image categories are included in Figure 1. The inclusion of Dull-
Razor and CLAHE preprocessing devices for artifact removal and contrast enhancement
has roughly produced good results. Nevertheless, the results have demonstrated the ability
of the CHC-Otsu algorithm to remove undesirable artifacts and adequately highlight skin
lesions without the need for preprocessing.
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Table 3. Description of heterogeneous properties inherent in dermoscopic images.

Image Property Property Description

1 Images with irregular skin lesion shape
2 A large skin lesion that connects multiple image boundaries
3 Skin lesion with low contrast to the surrounding skin
4 Skin lesion with color chart artifact
5 Skin lesion with hair artifact
6 Skin lesion with marker ink artifact
7 Skin lesion with ruler artifact
8 Skin lesion with blood vessel artifact
9 Skin lesion with gel bubble artifact
10 Image with vignette noise artifact
11 Skin lesion with multiple artifacts
12 Skin lesion with multiple shades of color intensity
13 Small skin lesion

The ISIC 2018 is a complex dataset with images of undesirable heterogeneous prop-
erties as shown in Figure 2. The adequacy of the CHC-Otsu algorithm to handle these
heterogeneous properties can be observed in Figure 2. It can be perceptibly observed that
segmentation outputs of images with serial numbers 10 and 12 are adversely affected by
contrast enhancement preprocessing.

The inclusion of contrast enhancement preprocessing sharply waned the segmentation
performance on images with the serial numbers of 3, 9, 7, 10, 11, and 12, as shown in Figure 3.
The ability of the CHC-Otsu algorithm to accurately segment skin lesions regardless of the
heterogeneous properties is detectably obvious from the results shown in Figures 1–3.

4.2. Preprocessing Effects by Statistical Testing

Statistical performance evaluation measures of accuracy and dice similarity are em-
ployed to test the effects of preprocessing on saliency segmentation of skin lesions. The
paired t-test statistic is used to determine the statistically significant evidence of the differ-
ence between the means of the non-preprocessed and preprocessed segmentation results
illustrated in Tables 4–6. Pairs 1 and 3, respectively, represent the accuracy and Dice scores
for the segmentation performances without preprocessing and with artifact removal pre-
processing. Pairs 2 and 4 represent the accuracy and Dice scores, respectively, obtained for
the segmentation performance without preprocessing and with image enhancement pre-
processing. The mean value of accuracy is significantly higher without the artifact removal
preprocessing for the PH2 dataset. However, the use of image enhancement preprocessing
for the PH2 dataset increases the accuracy significantly with a p-value less than 0.05. In
terms of the Dice similarity, the CHC-Otsu algorithm without the application of DullRazor
preprocessing recorded a higher value, but the increment is not statistically significant. In
divergence, the inclusion of image enhancement preprocessing is to contribute a statistically
significant difference in the accuracy and Dice scores with a p-value of 0.000 < 0.05 to accept
the alternate hypothesis.

The results in Table 5 obtained for the ISIC 2018 dataset indicate that the inclusion of
artifact removal or image enhancement preprocessing did not contribute to a statistically
significant difference in the segmentation results for the ISIC 2018 dataset. The increment
in results obtained is not at a statistically significant level even though the accuracy and
Dice scores for without preprocessing are higher than those obtained with artifact removal
preprocessing. However, the CHC-Otsu algorithm without the inclusion of image enhance-
ment preprocessing is seen to significantly improve the segmentation quality in terms of
the Dice score.



Diagnostics 2022, 12, 344 13 of 25Diagnostics 2022, 12, x FOR PEER REVIEW 13 of 26 
 

 

Serial Property Image Ground Truth Effect of Artifact 
Removal  

Effect of Contrast 
Enhancement  

Effect of Non-
Preprocessing  

1 1 

     

2 1 

     

3 1, 2 and 10 

     

4 2 and 10 

     

5 2 and 10 

     

6 1, 2 and 10 

     

7 10 

     

8 4 and 10 

     

9 2,5 and 10 

     

10 13 

     

Figure 1. The visual effects of preprocessing on the PH2 dataset. 

The ISIC 2018 is a complex dataset with images of undesirable heterogeneous prop-
erties as shown in Figure 2. The adequacy of the CHC-Otsu algorithm to handle these 
heterogeneous properties can be observed in Figure 2. It can be perceptibly observed that 
segmentation outputs of images with serial numbers 10 and 12 are adversely affected by 
contrast enhancement preprocessing. 

 

Figure 1. The visual effects of preprocessing on the PH2 dataset.



Diagnostics 2022, 12, 344 14 of 25
Diagnostics 2022, 12, x FOR PEER REVIEW 14 of 26 
 

 

Serial Property Image Ground Truth 
Effect of Artifact 

Removal  

Effect of Contrast 

Enhancement  

Effect of Non-

Preprocessing  

1 1 

     

2 2 

     

3 3 

     

4 4 and 5 

     

5 5 

     

6 6 

     

7 7 

     

8 8 

     

9 9 

     

10 10 

     

11 11 

     

12 12 

     

13 13 

     

Figure 2. The visual effects of preprocessing on the ISIC 2018 dataset. 
Figure 2. The visual effects of preprocessing on the ISIC 2018 dataset.



Diagnostics 2022, 12, 344 15 of 25
Diagnostics 2022, 12, x FOR PEER REVIEW 15 of 26 
 

 

Serial Property Image Ground Truth 
Effect of Artifact 

Removal  

Effect of Contrast 

Enhancement  

Effect of Non-

Preprocessing  

1 1 and 3 

     

2 2 and 3 

     

3 3 and 10 

     

4 5 

     

5 6 

     

6 7 

     

7 8 

     

8 9 

     

9 10  

     

10 5 and 10 

     

11 7 and 12 

     

12 13 

     

Figure 3. The visual effects of preprocessing on the HAM10000 dataset. 
Figure 3. The visual effects of preprocessing on the HAM10000 dataset.



Diagnostics 2022, 12, 344 16 of 25

Table 4. Paired samples test for preprocessing effect using PH2 dataset.

Variable Mean Std. Err. Std. dev. [95% CI] t-Value df Sig a

Accuracy
Pair 1

Without preprocessing 0.921 0.009 0.127 0.903–0.939
2.043 199 0.042With artifact removal 0.919 0.009 0.130 0.901–0.938

Pair 2
Without preprocessing 0.921 0.009 0.127 0.903–0.939 −3.9213 199 0.000With image enhancement 0.933 0.008 0.118 0.917–0.950

Dice
Pair 3

Without preprocessing 0.893 0.007 0.105 0.878–0.908
0.953 199 0.342With artifact removal 0.891 0.008 0.106 0.876–0.906

Pair 4
Without preprocessing 0.893 0.007 0.105 0.878–0.908 −4.0814 199 0.000With image enhancement 0.909 0.007 0.942 0.896–0.922

Std. Err. = standard error; Std dev. = standard deviation; Sig = significance; a (2-tailed); CI = confidence interval;
df = degrees of freedom.

Table 5. Paired samples test for preprocessing effect using ISIC 2018 dataset.

Variable Mean Std. Err. Std. dev. [95% CI] t-value df Sig a

Accuracy
Pair 1

Without preprocessing 0.923 0.002 0.113 0.918–0.927
1.777 2593 0.076With artifact removal 0.921 0.002 0.114 0.917–0.926

Pair 2
Without preprocessing 0.923 0.002 0.113 0.918–0.927 −0.096 2593 0.924With image enhancement 0.923 0.002 0.112 0.918–0.927

Dice
Pair 3

Without preprocessing 0.813 0.004 0.179 0.806–0.820
0.651 2593 0.515With artifact removal 0.812 0.003 0.178 0.806–0.819

Pair 4
Without preprocessing 0.813 0.004 0.179 0.806–0.820

4.953 2593 0.000With image enhancement 0.803 0.004 0.189 0.795–0.810

Std. Err. = standard error; Std dev. = standard deviation; Sig = significance; a (2-tailed); CI = confidence interval;
df = degrees of freedom.

Table 6. Paired samples test for preprocessing effect using HAM10000 dataset.

Variable Mean Std. Err. Std. dev. [95% CI] t-value df Sig a

Accuracy
Pair 1

Without preprocessing 0.910 0.001 0.105 0.908–0.912
4.765 10,014 0.000With artifact removal 0.909 0.001 0.106 0.907–0.911

Pair 2
Without preprocessing 0.910 0.001 0.105 0.908–0.912 −0.7440 10,014 0.000With image enhancement 0.914 0.001 0.103 0.912–0.916

Dice
Pair 3

Without preprocessing 0.824 0.002 0.153 0.821–0.827
6.339 10,014 0.000With artifact removal 0.821 0.002 0.157 0.818–0.824

Pair 4
Without preprocessing 0.824 0.002 0.153 0.821–0.827

3.801 10,014 0.000Without preprocessing 0.820 0.002 0.169 0.817–0.823

Std. Err. = standard error; Std dev. = standard deviation; Sig = significance; a (2-tailed); CI = confidence interval;
df = degrees of freedom.

The segmentation results in Table 6 for the HAM10000 dataset have clearly shown the
ability of the CHC-Otsu algorithm without preprocessing support to accurately segment
skin lesions regardless of the heterogeneous properties of the dermoscopic images. Signifi-
cant increments in accuracy and Dice scores were achieved by the CHC-Otsu algorithm
without the inclusion of the artifact removal preprocessing. The average Dice score is
significantly increased without the application of image enhancement preprocessing.

4.3. Runtime Analysis of Preprocessing Effects

The computational running times of the CHC-Otsu algorithm on the selected datasets
with and without preprocessing are reported in Figure 4. The computation time per image
in each dataset shows that preprocessing increases the time complexity of the segmentation
algorithm as projected. The running times can be seen to increase to 0.50 and 0.54 s,
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respectively using the DullRazor and CLAHE processing methods on the PH2 dataset. The
computation time per image in the HAM10000 dataset is comparatively lower than for the
other datasets because the dimension of each image in the HAM10000 dataset is 256 × 256,
which is in disparity to the dimension of 400 × 300 for images in the PH2 and ISCI 2018
datasets. Furthermore, the average time per method across the datasets is depicted in
Figure 5 to show that preprocessing using the CLAHE method recorded the worst average
running time.
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4.4. Performance Evaluation of Skin Lesion Segmentation Results

The segmentation results for skin lesions were compared against the leading super-
vised and unsupervised methods based on the widely used performance measures of
accuracy, sensitivity, specificity, and dice similarity to demonstrate the merit of the CHC-
Otsu algorithm. The results from Table 7 illustrate that the CHC-Otsu algorithm recorded
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the highest specificity value. The result is highly competitive with that of the YOLO su-
pervised deep learning method that recorded the highest accuracy score of 0.93 while the
CHC-Otsu algorithm achieved an accuracy of 0.92. The high specificity score of 0.98 is an
indication of the ability of the CHC-Otsu algorithm to accurately predict the non-lesion
pixels. The CHC-Otsu algorithm with the algorithm described in [60] recorded the second-
best Dice score of 0.89, which is highly closed to the highest Dice score of 0.90 [10]. This
result shows the effectiveness of the CHC-Otsu algorithm in differentiating a larger amount
of skin lesion pixels from the non-lesion pixels. The SPCA recorded the lowest sensitivity
score of 73%, regardless of the 95% specificity score recorded.

Table 7. Performance comparison of CHC-Otsu algorithm against leading methods on 200 images
from PH2 dataset.

Method Accuracy Sensitivity Specificity Dice

SSLS [38] a 0.85 0.75 0.98 0.78
ASLM [37] a 0.90 0.80 0.97 0.83

[59] b 0.89 0.92 0.87 0.87
[52] a 0.86 0.83 0.92 0.88
[60] a 0.90 0.91 0.89 0.89

SDI+ [9] a 0.91 0.92 0.90 0.85
[10] a 0.92 0.84 0.96 0.90

SPCA [36] b 0.87 0.73 0.95 0.80
YOLO [12] b 0.93 0.84 0.94 0.88
CHC-Otsu a 0.92 0.85 0.98 0.89

a unsupervised method; b supervised method.

Table 8 shows the comparative results of this study with the highest specificity score
of 0.99. The supervised method [34] and Attention ResU-Net [35] achieved the highest
accuracy score of 0.93 and Dice score of 0.87, respectively. The highest sensitivity score
of 0.87 was achieved in [34] and SDI+ [9]. Even though SPCA recorded a specificity
score above 90%, it did relatively present the worst sensitivity score of 0.59. These results
demonstrate the competency of the CHC-Otsu algorithm because it did record the second-
highest accuracy score of 0.92 and the best specificity score of 0.99.

Table 8. Performance comparison of CHC-Otsu algorithm against leading methods on 2594 images
from ISIC 2018 dataset.

Methods Accuracy Sensitivity Specificity Dice

SDI+ [9] a 0.87 0.87 0.89 0.75
SPCA [36] b 0.84 0.59 0.92 0.62

[34] b 0.93 0.87 0.97 0.87
RU-Net [31] b 0.88 0.79 0.93 0.68
R2U-Net [31] b 0.90 0.73 0.97 0.69

Attention ResU-Net [35] b 0.92 0.84 0.95 0.85
R2AU-Net [35] b 0.93 0.82 0.97 0.87

CHC-Otsu a 0.92 0.78 0.99 0.81
a unsupervised method; b supervised method.

This study did incorporate a huge dataset of HAM10000 for the analysis of skin lesion
segmentation results (Table 9) further to the performance evaluation of the results using
the PH2 and ISIC 2018 datasets that have been widely used by the numerous existing skin
lesion segmentation methods. Since we do not have access to the computer source codes of
the other comparative methods, the CHC-Otsu algorithm was compared with SPCA and
SDI+ on the HAM10000 dataset. The CHC-Otsu algorithm recorded the highest accuracy
score of 0.91 and specificity of 0.99. The Dice score of 0.82 recorded by the CHC-Otsu
algorithm is very close to the highest Dice score of 0.82 recorded by SDI+ [9]. Similar to
PH2 and ISIC 2018 datasets, the SDI+ recorded the best sensitivity score of 0.88. The scores
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recorded by the CHC-Otsu algorithm have shown the superiority of the algorithm when
compared to other leading methods on this huge set of dermoscopic images.

Table 9. Performance comparison of CHC-Otsu algorithm against leading methods on 10,015 images
from the HAM10000 dataset.

Methods Accuracy Sensitivity Specificity Dice

SDI+ [9] a 0.90 0.88 0.94 0.83
SPCA [36] b 0.85 0.62 0.96 0.70
CHC-Otsu a 0.91 0.77 0.99 0.82

a unsupervised method; b supervised method.

5. Discussions and Conclusions

Detailed discussions and concluding remarks are explicated in this section to dis-
passionately interpret the significance of the study results relative to the findings of the
comparative methods and to synthesize the important message of the paper.

5.1. Discussions

The delineation of skin lesions is an important prerequisite for melanoma diagnosis
using a computer-aided diagnostic system. The results of this study have demonstrated the
capability of the CHC-Otsu algorithm to accurately segment skin lesions in dermoscopic
images of varying undesirable properties. The robustness of the results obtained is a
consequence of the unique integration of saliency features of color contrast, contrast ratio,
spatial feature, and center prior in the CHC algorithm [42]. It is worth noting that the CHC-
Otsu algorithm successfully addresses the inherent complexities of dermoscopy images
without the inclusion of preprocessing.

The comparison of the results computed by the CHC-Otsu algorithm with and without
preprocessing has revealed a statistically insignificant difference in employing a preprocess-
ing method to prepare dermoscopic images for skin lesion segmentation. The investigation
of preprocessing effects has shown that skin lesions surrounded by undesirable artifacts
such as hair, color chart, ruler marks, and marker inks are successfully corrected with the
inclusion of the DullRazor preprocessing. However, improved results were obtained by the
CHC-Otsu algorithm without the inclusion of artifact removal preprocessing as shown in
Figures 1–3. It is important to observe that the inclusion of the CLAHE image enhancement
preprocessing sharply deteriorated the segmentation results of images represented by serial
numbers 10 and 12 in Figure 2 and images with serial numbers 3, 7, 9–12 in Figure 3.

The results of the t-test statistical analysis illustrated in Tables 4–6 further support the
qualitative results shown in Figures 1–3. The inclusion of artifact removal preprocessing
as shown in Tables 4–6 did not contribute to a statistically significant increase in the seg-
mentation accuracy and Dice similarity. The CHC-Otsu algorithm without preprocessing
achieved the highest performance scores across datasets than with the inclusion of the
DullRazor preprocessing. The CHC-Otsu algorithm significantly produced higher segmen-
tation results without preprocessing of images from the HAM10000 dataset. However, the
inclusion of image enhancement preprocessing showed some statistically significant effects
of segmentation accuracy on the PH2 and HAM10000 datasets with a p-value of 0.000 < 0.05.
These results have led to the inference that image enhancement preprocessing improves
skin lesion segmentation results. However, the effect of the image enhancement preprocess-
ing was not statistically significant using images from the complex ISIC 2018 dataset. In
divergence, the CHC-Otsu algorithm without preprocessing statistically produced signifi-
cantly higher Dice scores than the segmentation with image enhancement preprocessing
across datasets except for the PH2 dataset. However, compared to the ISIC 2018 and
HAM10000 datasets, PH2 is a small dataset that does not present a sufficient volume of
images with various heterogeneous properties. This assertion emphasizes the suitability of
the CHC-Otsu algorithm to handle heterogeneous properties of dermoscopic images.
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The investigation of preprocessing effects has shown that the CHC-Otsu algorithm is
capable of effectively segmenting skin lesions, regardless of the presence of undesirable
artifacts such as ruler marks, hair, color charts, ink marks, vignette, noise, a fuzzy bor-
der, and multiple shades of colors without preprocessing. This is in disparity with the
findings of studies, which stated that preprocessing is needed for efficient and robust anal-
ysis of skin lesions in dermoscopic images [17,21,34]. A plethora of studies have showed
the huge impact of preprocessing to significantly increase the skin lesion segmentation
results [9,21,23,34,40,47,69,87,89,90]. Conversely, the results of this study support the find-
ings of [91] that the preprocessing effect is dependent on segmentation and postprocessing
methods employed. An appropriate segmentation method can elude the extra demand of
preprocessing and mitigate its computational complexity. This avowal has been proven
in this study, which demonstrated that seamless application of color histogram clustering
and a holistic mechanism integrating color contrast, contrast ratio, and spatial features
with center prior have highly contributed to the accurate segmentation of skin lesions
in dermoscopic images. The exclusion of preprocessing in segmentation algorithms can
significantly contribute to extenuating the intrinsic computational complexity.

The results obtained by ASLM [37] on images from the PH2 dataset are relatively not
promising when compared to the results computed by the CHC-Otsu algorithm regardless
of preprocessing. The YOLO supervised segmentation method [12] recorded the highest
segmentation accuracy on the PH2 images. However, this deep learning method depends
heavily on preprocessing and the availability of a huge training dataset to obtain higher
confidence in the deep learning architecture. Hence, the main constraints of supervised
methods are the inherent computational complexity and heavy reliance on high-quality
annotated datasets. The SPCA supervised learning method based on superpixel and
cellular automata [36] recorded the least sensitivity score. Moreover, SPCA demonstrates a
comparatively low performance against the rest of the supervised learning methods listed
in Table 7. The highest sensitivity value was achieved with the SDI+ method [9] and it is
important to observe that high sensitivity is insufficient to quantify the real performance
because a 100% sensitivity score could be achieved by identifying every image pixel as
a skin lesion region. The method reported in [48] attained reasonably good accuracy
and sensitivity results on the PH2 dataset without preprocessing because of the ability to
develop additional structural data from superpixels. However, its dependency on single-
value superpixel granularity may lead to producing undesirable segmentation results as
superpixel-based methods are highly bounded by the optimum selection of superpixel
granularity. It is important to note that this method did not manage to precisely detect
the non-lesion pixels because the specificity score achieved by this method was only 0.89.
In divergence, the CHC-Otsu algorithm is well developed to automatically determine the
optimum region granularity and it achieves highly commendable segmentation results.

The deep learning methods of the R2AU-Net [34,35] obtained the highest accuracy
score of 93% on the ISIC 2018 dataset. The performance of the CHC-Otsu algorithm on this
dataset is laudable because it achieved the second-highest accuracy score of 92%, which is
very close to the accuracy level obtained by the supervised methods. The Dice similarity
performance of all the comparative methods can be seen to decline on images from the ISIC
2018 dataset when compared to the PH2 dataset. It reveals the complexity of images that
occurred in this dataset and the difficulty experienced by all the comparative methods to
obtain segmentation results that are closer to the ideal ground truth. The deep learning
methods [34] and R2AU-Net [35] recorded the highest Dice score of 0.87 but the CHC-Otsu
algorithm recorded a score of 0.81. The SPCA showed the worst performance on this
dataset except for the specificity score. The performances of the SPCA and SDI+ on the ISIC
2018 data are relatively lower than their performances on the PH2 dataset because the ISCI
2018 dataset is presented with images of different undesirable heterogenous properties as
listed in Table 3. This perception clearly emphasizes that preprocessing using the DullRazor
and multiple preprocessing used by the SPCA and SDI+ algorithms, respectively, have
not adequately assisted with enhancement of the segmentation results. The preprocessing
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employed by SDI+ [9] was focused on addressing only a few undesirable artifacts such as
hair, specular lights, dark areas, and marker ink. The presence of other artifacts such as
color calibration charts, and dark corners that can confound the performance of segmenta-
tion results appeared to be a challenging case for SDI+ [9] regardless of the inclusion of
preprocessing. The authors of SDI+ observed the importance of having a preprocessing
step to address the different types of undesirable artifacts.

The deep learning methods, as illustrated in Table 8, always show promising perfor-
mance with the additional cost of computing resources. The demand for the huge training
dataset and higher confidence in the deep learning architecture is directly proportional.
consequently, there is always a tradeoff between computational complexity and efficiency
performance of deep learning methods. The accuracy and generalization of deep learning
methods relied on the availability of a large training dataset. However, regardless of the
presence of complex images in the ISIC 2018 dataset, the CHC-Otsu algorithm shows sur-
prisingly outstanding performance on this dataset with a simple but effective segmentation
approach. The CHC-Otsu algorithm did outperform other algorithms on images from the
HAM10000 dataset, and the segmentation results obtained have proved the robustness of
the algorithm for segmenting skin lesions in dermoscopic images from a huge dataset.

Finally, the running times reported in Figures 4 and 5 show the computational effi-
ciency of the CHC-Otsu algorithm. One of the apparent disadvantages of employing a
preprocessing phase is the demand for extra computation time, which is obvious from the
results reported. The computation time of the CHC-Otsu algorithm increased with the incor-
poration of the preprocessing. The segmentation algorithms that use preprocessing phases
to accelerate accuracy are adversely affected by the extra computational time with more
debilitating consequences for methods that use multi-level preprocessing. The segmenta-
tion results are generally impeded by the undesirable heterogeneous properties inherent in
the dermoscopic images. Mostly, these heterogeneous properties are addressed with the
help of an appropriate selection of parameter signatures and preprocessing methods by the
majority of the existing skin lesion segmentation methods. Due to the dependency on pre-
processing methods, the generalized application of these methods is highly restricted [30].
Most of the comparative methods investigated in this study, except the ones proposed
in [10,60] are highly dependent on the selection of preprocessing and parameters tuning.
The method reported in [60] is freed from preprocessing, but its dependency on single-scale
superpixel granularity may limit its ability to segment skin lesions in dermoscopic images
with different features such as large areas, irregular boundaries, and undesirable artifacts.
The results of this study have demonstrated the ability of the CHC_Otsu algorithm to
accurately segment skin lesions without the constraint of preprocessing. In general, the
findings of this study have illustrated that if a segmentation algorithm is adequate to ad-
dress the complexities of dermoscopy images, the additional requirement on preprocessing
can be excluded.

5.2. Conclusions

The preprocessing effects on the performance of skin lesion saliency segmentation
have been meticulously investigated in this study using the CHC-Otsu algorithm which is
robust, efficient, and independent of preprocessing. The algorithm has produced ferociously
competitive segmentation results by taking the advantage of the collaboration of color
histogram clustering with Otsu thresholding. Experimental results have shown the ability
of the algorithm to effectively handle the various types of undesirable artifacts inherent in
dermoscopic images. The performance of the algorithm has been extensively evaluated
using the well-recognized publicly available datasets of the PH2, ISIC 2018, and HAM10000.
However, the CHC-Otsu algorithm needs further improvement regardless of the overall
performance, especially concerning sensitivity enrichment. The future work will focus
on the inclusion of additional features such as color texture to improve the quality of the
segmentation output and advance dermoscopic image analysis.
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