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Enzymes shape cellular metabolism, are regulated, fast, and for

most cases specific. Enzymes do not however prevent the

parallel occurrence of non-enzymatic reactions. Non-

enzymatic reactions were important for the evolution of

metabolic pathways, but are retained as part of the modern

metabolic network. They divide into unspecific chemical

reactivity and specific reactions that occur either exclusively

non-enzymatically as part of the metabolic network, or in

parallel to existing enzyme functions. Non-enzymatic reactions

resemble catalytic mechanisms as found in all major enzyme

classes and occur spontaneously, small molecule (e.g. metal-)

catalyzed or light-induced. The frequent occurrence of non-

enzymatic reactions impacts on stability and metabolic

network structure, and has thus to be considered in the context

of metabolic disease, network modeling, biotechnology and

drug design.
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Introduction
The metabolic network originates from a low number (or

one) of ancestral forms, and all living organisms share core

reaction sequences and structural properties in their meta-

bolic networks [1]. Glycolysis and gluconeogenesis, pen-

tose phosphate pathway (PPP) and tricarboxylic acid

(TCA) cycle are central metabolic pathways and exemplary

for the conservation of metabolism [2,3]. Their products

glucose, pyruvate, ribose-5-phosphate and erythrose-4-

phosphate are common precursors for amino acids, lipids

and nucleotides. Despite the high level of conservation of
3 These authors contributed equally to this work.
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the reactions, the participating enzymes have however

multiple origins. Sequences of glycolytic enzymes differ

between Archaea and Bacteria/Eukaryotes [2,4��,5]. This

divergence can be explained by both, independent evolu-

tionary origins of enzymes and stepwise replacement of

ancestral enzymes by modern forms [5]. Both scenarios

require an initial reaction sequence as ‘template’, as evo-

lution can only select for a functional product (‘end-prod-

uct problem’ [6]). The initial metabolic pathway can thus

either evolve backward from the advantageous end-prod-

uct (retro-evolution), provided that precursors are formed

non-enzymatically [6], or by improving a non-enzymatic

reaction sequence starting from its most rate-limiting step

[7]. A plausible primordial base can be traced for glycolysis

and the PPP, as several of their reactions can be replicated

with metal catalysts, in particular Fe(II), under conditions

reproducing the ocean chemistry of the Archean world [8].

Fe(II) was broadly available before oxygenation of the

early Earth [9], implying a scenario for the first glycolytic

enzymes being simple iron-binding RNA or oligopeptide

molecules, which would have possessed the potential of

enhancing many reactions now found in central metabo-

lism [7,8] (Box 1).

Three classes of non-enzymatic reactions
contribute to modern cellular metabolism
It is important to emphasize that the same thermodynamic

principles apply for non-enzymatic and enzymatic reac-

tions, and every enzymatic reaction can occur in principle

also non-enzymatically [10�]. Non-enzymatic reactivity of

metabolites is a well-known phenomenon since the begin-

ning of enzymology (Figure 1a). However, network topol-

ogies or genome-scale metabolic models were not

prevailing research questions until the event of Systems

Biology, and until recently for many cases the metabolic

role of non-enzymatic reactions obtained little attention.

The presence of enzymes does not prevent non-enzymatic

reactions to occur across the metabolic landscape. On the

basis of their principal mode of action, we divide non-

enzymatic reactions into three classes (Figure 1b): Class I

reactions present broad chemical reactivity and low speci-

ficity. These include Maillard-reactions, a conjugation of

amino group-containing compounds (e.g. amino acids) and

sugars [11], oxidation reactions driven by reactive oxygen

species (ROS) and non-enzymatic covalent modifications

of lipids and proteins (alkylation, glycosylation and acety-

lation) [12]. These indiscriminate reactions are not the

main focus of this review; nonetheless, they have a strong
Current Opinion in Biotechnology 2015, 34:153–161
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Box 1 Evolutionary replacement of metal catalysis with protein

catalysts: the case of ribulose 5-phosphate 3-epimerase, which

exists as an Fe(II)-dependent form and an iron-independent form.

While in many bacteria the Fe(II)-dependent form dominates, in

higher eukaryotes it is the iron independent form [69]. As the

isomerization of ribulose 5-phosphate is catalyzed by Fe(II) also in

the absence of the enzyme [8] indicates that the iron-dependent

form is the older enzyme. Exchanging the Fe(II)-dependent with the

metal-independent form of the epimerase does provide selective

advantage: the Fe(II) catalyst in the bacterial epimerase gets readily

oxidized, in fact this enzyme is the first one damaged when

Escherichia coli is exposed to oxidants; the Fe(II) dependence of

RPE is thus one major cause why E. coli cells can tolerate only

moderate H2O2 levels [70].
effect on cellular physiology and are important driving

forces for evolution.

Other non-enzymatic reactions are highly specific and are

integral part of the metabolic network. Class II reactions

occur purely non-enzymatically. A well-known example is

the maturation of vitamin D3 where a precursor is trans-

ported to the skin, to be converted by UV light to pre-

vitamin D3 [13�]. Most Class II reactions are spontaneous

reactions which do not depend on a catalyst or an atypical
Figure 1
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energy source, such as the next downstream reaction in

vitamin D3 biosynthesis, in which previtamin D3 under-

goes spontaneous isomerization forming vitamin D3 [13�].

Class III non-enzymatic reactions occur parallel to en-

zyme functions. Class III reactions are widespread in

metabolism, and indicate that many metabolic pathways

descend from promiscuous or non-enzymatic precursors.

Frequently, the parallel enzyme operates to prevent

unwanted secondary products that would be generated

in the non-enzymatic reaction (negative catalysis). Exam-

ples include the spontaneous transamination of glyoxylic

acid and amino acids [14], the isomerization of propyl

residues [15], the decarboxylation of aminomalonic acid

[16] and the formation of oxysterols from cholesterol [17].

Class III non-enzymatic reactions occur analogous to all

six major enzymatic classes, illustrated for the following

examples:

(i) Oxidoreductases: catalase (Figures 2 and 3a). Hydro-

gen peroxide (H2O2) is formed as a (by-)product in

various redox reactions. In combination with Fenton

chemistry, H2O2 can react into superoxide and

damage proteins, RNA, DNA and lipids [18].
Enzymatic catalysis

R1

R5

R4

R2

R3

   Reaction rates

   Precise regulation

Evolutionary plasticity

E1

E3

E4

B

atic

y 
matic

Class III

A B

 Enzymatic

Parallel 
non-enzymatic

Current Opinion in Biotechnology

ic reactions (R1, R3, R4, left panel) provide a template for the

r substrate specificity and reaction rate, can be regulated and decrease

ions dominate in modern metabolism. The presence of enzymes does

 three classes: Class I reactions are non-specific and act on a broad

n-enzymatic as part of the metabolic network, while Class III reactions

www.sciencedirect.com



Non-enzymatic reactions in metabolism Keller, Piedrafita and Ralser 155
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Catalase degrades H2O2 into water and oxygen [19].

A similar reaction is also catalyzed by metals,

inorganic salts and organic compounds [20,21].

Despite catalase is faster than the non-enzymatic

reactions, the non-enzymatic catalysts are present at

much higher cellular concentrations (iron: mM–mM

range versus catalase that is present in the nanomolar

range (i.e. 38 nM) ; [22,23]), and thus relevant for

total reactivity.

(ii) Transferases: glutathione-S-transferases (GST)

(Figures 2 and 3b). GSTs comprise a large family

of enzymes that transfer substrates to glutathione

(GSH) for cellular detoxification. Several substrates

(i.e. 4-hydroxynonenal, isothiocyanates or catecho-

lamines) conjugate to GST also non-enzymatically

[24–26]. The reactive GSH thiol-group provides the

redox potential for both the enzymatic and non-

enzymatic conjugation [26].

(iii) Hydrolases: 6-Phosphogluconolactonase (6PGL)

(Figures 2 and 3c). 6PGL is an enzyme of the

oxidative PPP that provides NADPH and pentose

metabolites [27]. Spontaneous hydrolysis of 6-

phosphogluconolactone into 6-phosphogluconate

occurs at rates that would allow a considerable
www.sciencedirect.com 
PPP flux [28]. The presence of 6PGL additionally

accelerates flux, but predominantly prevents the

formation of undesired side-products produced

when 6-phosphogluconolactone reacts with amino

acids, lipids, polyamines or alcohols [28]. Also other

lactonases such as aldonolactonase (L-ascorbate

biosynthesis) [29] and hydrolase-type reactions such

as acyl phosphatases [28], epoxide hydrolases [30]

and lipoxygenase (colneleic acid degradation) [31]

possess analogous non-enzymatic reactions.

(iv) Lyases: ergothioneine and tetrahydrobiopterin (BH4)

(Figures 2 and 3d). Ergothioneine is a metabolite

produced by bacteria and fungi, and actively taken

up by mammalian cells [32]. Its biosynthesis involves

a threefold methylation of the alpha-amino group of

histidine, followed by cysteinylation of the histidine

side chain [33]. The final reaction is catalyzed by a

pyridoxal phosphate-dependent lyase, or occurs in a

non-enzymatic manner ([33], supporting informa-

tion). Another example for a non-enzymatic lyase

reaction is found in the BH4 salvage pathway that

regenerates BH4 with the help of dihydropterin-4a-

carbinolamine dehydratase and dihydropteridine

reductase (DHPR). When DHPR activity becomes
Current Opinion in Biotechnology 2015, 34:153–161
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Figure 3
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limiting, the intermediate 6,7-dihydrobiopterin

rearranges non-enzymatically allowing salvage of

BH4 [34].

(v) Isomerases: glycolysis, PPP and isomerization in

vitamin D biosynthesis (Figures 2 and 3e). Non-

enzymatic isomerization reactions are frequently

observed, for instance between glycolytic inter-

mediates fructose-6-phosphate, glucose-6-phos-

phate or mannose-6-phosphate [35] as well as PPP

metabolites ribulose-5-phosphate, xylulose-5-phos-

phate and ribose-5-phosphate [8]. Another example

is the isomerization of glyceraldehyde-3-phosphate

and dihydroxyacetone phosphate. Here, the enzyme

triosephosphate isomerase (TPI) speeds up the

reaction and prevents the formation of toxic

methylglyoxal [36]. In some instances UV light

provides the activation energy. Bacteria use UV-

induced trans/cis isomerizations in Class I rhodop-

sins as a source of energy [37], mammalian cells

exploit photo-induced trans/cis isomerizations in the

eye pigment retinal [38]. As previously mentioned,

non-enzymatic isomerizations are also required in

the maturation of vitamin D [13�].
(vi) Ligases: tRNA loading and hydrolysis (Figures 2 and

3f). The process of tRNA-amino acid ligation, tRNA

loading, is enzymatically attributed to aminoacyl

tRNA synthetases and crucial for ribosome function

and protein biosynthesis [39]. tRNAs also ligate (and

hydrolyse) non-enzymatically, a reaction best stud-

ied for tryptophan-tRNA ligase [40,41]. Of note,

non-enzymatic ligation reactions have lower sub-

strate specificity and can cause tRNA mischarging

[42].

The success of enzymes in replacing non-
enzymatic reactions
Small-molecule compounds are excellent catalysts in

order to accelerate chemical reactions. However, in bio-

logical systems other important constraints apply in par-

allel, and explain the success of enzymes (Figure 4):

(i) Limited catalyst availability: metal ions and minerals

may qualify as excellent catalysts, but often are not

readily available. Molybdenum for instance is low

concentrated in most ecosystems, while Fe(II)

became limited during earth history [9]. Enzymatic

catalysts render metabolism less dependent on the

presence of rare and/or insoluble molecules [8].
(Figure 3 Legend) Examples for biologically important non-enzymatic chemic

peroxide molecules into water and oxygen is catalyzed non-enzymatically or b

electrophiles allowing the formation of glutathione-S-conjugates, either non-en

is hydrolyzed to 6-phosphogluconate in the PPP spontaneously, or through 6-

prevent unwanted side-reactions. (d) The final step in ergothioneine biosynthe

pyridoxal phosphate-dependent lyase, or non-enzymatically by pyridoxal phos

biosynthesis are non-enzymatic isomerizations, one UV-light dependent and o

(Class II reactions). (f) Tryptophan-tRNA ligase or a non-enzymatic reaction co
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(ii) Substrate specificity: enzyme folds can achieve substan-

tial substrate specificity and differentiate similar

molecules, for instance glucose-6-phosphate from

fructose-6-phosphate [43]. This allows specificity and

chemical compartmentalization: analogous reactions

can occur in parallel when relying on structurally

distinguishable co-factors such as NADP(H) and

NAD(H) [44].

(iii) Negative catalysis: enzymes can function to prevent

side reactions, a concept termed negative catalysis

[45]. Negative catalysts are essential for the efficiency

of metabolism and of particular medical importance,

as mutations within these enzymes are causative for a

number of inherited metabolic diseases. Examples

include mutations of isocitrate dehydrogenase (IDH)

that lead to an increased release of the side product D-

2-hydroxyglutarate in cancer (IDH1 and IDH2), or in

D-2-hydroglutaric aciduria (IDH2) [46,47�], and TPI

where pathogenic mutations have been associated

with the production of methylglyoxal [36].

(iv) Regulation of metabolism: surviving starvation and

stress situations as well as development of multicel-

lular organisms requires regulation of metabolism.

Non-enzymatic catalysts are however not readily

tunable. Enzymes instead allow multiple levels of

control, including allosteric regulation, cooperativity,

post-translational modifications and genetic/tran-

scriptional regulation [48,49��].

When enzymatic catalysts have their limits
The dominance of enzymes impressively demonstrates

their benefits for living organisms. Nonetheless, also en-

zymatic catalysis creates limitations. First, enzymatic struc-

tures can be highly temperature sensitive, a reason for the

low thermo-tolerance of most species. Secondly, enzymatic

catalysis is costly, as protein biosynthesis is one of the most

energy-consuming cellular processes [50]. Third, enzymes

are prone to chemical modifications, and need constant

replacement, a cause of ageing and cancer [51]. Less

intuitively, a forth constraint arises from their high speci-

ficity: structurally similar molecules can bind to catalytic

pockets without being metabolized; turning harmless

molecules into metabolic inhibitors. An example for the

latter is TPI. In vitro regarded as a perfect enzyme solely

limited by diffusion rate [52], it is in vivo competitively

inhibited by molecules with high structural similarity to its

substrates, as for example phosphoenol pyruvate (PEP)

[53]. Some enzymes evolved structural features to limit
al reactions. (a) The intermolecular redox reaction of two hydrogen

y catalase (EC 1.11.1.6). (b) The thiol group of GSH is an acceptor of

zymatically or through GSTs (EC 2.5.1.18). (c) 6-phosphogluconolactone

phosphogluconolactonase (EC 3.1.1.31), whose main function is to

sis is the decomposition of hercynylcysteine sulfoxide either by a

phate alone. (e) The two final steps in cholecalciferol (vitamin D3)

ne spontaneous. For both reactions no enzymatic counterpart is known

njugate tryptophan to its tRNA.

Current Opinion in Biotechnology 2015, 34:153–161



158 Systems biology

Figure 4
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such problems, for instance fatty aldehyde dehydrogenase

possesses a gatekeeper helix that prevents nonspecific

metabolites from diffusing into its catalytic center [54].

Non-enzymatic reactions as a challenge for
genome-scale metabolic modeling
Metabolic modeling has become popular in biotechnolo-

gy, for instance helping to understand function and be-

havior of metabolic systems in constraint-based flux

balance analyses (FBA) [55�]. Limited experimental evi-

dence is a restraining factor when constructing models for

most species. Metabolic networks are therefore assem-

bled on the basis of sequence homology [56]. A few

changed residues can however alter substrate specificity

of enzymes [57��], and metabolic reconstruction using

comparative genomics further fails to capture non-enzy-

matic reactions [58]. The global problem is less obvious in

frequently studied model organisms, since for many non-

enzymatic reactions an enzymatic counterpart exists

(Class III). However, with increasing phylogenetic dis-

tance the predictive power of comparative genomics

decreases. This problem appears most relevant in ther-

mophilic microorganisms [2], as it is an intrinsic property

of non-enzymatic reactions to occur faster with increasing

temperatures. Thus, in a Class III reaction the enzymatic

contribution to the total rate becomes less important with

temperature. For instance, non-enzymatic, metal-cata-

lyzed PPP reactions strongly accelerate at temperatures

above 60 8C [8]. The absence of a PPP enzyme in a

thermophile is thus not necessarily an indicator of wheth-

er this pathway is present or not.

Also unspecific Class I reactions have a strong influence

on the metabolic network, especially when cells are

exposed to increased temperature and stress conditions.

Exploring their system wide impact is — due to their
Current Opinion in Biotechnology 2015, 34:153–161 
unspecific nature and the formation of various non-enzy-

matic metabolic products — a difficult task. Class I reac-

tions require sophisticated metabolite repair strategies

[59], that can represent evolutionary branching points for

novel metabolic pathways.

In this respect, it is worth mentioning the possible non-

enzymatic contribution to metabolic transport processes.

Non-enzymatic transport is often referred to as ‘mem-

brane leakage’, a term which however falls short of taking

into account that specific physical properties of metabo-

lite and membrane composition determine the probabili-

ty of a molecule to membrane diffuse. Metabolites can be

attracted to specific physico-chemical environments

resulting in their accumulation, causing spontaneous spa-

tial segregation, hydrophilic–lipophilic phase separation,

and membrane adsorption [60]. A well understood case is

the phase separation of polar and apolar metabolites, a

process of potential relevance for intracellular metabo-

lism. Another aspect is the possible free diffusion across

membranes, which is often triggered by external factors

such as heat, pH or oxidative stressors [61]. Indeed, the

evolution towards the modern, tightly hydrophobic lipid

composition of membranes may have only been facilitat-

ed upon the appearance of membrane protein channels,

transporters and pumps [62]. Membranes were likely

more permeable in early organisms, which thus could

more likely exploit non-enzymatic chemistry in mem-

brane transport and separation processes [63].

Non-enzymatic metabolic reactions and drug
design
Metabolism offers a plethora of targets for developing

the next generation of pharmaceuticals to treat cancer

and neurodegenerative disorders [64,65]. Nonetheless,

no ‘cancer-specific’ or ‘Alzheimer-specific’ metabolic
www.sciencedirect.com
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network exists, therefore respective therapeutics need to

operate in narrow, intelligently designed therapeutic

windows. The presence of non-enzymatic reactions puts

an additional constraint on the selection of drug targets.

Class I/II non-enzymatic reactions are largely not target-

able, as they are a consequence of the chemical properties

of the metabolites. Interesting cases are the Class III

reactions, as the non-enzymatic reaction is not affected by

targeting of the parallel enzyme. At best, this would

simply limit the efficiency of the drug. Many Class III

enzymes are however negative catalysts. Their inhibition

increases the production of unwanted by-products. This

can cause problematic side effects, but may create a

possibility to overflow cells with toxic metabolites to

target for example cancer cells or bacterial pathogens.

Concluding remarks
Non-enzymatic reactions occur frequently within the

metabolic network. We distinguish reactions with low

substrate specificity (Class I) from specific reactions that

occur exclusively non-enzymatically (Class II), and reac-

tions that occur analogous to the six principal enzyme

categories (Class III). Providing a template for the evolu-

tionary selection of metabolic enzymes, non-enzymatic

reactions did form the basis for the evolution of metabo-

lism. They have however never been depleted from the

chemical environment of the cell, and occur within or in

parallel to exiting enzyme function. Non-enzymatic reac-

tions should thus not be regarded as cumbersome side

effects, but as integral part of the metabolic network. As

such, they play a role in human metabolic disease, and

have to be considered in genome-scale reconstructions of

metabolic networks, in particular in extremophiles, when

designing biotechnological models, and further, when

selecting enzymes for drug targeting and considering

the side-effects of drugs. Non-enzymatic reactions are

thus central for understanding fundamental problems in

biology and play an essential role in cellular metabolism,

human health, and ageing.
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36. Orosz F, Oláh J, Ovádi J: Triosephosphate isomerase
deficiency: new insights into an enigmatic disease. Biochim
Biophys Acta 2009, 1792:1168-1174.

37. Walter JM, Greenfield D, Liphardt J: Potential of light-harvesting
proton pumps for bioenergy applications. Curr Opin Biotechnol
2010, 21:265-270.

38. Shih T-W, Lin T-H, Shealy YF, Hill DL: Nonenzymatic
isomerization of 9-CIS-retinoic acid catalyzed by sulfhydryl
compounds. Drug Metab Dispos 1997, 25:27-32.

39. Han GW, Yang XL, McMullan D, Chong YE, Krishna SS, Rife CL,
Weekes D, Brittain SM, Abdubek P, Ambing E et al.: Structure of a
tryptophanyl-tRNA synthetase containing an iron–sulfur
cluster. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010,
66:1326-1334.
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