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Abstract: The Health Star Rating (HSR) system is a voluntary front-of-pack labelling (FoPL) initiative
endorsed by the Australian government in 2014. This study examines the impact of the HSR system
on pre-packaged food reformulation measured by changes in energy density between products with
and without HSR. The cost-effectiveness of the HSR system was modelled using a proportional
multi-state life table Markov model for the 2010 Australian population. We evaluated scenarios in
which the HSR system was implemented on a voluntary and mandatory basis (i.e., HSR uptake across
6.7% and 100% of applicable products, respectively). The main outcomes were health-adjusted life
years (HALYs), net costs, and incremental cost-effectiveness ratios (ICERs). These were calculated
with accompanying 95% uncertainty intervals (95% UI). The model predicted that HSR-attributable
reformulation leads to small reductions in mean population energy intake (voluntary: 0.98 kJ/day
[95% UI: −1.08 to 2.86]; mandatory: 11.81 kJ/day [95% UI: −11.24 to 36.13]). These are likely to result
in reductions in mean body weight (voluntary: 0.01 kg [95% UI: −0.01 to 0.03]; mandatory: 0.11 kg
[95% UI: −0.12 to 0.32], and HALYs (voluntary: 4207 HALYs [95% UI: 2438 to 6081]; mandatory:
49,949 HALYs [95% UI: 29,291 to 72,153]). The HSR system evaluated via changes in reformulation
could be considered cost-effective relative to a willingness-to-pay threshold of A$50,000 per HALY
(voluntary: A$1728 per HALY [95% UI: dominant to 10,445] and mandatory: A$4752 per HALY [95%
UI: dominant to 16,236]).

Keywords: obesity prevention; cost-effectiveness; economic evaluation; Health Star Rating; front-
of-pack labelling

1. Introduction

Obesity represents a burden to health and the economy by increasing the risk of non-communicable
diseases [1], decreasing health-related quality of life [2], increasing healthcare costs, and decreasing
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productivity [3–5]. In Australia, 63% of adults and 27% of children were classified as overweight
or obese (i.e., having a body mass index (BMI) greater than 25 kg/m2) [6], with the costs of obesity
alone estimated to be A$8.6 billion per year [7]. A primary driver of obesity is the obesogenic
(i.e., obesity-promoting) food environment [8]. Recent research has noted the need for initiatives
that both improve the energy density of food and help consumers make healthier choices [9–12].
Front-of-pack labelling (FoPL) is one such initiative that provides consumers with immediate, summary
information regarding the nutritional value of a food product at the point of purchase [11,13–18]. FoPL
involves displaying nutritional information on the front of pre-packaged foods in a clear and uniform
manner [17]. FoPL has been frequently recommended as a key component of the policy response to
obesity, with examples of FoPL implementation in several countries [19–23]. Evidence suggests that
FoPL can help consumers navigate the food environment by providing nutritional information in an
easy-to-interpret format which aids healthier food choices [24]. Furthermore, FoPL may serve as an
incentive for the food and beverage industry to reformulate their products with a healthier nutritional
profile, thus improving their nutritional quality [20,25–29].

The Health Star Rating (HSR) system is a FoPL initiative that was endorsed by both the Australian
and New Zealand governments on a voluntary basis in June 2014 [24], with a 5-year implementation
review planned to occur in 2019 [30]. The HSR system assesses pre-packaged foods based on their
overall nutritional profile and provides a product rating ranging from half a star (least healthy) to five
stars (most healthy), displayed as a graphic [24]. A two-year progress review by the Health Star Rating
Advisory Committee (HSRAC) showed that 2031 of 14,102 Australian pre-packaged food products
had adopted the HSR system by 2016 [30]. Products that utilized the HSR system were more likely
to have undergone reformulation compared to products that did not adopt the system, possibly due
to manufacturers seeing this as an opportunity to obtain a higher HSR than their competitors [30].
However, the influence of the HSR system on reformulation and any subsequent improvements in
population health have not been assessed.

This study examined the long-term health impacts and cost-effectiveness of the reformulation
of energy density in Australian pre-packaged foods and beverages attributable to the HSR system.
We investigated the impact of the HSR system on obesity by comparing the total energy density of
food products before and after the implementation of the HSR system; and estimated subsequent
changes in weight and the prevalence of obesity-related diseases across the Australian population.
We assessed the impact of the HSR system from a supply-side perspective to estimate how changes in
the food environment might impact weight. Furthermore, we evaluated scenarios in which the HSR
system is implemented on either a voluntary or mandatory basis.

2. Materials and Methods

2.1. Analytical Approach

The long-term cost-effectiveness of the HSR system in Australia was evaluated under two
scenarios: (1) the current voluntary scheme; and (2) implementation on a mandatory basis. In the
voluntary scenario, changes in energy density across an observed uptake (6.7%) of pre-packaged
food products that implemented HSR labelling were assumed to be 100% attributable to the HSR
system. Data on the energy density of food products included in the analysis were available for the
years 2013 (pre-implementation) and in 2016 (post–implementation). The assumption of a change in
energy density that was 100% attributable to the HSR-related reformulation was tested in subsequent
univariate sensitivity analyses. Estimated changes in energy density were linked to nationally
representative consumption of food to obtain changes in average daily energy intake, weighted
by Australian consumption data. For the mandatory scenario, we recalculated the magnitude of the
intervention effect from the voluntary scenario assuming that 100% of all pre-packaged food products
implemented the HSR system. A limited societal perspective was considered appropriate for this
evaluation given that the intervention involves a policy approach that impacts population health, the
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food industry, and the government in the monitoring and promotion of healthier pre-packaged foods in
Australia. As such, our analyses include costs to the government and the food industry. This economic
evaluation conforms to the Consolidated Health Economic Evaluation Reporting Standards (CHEERS)
checklist, as presented in Supplementary Table S1 [31].

2.2. Intervention Effect Size

The HSR system was modelled as a national public health intervention that changes the food
environment by acting as an incentive for the reformulation of pre-packaged food products purchased
by Australian consumers (i.e., a supply-side intervention). Based on the findings of previous
studies [32], we assumed that Australians will continue to consume the same quantity of food and
beverages despite reductions in energy density of pre-packaged foods (i.e., no compensatory effect on
the demand side). This will, in turn, result in changes in the average weight across the population.
The effect of HSR-attributable reformulation in both baseline scenarios is determined by extrapolating
the observed data, modelling constant effects over time, and assuming that all remaining variables are
held constant (ceteris paribus) [33–35]. Figure 1 shows the intervention pathway.
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Figure 1. Intervention pathway for the Health Star Rating (HSR) system.

Changes in average energy intake due to the HSR system were calculated by using a difference
in difference analysis to compare the energy density (kJ per 100 g) of HSR-labelled and non-HSR
labelled food products pre- and post-implementation of the HSR system in Australia (2013 and 2016
respectively). This was similar to a previous analysis conducted in New Zealand [29]. The statistical
significance of overall changes in energy density resulting from the uptake of the HSR system was
evaluated using a paired t-test shown in Supplementary Table S2. We used the Australian FoodSwitch
database [36,37], which contains information on Australian pre-packaged food and beverage products
available by year [36,37], to obtain product information on average kJ per 100 g and the presence of
HSR labelling by food category in 2013 and 2016. Individual products were categorized into 18 food
categories according to the Global Food Monitoring Protocol [37]. Food categories with products that
were not eligible to carry a HSR label (i.e., alcohol, vitamins and minerals, special foods) or products
that were unable to be categorized or reformulated by manufacturers (e.g., eggs) were excluded
(n = 3008, 17% of products available). After exclusions, 13 food categories were included in the analysis
(see Supplementary Table S3). The effect of the intervention was measured at the food category level
and assumed to be the result of the HSR intervention in the baseline scenarios.

Changes in the energy density (kJ per 100 g) of labelled and non labelled food products between
2013 and 2016 were converted to changes in kJ per g by food categories to be applied to the Australian
food consumption data by food category, age, and sex (i.e., g/day) sourced from the 2011–2012
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Australian Health Survey (AHS) [38]. Average changes in daily energy intake (i.e., kJ per day), by age
and sex, were calculated using a weighted average change in which changes in the energy density
of each food category calculated using the FoodSwitch data, by age and sex, were multiplied by the
weight of each food category on the daily energy intake, by age and sex (see Supplementary Tables S4
and S5). Changes in daily energy intake were then transformed into corresponding changes in body
weight (measured in kilograms (kg)) using previously derived equations for children and adults [39].
Lastly, average changes in body weight (i.e., kg) were transformed into BMI units using census data
on average Australian height, by age and sex, from the 2011–2012 AHS [38]. The likely health impact
of the HSR system under a mandatory scheme was estimated using cross-multiplication to estimate
changes in daily energy density resulting from a 100% uptake based on the HSR uptake of individual
food products’ uptake in the voluntary scenario. The method for calculating the change in energy
density resulting from 100% HSR uptake is shown in Equation 1. The mandatory scenario aims to

∆ in energy density(mandatory)a =
∆ in energy density(voluntary)a × 100%

% HSR uptake(voluntary)a
(1)

where: ∆ denotes change; and a denotes a specific type of food product.

2.3. Health Benefit Modelling

The CRE-Obesity model (see Supplementary Figure S1) [40] was used to estimate the long-term
health benefits and costs of population changes in BMI attributable to the HSR system. The CRE-obesity
model is a proportional, multi-state, life table Markov model that simulates how intervention-related
changes in the population-level distribution of BMI affect the incidence, prevalence and mortality
of nine obesity-related diseases, which in turn, affect the overall mortality and morbidity of the
modelled population [41]. The long term costs and benefits of the intervention for the 2010 Australian
population over the lifetime is modelled by comparing two hypothetical scenarios: (1) an intervention
scenario where the BMI distribution for the 2010 Australian population cohort is modified following
the implementation of an obesity intervention; and (2) a comparator where the same population
cohort is exposed to a ‘do nothing’ scenario, with BMI distributions remaining unchanged in the
absence of an intervention. Main outcome variables are incremental health-adjusted life years (HALYs),
incremental nets costs, and incremental cost-effectiveness ratios (ICERs) [42]. Incremental HALYs
include health-related improvements in morbidity and mortality that occur in the intervention scenario
relative to the comparator, while incremental net costs include all intervention costs and cost offsets
(i.e., treatment costs averted due to fewer disease cases). ICERs were calculated by dividing incremental
net costs by incremental HALYs. This evaluation is part of an obesity-prevention priority-setting
study in Australia and uses standardized methods in order for these results to be comparable to other
interventions undertaken as part of this study [43–45].

2.4. Intervention Costs

Intervention costs were obtained from a recent Australian government-commissioned report
and are presented in Table 1 [46]. These included costs to industry and the government. Costs to
industry are those related to implementation (i.e., costs of redesign, volume, and timeline for changes
to product labels) and ongoing costs (i.e., monitoring and additional requirements specific to each
product such as change in packing materials). Costs to government are those related to implementation
(i.e., education and promotion) as well as ongoing costs of monitoring and evaluating the HSR system.
Costs to government were assumed to remain over the lifetime during which the HSR system is in
effect. Costs to industry were modelled based on the average length of a labelling cycle, which has
been reported to last up to three years [46,47]. Costs for the voluntary scenario were calculated to
reflect the 6.7% HSR system uptake observed in 2016 according to FoodSwitch data. For the mandatory
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scenario, we adjusted costs to reflect 100% HSR system uptake and included the cost of legislating the
regulation [43].

Table 1. Summary of intervention costs associated with the HSR system.

Costing Items
Value in 2010 A$

Voluntary Mandatory

1. Cost to industry a 2.5 m (1.2 m, 3.7 m) 37.0 m (18.5 m, 55.4 m)
2. Cost to government b 1.2 m (0.6 m, 1.8 m) 17.8 m (8.9 m, 26.7 m)
2.1 Cost of legislation c not applicable 1.1 m (1.0 m, 1.2 m)

a Cost to the food industry related to costs of labelling and packing changes, such as re-design, labour, overhead and
implementation costs. b Cost to the government related to administrative costs, education campaigns, enforcement,
oversight and promotion of the HSR system. c Only used for mandatory scenario. Abbreviations: A$: Australian
dollars; m: millions.

Cost offsets (i.e., treatment costs that are averted due to the prevention of obesity-related diseases
in the intervention scenario) were calculated using data from the Disease Costing and Impact Study
2000–2001 [48]. The impact of the HSR system on changes in company revenues was not modelled
as a previous evaluation found that revenues at industry level were unlikely to change following the
uptake of the HSR system [30]. Similarly, costs to individuals were excluded as evidence suggests that
a direct increase in costs for consumers is unlikely [49]. All costs were converted to 2010 Australian
dollars (2010 A$) using Australian health price deflators from the Australian Institute for Health and
Welfare (AIHW) [50].

2.5. Cost-Effectiveness Modelling

The intervention was considered cost-effective if resulting ICERs were below an Australian
willingness-to-pay (WTP) threshold of A$50,000 per HALY [51]. All costs and benefits were measured
over a lifetime horizon (up to 100 years or death) and were discounted at a 3% annual rate.

Uncertainty distributions were assigned to input parameters to account for the impact of sampling
uncertainty (i.e., standard errors) on the final cost-effectiveness results [52]. Uncertainty distributions
were based on known properties of input parameters [53]. Table 2 presents a summary of input
parameters with uncertainty distributions, assumptions and sources. The Ersatz program (version
1.31, Sunrise Beach, Australia; available at: http://www.epigear.com) was used to perform Monte
Carlo simulation based on 2000 uncertainty iterations. Main model outcomes are presented as HALYs,
net costs, and ICERs with 95% uncertainty intervals (95% UI) [54]. The 2000 uncertainty iterations
produced by the Monte Carlo simulation were graphically illustrated on cost-effectiveness (CE) planes
with incremental benefits plotted on the horizontal axis and incremental costs plotted on the vertical
axis [55]. The CE plane is a scatterplot divided into four quadrants that graphically denotes how the
costs and benefits arising from an intervention compare to those of the comparator. For example,
uncertainty iterations that lie on the South-East (SE) quadrant signify that the intervention is less costly
and more effective than the comparator (i.e., the intervention is ‘dominant’). Conversely, uncertainty
iterations in the North-West (NW) quadrant signify that the intervention is more costly and less
effective than the comparator (i.e., the intervention is ‘dominated’). Lastly, uncertainty iterations in
the North-East (NE) quadrant signify an intervention that is more costly and more effective than the
comparator. In this case, the cost-effectiveness of the intervention is usually determined by whether
uncertainty iterations lie below a particular WTP threshold [55].

The baseline analysis assumed that 100% of observed changes in energy density before and after
the HSR implementation were attributable to the intervention (i.e., 100% HSR-attributable energy
reformulation). However, we deemed this assumption too heroic and tested the impact of lower
proportions of HSR-attributable energy intake (i.e., 50%, 30% and 10%) in univariate sensitivity
analyses under the voluntary scenario.

http://www.epigear.com
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Table 2. Input parameters, uncertainty distributions and sources.

Input Parameters Uncertainty
Distribution Assumptions Data Sources

Change in weight
resulting from the
intervention

Normal

The point estimate was the mean
obtained from the data source.
A standard deviation was assigned to this
point estimate that was equal to the mean
in the absence of relevant data.

Based on data from the Food
Switch database and the
Australian Health survey

Intervention costs
to industry Pert

The point estimate (obtained from the
data source) was assigned a range of
likely minimum and maximum values
based on expert opinion.

Based on the projected costs from
the HSR report [24]

Intervention costs
to government Pert

The point estimate (obtained from the
data source) was assigned a range of
likely minimum and maximum values
based on expert opinion [53,56].

Based on the projected costs from
the HSR report [24]. Costs to the
government related to passing a
legislation were only applied to
the mandatory scenario and were
modelled using a gamma
distribution [43]

2010 Australian
population BMI by
age and sex

Lognormal

The mean and standard deviation for
each population cohort (by age and sex)
was obtained from the data source.
A lognormal distribution was used to:
restrict the occurrence of values between
the interval [0, +∞]; and account for the
positively skewed BMI distribution
observed in the population [57].

Sourced from the Australian
Bureau of Statistics [38]

Relative risks of
obesity-related
diseases per 5-unit
increase of BMI

Lognormal

The mean was obtained from the data
source and the standard deviation was
calculated as the lognormal of the mean.
A lognormal distribution was used to
restrict the occurrence of values between
[0, +∞].

Sourced from the Global Burden
of Disease study [58]

Abbreviations: BMI: body mass index.

3. Results

3.1. Intervention Effect Size

Among pre-packaged food products available in both 2013 and 2016 (n = 14,986), 6.7% (95% UI:
6.3% to 7.1%) implemented the HSR system. When comparing pre-packaged food products across
both years, we found that those with a HSR label led to greater reductions in energy density than food
products without a HSR label (see Table 3). Small but statistically significant reductions in energy
density were found in the 1004 food products that displayed a HSR label in 2016 (−7.11 kJ/100g 95%
UI: −14.2 to −0.1, p value = 0.04). Changes in energy density by food categories are presented in
Supplementary Table S6. Overall, a comparison between the energy density of HSR and non-HSR
labelled food products available in 2013 and 2016 showed an average reduction in daily energy intake
of 0.98 kJ per day (95% UI: −1.08 to 2.86), which led to an average weight reduction of 0.01 kg (95% UI:
−0.03 to 0.01) and an average BMI reduction of 0.003 kg/m2 (95% UI: −0.009 to 0.003). Model inputs
of changes in energy density and their corresponding weight reduction in kg and BMI are presented,
by age and sex, in Supplementary Tables S7 and S8. Increasing the coverage of the HSR system to
all products available in 2016 (i.e., the mandatory scenario) resulted in average daily energy intake
reductions of 11.81 kJ per day (95% UI: −11.24 to 36.13), which led to an average weight reduction of
0.11 (95% UI: −0.12 to 0.32) kg and an average BMI reduction of 0.04 kg/m2 (95% UI: −0.040 to 0.115).
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Table 3. Comparison of food products with and without the HSR label between 2013 and 2016.

Food Category

Average Energy
Density (kJ per 100 g)

in 2013

Average Energy
Density (kJ per 100 g)

in 2016

Change in Average
Energy Density

between 2013 and 2016

% Change in kJ per
100 g (from Baseline)

% Change in kJ per
100 g Attributable

to HSR

With HSR Without
HSR With HSR Without

HSR With HSR Without
HSR With HSR Without

HSR

Bread and bakery products 1585 1588 1581 1586 −3.3 −2.2 −0.2 −0.1 −0.1
Cereal and grain products 1521 1370 1513 1360 −7.9 −10.4 −0.5 −0.8 0.2

Confectionery 2070 1720 2089 1724 19.7 4.0 1.0 0.2 0.7
Convenience foods 444 512 433 509 −10.9 −3.2 −2.5 −0.6 −1.8

Dairy 608 933 594 932 −13.4 −0.9 −2.2 −0.1 −2.1
Edible oils and oil emulsions 2724 3066 2706 3071 −18.1 5.0 −0.7 0.2 −0.8

Fish and fish products 721 693 720 693 −1.0 0.0 −0.1 0.0 −0.1
Fruit and vegetables 881 998 881 999 −0.6 0.6 −0.1 0.1 −0.1

Meat and meat products 828 878 824 882 −4.1 3.9 −0.5 0.4 −0.9
Non-alcoholic beverages 213 197 208 195 −4.6 −2.1 −2.1 −1.1 −1.1

Sauces, dressings, spreads and dips 1046 816 981 810 −64.7 −5.5 −6.2 −0.7 −5.5
Snack foods 2013 1883 2079 1882 65.8 −0.8 3.3 0.0 3.3

Sugars, honey and related products 1454 1404 1435 1406 −19.7 1.6 −1.4 0.1 −1.5
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3.2. Cost-Effectiveness Modelling

Results from baseline scenarios are presented in Table 4. The model predicted that the voluntary
implementation of the HSR system was cost-effective (A$1728 per HALY, 95% UI: dominant to 10,446)
assuming a WTP threshold of A$50,000 per HALY over the lifetime of the 2010 Australian population.
We found that the mandatory implementation of the HSR system was also cost-effective (A$4752
per HALY, 95% UI: dominant to 16,236). The HSR system was found to be cost-effective under both
baseline scenarios with uncertainty iterations that spanned between the SE quadrant and the area
below the WTP threshold in the NE quadrant, which signifies that the intervention is cost saving
with respect to the ‘do nothing’ scenario. Graphical illustrations of results are presented in CE planes
shown in Figures 2 and 3. As shown in Figure 2, the majority of uncertainty iterations for the voluntary
scenario were mostly situated around the NE quadrant (64%) and SE quadrant (36%), meaning that
despite the costs of the intervention, it has larger benefits compared to the ‘do nothing’ scenario.
Similarly, Figure 3 shows that the majority of uncertainty iterations for the mandatory scenario were
also situated in the NE quadrant (89%) and SE quadrant (11%). Overall, results for both the voluntary
and mandatory scenarios remained well below the WTP threshold in the NE quadrant, highlighting
the cost-effectiveness of the HSR. The level of HSR uptake was a key driver for the magnitude of
intervention impacts and the uncertainty around estimates. As such, incremental HALYs and costs
saved in the mandatory scenario exceeded those in the voluntary scenario. Results from sensitivity
analyses indicate that the effectiveness of the voluntary implementation of the HSR system is sensitive
to the proportion of HSR-attributable reformulation as shown in Table 5. The voluntary HSR system
remained cost-effective when the assumed level of HSR-attributable reformulation was reduced from
50% to 30% (A$13,374 per HALY [95% UI: 3044 to 31,940] and A$29,006 per HALY [95% UI: 11,428 to
59,863], respectively). However, when the level of HSR-attributable reformulation was reduced to 10%
the intervention was not cost effective (A$106,368 per HALY [95% UI: 54,072 to 191,145]). As shown in
Figure 4, all iterations in the sensitivity analysis are situated in the NE quadrant (100%), with results
closer and situated to the left of the cost-effectiveness threshold, meaning that if the HSR has a lower
impact on reformulation, the intervention would not be cost-effective.

Table 4. Cost-effectiveness results baseline scenarios.

Outputs Voluntary Scenario *
(6.7% HSR Uptake)

Mandatory Scenario *
(100% HSR Uptake)

Incremental intervention costs
(95% UI) in 2010 A$ millions 46.1 m (32.0 m to 60.2 m) 686.4 m (483.5 m to 894.9 m)

Cost offsets ** (95% UI) in 2010 A$
millions −41.6 m (−61.6 m to −22.1 m) −488.7 m (−722.8 m to −265.9 m)

Net incremental costs (95% UI) in
2010 A$ millions 4.5 m (−21.2 m to 28.2 m) 197.7 m (−123.2 m to 513.3 m)

Incremental HALYs (95% UI) 4207 (2438 to 6081) 49,949 (29,291 to 72,153)

Mean ICER (95% UI) in 2010 A$
per HALY 1728 (dominant to 10,445) 4752 (dominant to 16,236)

* Assuming 100% HSR-attributable reformulation. ** Negative values are cost savings. Abbreviations: A$: Australian
dollars; HALY: health-adjusted life years; HSR: Health Star Rating; m: million; ICER: incremental cost-effectiveness
ratio; UI: uncertainty intervals.
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Table 5. Sensitivity analyses on HSR-attributable reformulation from the voluntary scenario results.

Outputs 50% HSR-Attributable
Reformulation

30% HSR-Attributable
Reformulation

10% HSR-Attributable
Reformulation

Incremental intervention costs (95% UI) in A$ millions 46.1 m (32.0 m to 59.7 m) 46.0 m (31.7 m to 59.9 m) 46.0 m (32.4 m to 60.0 m)
Cost offsets (95% UI) in A$ millions −20.9 m (−31.4 m to −11.3 m) −12.5 m (−18.3 m to −6.5 m) −4.2 m (−6.3 m to −2.2 m)

Net incremental costs (95% UI) in A$ millions 25.3 m (7.9 m to 42.4 m) 33.5 m (18.0m to 48.5 m) 41.8 m (28.2 m to 56.2 m)
Incremental HALYs (95% UI) 2101 (1226 to 3116) 1253 (702 to 1840) 424 (235 to 618)

Mean ICER (95% UI) A$ per HALY 13,374 (3044 to 31,940) 29,006 (11,427 to 59,863) 106,368 (54,072 to 191,145)

Abbreviations: A$: Australian dollars; HALY: health-adjusted life years; HSR: Health Star Rating; ICER: incremental cost-effectiveness ratio; m: million; UI: uncertainty intervals.
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4. Discussion

The findings of this study indicate that, from a limited societal perspective, the HSR system’s
impact on product reformulation has the potential to generate increasing health benefits and reduce
mean population body weight, with the HSR system found to be cost-effective under the voluntary
and mandatory scenarios relative to a willingness-to-pay threshold of A$50,000 per HALY (A$1728 per
HALY [95% UI: dominant to 10,445] and A$4752 per HALY [95% UI: dominant to 16,236], respectively).
This study found that the average energy density of food products that implemented the HSR system
was lower post-HSR (e.g., average energy density of non-alcoholic beverages was 17,516 kJ per 100 g
in 2013 compared with 14,320 kJ per 100 g in 2016). We attributed this change to the implementation
of the HSR system, based on the observation that the reductions in energy density in products with
HSR were greater than for similar products that did not implement the HSR system. Specific examples
illustrate the effect at a product level. Prior to the introduction of HSR, the energy density of ‘thin corn
cakes’ in 2013 was 2031 kJ per 100 g, and, at that stage, the product would have received 2 stars.
Post-implementation of the HSR system on that product (in 2016), the energy density was 1680 kJ
per 100 g, and the product displayed 3 stars. On the contrary, products that did not implement the
HSR showed lower or even positive increases in energy density. For instance, the energy density of
‘Fruit and Muesli’ in 2013 (pre HSR implementation) was 919 kJ per 100 g and the energy density of
the same product in 2016 was 1110 kJ per 100 g. On average, the energy density of food products
available in 2013 that implemented the HSR system in 2016 was found to be lower (p < 0.05) than
products that did not implement the HSR system. The implementation of the HSR is likely to have
incentivized energy density reductions of food products to elicit higher HSR ratings (e.g., ‘Gluten free
pizza base’ was 1400 kJ per 100 g in 2013 and 1015 kJ per 100 g in 2016; this change assigns the product
3.5 stars, rather than the 3 stars it originally would have obtained). While these reductions in daily
energy density result in small reductions in average population energy intake (0.98 kJ per day, 95% UI
−1.08 to 2.86) and average body weight (0.01 kg 95% UI −0.01 to 0.03), the long-term health impacts
are nevertheless likely to be substantial as shown in Tables 4 and 5. Long-term health impacts are the
result of relatively low intervention costs (A$46.1 m [95% UI: 32.0 m to 59.7 m]) and lifetime health
benefits accrued from an intervention that modifies the food environment.

Findings from this study, which calculated health benefits attributable to the HSR system
from supply-side changes (i.e., not including the potential benefits of changes in behavior on the
demand side), suggest that small changes in the average energy intake of the population can
potentially reduce population levels of obesity and, in turn, the burden of obesity-related diseases. An
earlier cost-effectiveness study found that another FoPL intervention implemented in Australia (i.e.,
an intervention involving “traffic-light” nutrition labelling on food products such that green, amber
and red colors denote the comparative nutritional value of different products) was cost-saving, with a
mean population weight reduction of 1.3 kg and incremental health benefits equating to 45,100 HALYs
gained (95% UI: 37,700 to 60,100) [59]. This study only included four food categories (i.e., breakfast
cereals, pastries, mixed dishes with cereal, and sausages), used 2003 as baseline year, and used
different assumptions in the estimation of intervention effects (i.e., the intervention applied across
a 10-year time horizon and impacted on 2.5% of the adult population). While these methodological
differences limit the direct comparability between our study and the previous study, both studies
nonetheless demonstrate that front-of-pack nutritional labels are likely to represent ‘value for money’
when intervening to reduce the population burden of obesity in Australia. Findings from our study
are also in line with a recent cost-effectiveness study on energy density reductions resulting from
reformulation of sugar-sweetened beverages (SSBs) in Australia [60]. Reformulation of SSBs was found
to be cost saving, with substantial increases in health benefits if the intervention was implemented
across all products [60].

However, findings from this study also indicate that modelling results should be interpreted
with caution. As shown in our sensitivity analysis, the proportion of HSR-attributable reformulation
modified the effectiveness of the intervention, making the ‘do-nothing’ scenario better than the
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intervention if the HSR only contributes to 10% of energy density reformulation. Food labelling has
been found to promote product reformulation, which in turn leads to improvements in the energy
density of food [22,26,27,61]. Nevertheless, there is no clear evidence on the magnitude of the effect
of HSR on reformulation. Furthermore, in this analysis we have assumed that consumers did not
change their purchasing or eating behaviors in response to changes in the energy density of food
products. Our assumption that no compensatory eating or purchasing behavior would occur in
response to reductions in energy density of packaged foods might have overestimated intervention
impacts. However, we believe it is more likely that we have underestimated the impact of the HSR
on energy intake as the HSR may help consumers choose healthier options, which we were unable to
fully capture with the data available. Given the absence of data on HSR-attributable reformulation and
the assumption of no changes in consumers’ behavior, we applied wide uncertainty intervals around
the intervention effect size to capture a greater margin of error (i.e., we assumed that the standard
deviation of the overall intervention effect on weight was equal to its mean) [62].

Moreover, we only accounted for trends in product reformulation in a limited way by conducting
a difference-in-difference analysis before and after the implementation of the HSR system. Thus, it is
possible that manufacturers who implemented the voluntary system were those with products that
were more conducive to reformulation and that this may have occurred independent of the HSR
system being implemented. This will impact the attribution of effects to the HSR system in this study;
particularly among products that are not conducive to reformulation or reformulation due to other
factors. Nonetheless, as shown in our sensitivity analysis even if the HSR only accounts for 30%
of product reformulation, the change in the food environment will likely result in health benefits.
Similarly, there is a likelihood of incremental changes to the energy density of food products conducted
throughout several years, rather than as a once off. In this case, health impacts over time would likely
increase as a result of incremental benefits instead of constant benefits over time. This study has
also limitations as result of the modelling methodology used. The use of a cohort-population model
relies on homogeneity assumptions within age-sex group cohorts which are likely to distort reality by
over/under estimating the effect on individuals. Furthermore, the intervention was evaluated as if
implemented over the lifetime, based on its capacity to modify the environment, but acknowledges
that if following interventions find a significant drop in effectiveness at a particular point in time,
the interventions may not be as cost-effective. It is also plausible that there is a time lag between the
implementation of the HSR and likely changes in the energy density of food products, which would
lead to a current overestimation of ICERs

Notwithstanding this, there are additional impacts on product reformulation beyond changes
in energy density that have not been accounted for in this analysis, which might result in increased
beneficial health impacts over time. A two-year progress review of the HSR system noted several
nutritional improvements in addition to reductions in energy density [24]. These included reductions
in sugars, saturated fat, and sodium, all of which, independent of weight changes, may have an
impact on some chronic diseases such as cardiovascular disease and diabetes. Similarly, we modelled
intervention costs to the government over the lifetime, unlike the HSR report which modelled these
costs over 3 years [24], likely overestimating the intervention costs and thus underestimating the
intervention cost-effectiveness. This analysis illustrates that the HSR intervention is likely to be
cost-effective to the health sector and society, inducing changes in the BMI profile of the Australian
population and consequently leading to substantial improvements in the health of the population.
This economic evaluation highlights the potential for FoPL interventions to lead to positive population
health outcomes in a cost-efficient manner.

The HSR system has been criticized by some stakeholders for having some anomalies in classifying
the healthiness of foods (e.g., some energy-dense foods that are deemed unnecessary for a healthy
diet and are classified as ‘discretionary’ or ‘optional’ according to the Australian Dietary Guidelines
receive a relatively high HSR rating) [63]. However, the Australian government is reviewing the HSR
algorithm and other aspects of the system, with a view to improving the way in which it operates [64].
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This analysis has shown that, even in its current form, implementation of the HSR system may still
lead to positive overall changes in product reformulation. Our estimates of the cost-effectiveness of the
HSR system were limited by data availability and will be improved as evidence from the five-year HSR
system review, due in 2019, is obtained, providing a stronger evidence-base to inform policymaking.

5. Conclusions

This economic evaluation found that the HSR system, evaluated via energy density reformulation,
is likely to be cost-effective, assuming at least 11% of HSR-attributable reformulation. While costs
and benefits of the HSR system beyond changes in energy density due to reformulation should be
considered, this study provides evidence-based information that can assist policymakers to make
informed decisions about future FoPL initiatives targeting obesity. Policy-driven approaches like the
HSR system are an important complement to other policy approaches already in place to target obesity
(e.g., education campaigns) as they modify the food environment.
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