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Abstract: Metabolomics is a useful tool for comparing metabolite changes in plants. Because of its
high sensitivity, metabolomics combined with high-resolution mass spectrometry (HR-MS) is the
most widely accepted metabolomics tools. In this study, we compared the metabolites of pathogen-
infected rice (Oryza sativa) with control rice using an untargeted metabolomics approach. We profiled
the mass features of two rice groups using a liquid chromatography quadrupole time-of-flight mass
spectrometry (QTOF-MS) system. Twelve of the most differentially induced metabolites in infected
rice were selected through multivariate data analysis and identified through a mass spectral database
search. The role of these compounds in metabolic pathways was finally investigated using pathway
analysis. Our study showed that the most frequently induced secondary metabolites are prostanoids,
a subclass of eicosanoids, which are associated with plant defense metabolism against pathogen
infection. Herein, we propose a new untargeted metabolomics approach for understanding plant
defense system at the metabolic level.

Keywords: LC-MS; plant-pathogen interaction; metabolic change; pathway analysis; principal
component analysis (PCA)

1. Introduction

Plants constantly interact with diverse microorganisms during their lifetime. Within
the plant environment, not only nonpathogenic microbes but also pathogenic microbes can
establish intricate interactions with their hosts. Plants recognize invading phytopathogens
and resist their attack by inducing rapid defense responses [1]. Induction of metabolites,
which act as plant defense compounds, is the most common and important part of the
plant defense repertoire [2]. Plant–pathogen relationships are worth studying in terms of
biological importance and metabolite richness [3]. Studying the types of metabolites pro-
duced in plants affected by phytopathogens provides understanding of the plant defense
mechanisms and facilitates the discovery of new defense metabolites.

Metabolomics technology offers a meaningful approach for the comprehensive profil-
ing and comparison of metabolites in biological systems. Metabolomics offers the unbiased
ability to differentiate genotypes based on the metabolite level, even if there are no visible
phenotype differences. As a diagnostic tool, metabolomics coupled with various spectro-
scopic analyses help to determine the mode of action of various herbicides or drugs on
plants or humans, respectively [4–6]. There are two principal metabolomics approaches:
targeted and untargeted. The latter approach aims to gather as much information on
metabolites as possible by taking all information present in datasets into account, thus it is
the most rational way to identify a wide variety of metabolite changes in plants [7]. Several
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plant metabolomics studies have been conducted with an untargeted approach [8–10]. To
date, various analytical techniques have been applied to metabolomics. Although nuclear
magnetic resonance is the most uniform detection technique, it has a lower sensitivity
compared to mass spectrometry (MS)-coupled techniques, and the detection ability of
low-abundance metabolites is limited. For these reasons, in recent times, high-resolution
mass spectrometry (HR-MS) and tandem mass spectrometry (MS/MS) are widely used in
metabolomics [11]. HR-MS, such as quadrupole time-of-flight mass spectrometry (QTOF-
MS), provides accurate mass and specific fragment patterns of MS/MS, which can improve
the speed and the efficiency of metabolite identification.

Rice blast, caused by the rice blast fungus (Magnaporthe oryzae, Magnaporthaceae), is
extremely difficult to control. It causes significant economic and humanitarian problems
worldwide [12]. To control rice blast, most of the studies have focused on understanding
the defense mechanism of rice at transcriptional, proteomic, or biophysical levels [13–16].
Recently, as metabolomics has become a widely used tool for high-throughput research
in the field of plant science, metabolomics studies on rice–pathogen interaction have also
been undertaken [17,18]. Metabolism is the final step of the biochemical dynamics of living
organisms. Thus, understanding how metabolites change is essential in studying plant
defense mechanisms in system biology [2,19]. Plant metabolomics is growing as an essen-
tial tool for studying system biology in plant science, especially for crop enhancement [7].
However, there are only a few metabolomics studies investigating the actual metabolite
changes caused by pathogen infection, which is the last step in the biochemical pathway
of plant defense mechanism. Therefore, comparing the metabolites of pathogen-infected
plants with control could be an ideal approach to elucidate the biochemical pathways
involved in plants’ multi-factor defense mechanisms. Herein, we applied liquid chro-
matography (LC)-QTOF-MS based metabolomics analysis for mass feature profiling in
control and pathogen-infected rice. The most differentially induced metabolites in infected
plants were identified using computational annotation tools, and pathway analysis was
performed. This approach may provide a new perspective for understanding plant defense
mechanisms and facilitating the discovery of unknown defense compounds.

2. Results and Discussion
2.1. LC-MS Based Untargeted Metabolomics

As part of their defense mechanisms, plants respond to invading pathogens by pro-
ducing diverse compounds. The primary metabolites induced as a by-product of plants’
defense metabolism have been frequently studied [20,21]. Meanwhile, secondary metabo-
lites involved in plants’ defense metabolism have been relatively understudied due to
their structural complexity and diversity and the consequent difficulty of identification.
However, recently developed metabolomics approaches using spectrometric techniques
have enabled easy and rapid analysis of secondary metabolites [22].

LC-MS total ion current (TIC) chromatograms were acquired from the collected control
and pathogen-infected rice samples for spectrometric analysis of metabolites. Metabolites
were more strongly ionized in the ESI positive mode (Figure 1A,B) than the negative
mode (Figure S1). Thus, raw LC-MS data in the positive mode were applied for further
metabolomic analysis. In addition, three-dimensional plots of raw LC-MS data in the
positive ionization mode were obtained using Mzmine 2.53 3D visualizer, which showed
peak patterns of samples more clearly (Figure 1C,D).



Plants 2021, 10, 213 3 of 13Plants 2021, 10, x FOR PEER REVIEW 3 of 14 
 

 

 
Figure 1. Representative LC-MS chromatographic profiling of control and pathogen-infected rice in positive ion mode. 
(A,B) Total ion current (TIC) chromatograms of control (A) and infected (B) rice. (C,D) 3D plot chromatograms of control 
(C) and infected (D) rice, visualized by MZmine 2.53 3D visualizer. Z axis represents the signal intensity. 

2.2. Mass Differences between Two Rice Groups 
Multivariate statistical analysis was used to confirm significant differences in mass 

values between the two groups (control and infected rice). The mass peak list of twelve 
samples (six samples from each group) containing 328 mass features was uploaded for 
principal component analysis (PCA) and partial least squares discriminant analysis (PLS-
DA). PCA is an unsupervised technique used for dimensionality reduction of multivariate 
data while preserving most of the variance. PLS-DA is a supervised chemometric method 
used to optimize separation between different groups [23]. The PCA score plot (Figure 
2A) showed two clusters of samples indicating the differentiation between the two 
groups. However, 95% of the cluster’s confidence regions were overlapped, indicating 
that, although PCA cannot clearly explain the differences between the control and the in-
fected rice, the means may be significantly different from one another at the α = 0.05 level 
[24]. The two groups were more completely clustered in the PLS-DA than the PCA (Figure 
2B), showing clear separation with 95% confidence regions. The cross-validated coefficient 
of determination for the model with five components was Q2 = 0.955. Despite the TIC 
chromatograms’ similarity between two groups (Figure 1A,B), multivariate analysis re-
sults showed statistical differences of mass profiles between control and infected rice (Fig-
ure 2A,B). Cluster separation results were also confirmed by a heatmap made using 
Ward’s hierarchical clustering algorithm (Figure 2C). Since the current study aimed to 
identify the most differentially induced metabolites in infected rice compared to a control, 
we obtained a list of the most induced mass through a volcano plot analysis based on both 
fold change (FC) analysis and t-tests (Figure 2D). It showed 61 mass features that were 
induced in infected rice. Twelve major discriminant features were selected from the list 

Figure 1. Representative LC-MS chromatographic profiling of control and pathogen-infected rice in positive ion mode.
(A,B) Total ion current (TIC) chromatograms of control (A) and infected (B) rice. (C,D) 3D plot chromatograms of control
(C) and infected (D) rice, visualized by MZmine 2.53 3D visualizer. Z axis represents the signal intensity.

2.2. Mass Differences between Two Rice Groups

Multivariate statistical analysis was used to confirm significant differences in mass
values between the two groups (control and infected rice). The mass peak list of twelve sam-
ples (six samples from each group) containing 328 mass features was uploaded for principal
component analysis (PCA) and partial least squares discriminant analysis (PLS-DA). PCA
is an unsupervised technique used for dimensionality reduction of multivariate data while
preserving most of the variance. PLS-DA is a supervised chemometric method used to
optimize separation between different groups [23]. The PCA score plot (Figure 2A) showed
two clusters of samples indicating the differentiation between the two groups. However,
95% of the cluster’s confidence regions were overlapped, indicating that, although PCA
cannot clearly explain the differences between the control and the infected rice, the means
may be significantly different from one another at the α = 0.05 level [24]. The two groups
were more completely clustered in the PLS-DA than the PCA (Figure 2B), showing clear
separation with 95% confidence regions. The cross-validated coefficient of determination
for the model with five components was Q2 = 0.955. Despite the TIC chromatograms’ simi-
larity between two groups (Figure 1A,B), multivariate analysis results showed statistical
differences of mass profiles between control and infected rice (Figure 2A,B). Cluster sepa-
ration results were also confirmed by a heatmap made using Ward’s hierarchical clustering
algorithm (Figure 2C). Since the current study aimed to identify the most differentially
induced metabolites in infected rice compared to a control, we obtained a list of the most
induced mass through a volcano plot analysis based on both fold change (FC) analysis and
t-tests (Figure 2D). It showed 61 mass features that were induced in infected rice. Twelve
major discriminant features were selected from the list based on FC (>2) and p-value (<0.1)
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thresholds. Selected metabolites were arranged sequentially according to their log2(FC)
values (Table 1), and the relative peak height of the metabolites was represented using box
and whisker plots (Figure S2).
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Figure 2. Multivariate statistical analysis of control and infected rice groups based on the mass features that generated by
MZmine 2.53. (A) Principal component analysis (PCA) score plot with 95% of confidence regions. (B) Partial least squares
discriminant analysis (PLS-DA) score plot with 95% of confidence regions. (C) Heatmap clustering result using Ward’s
hierarchical clustering algorithm. (D) Volcano plot analysis. Important features were selected by volcano plot with fold
change (FC) threshold (X axis) 2 and t-tests threshold (Y axis) 0.1. The red circles represent features above the threshold.

2.3. Putative Identification of Differentially Induced Metabolites

Metabolites were identified based on various spectra databases. The exact mass and
the chemical formula were calculated by MassHunter software, and several compounds
with similar masses and formulas were selected as candidates. The metabolites were then
finally annotated by comparing the MS/MS fragmentation patterns. The most highly
induced metabolite with the value of log2(FC) 20.503 among the metabolites induced in in-
fected rice was m/z 317.2096 and tentatively identified to be 15-deoxy-∆12,14-prostaglandin
J2 (PGJ2) through MS/MS fragment comparison (Figure 3). In the same way, with the
exception of m/z 383.2025, 303.1402, and 699.3502, the other eight induced metabolites
were tentatively identified by comparing their MS/MS patterns (Table 1). The chemical
structures of the identified metabolites are shown in Figure 4.
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Table 1. List of metabolites most differentially induced in pathogen-infected rice compared with control.

No m/z RT a (min) log2(FC) −log10(p) Representative MS/MS Fragments Compound ID Class Adduct Ions

1 317.2096 13.64 20.503 15.026 107.0842 121.1017 147.0820 173.1321 299.2015 15-deoxy-∆12,14-prostaglandin J2 prostaglandins [M + Na]+

2 188.0696 3.39 19.939 14.257 118.0642 143.0719 tryptophan amino acids [M + H−NH3]+

3 357.2580 15.43 19.457 14.129 102.0867 176.9264 216.9466 256.9701 340.3596 prostaglandin F1α prostaglandins [M + H]+

4 313.2325 15.51 19.376 13.676 154.9296 196.9310 214.9464 256.9654 9-hydroperoxy-10Z,12E-octadecadienoic acid octadecanoids [M + H]+

5 330.2976 13.46 18.772 1.784 107.0844 121.1000 130.0855 264.2675 282.2745 11-dehydro-thromboxane B3 thromboxanes [M + H−2H2O]+

6 527.1528 1.40 17.835 1.955 185.0411 203.0513 305.0828 365.1016 melezitose trisaccharides [M + Na]+

7 383.2025 16.89 16.834 1.673 104.9929 141.0741 156.0904 207.0625 267.1209 Unknown 1 oxadiazoles -

8 136.0610 1.40 2.366 1.408 119.0338 109.0500 adenine nucleobases [M + H]+

9 303.1402 4.73 2.210 3.713 117.0324 127.0968 145.0266 177.0533 Unknown 2 - -

10 699.3502 12.67 1.660 1.124 185.0405 294.9074 347.0933 537.2977 699.3497 Unknown 3 - -

11 166.0854 2.37 1.252 10.862 103.0533 120.0795 phenylalanine amino acids [M + H]+

12 120.0802 2.37 1.219 16.785 103.0536 phenylacetaldehyde phenylpropanoids [M + H]+

a RT, retention time.
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Figure 3. LC-MS/MS fragmentation pattern of 15-deoxy-∆12,14-prostaglandin J2. For the identification, chemical formula
and exact m/z value were generated by MassHunter software. MS/MS spectra were compared to mass spectra in databases
such as Metlin, MassBank, HMDB, and GNPS.
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Figure 4. Potential chemical structures of nine metabolites most differentially induced in infected
rice. (1) 15-deoxy-∆12,14-prostaglandin J2; (2) tryptophan; (3) prostaglandin F1α; (4) 9-hydroperoxy-
10E,12Z-octadecadienoicacid; (5) 11-dehydro-thromboxane B3; (6) melezitose; (8) adenine; (11) pheny-
lalanine; (12) phenylacetaldehyde.

In order to characterize the class of unidentified compounds of m/z 383.2025, 303.1402,
and 699.3502, molecular networking was performed. The molecular network is a spectral
analysis tool used to visually display the chemical space present in the tandem mass
spectra of small molecules, which enables the mapping of the chemical diversity observed
in untargeted mass spectrometry experiments. The global natural products social molecular
networking (GNPS) is a public infrastructure that enables molecular networking [25]. GNPS
aligns each MS/MS spectrum in a dataset to each of the others and assigns a cosine score to
each combination to describe their similarity. Structurally related molecules are clustered
using the MS-Cluster algorithm. Classic molecular networking was generated using the
raw LC-MS data of control and infected rice and was visualized as a network of nodes and
edges with Cytoscape 3.8.0, an open-source software for visualizing complex networks [25]
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(Figure 5A). Of 594 nodes, 272 nodes were shared between two groups, and 50 more nodes
were observed in the infected rice than in control (Figure 5C). Unfortunately, mass features
of m/z 383.2025, 303.1402, and 699.3502 did not belong to specific classes in the classic
molecular network. Recently, network annotation propagation (NAP) has been introduced
as an alternative annotation method, which uses in silico prediction with a re-ranking
system to increase annotation accuracy [26]. Although NAP cannot provide the level
of confidence required for the exact identification of compounds, it enables a class level
of annotation and candidate prioritization of unknown fragmented mass spectrum [27].
Using NAP, the consensus candidates of m/z 383.2025 were characterized to be oxadiazoles,
but m/z 303.1402 and 699.3502 were not categorized in silico (Figure 5B). The molecular
networking job on GNPS and NAP can be found at https://gnps.ucsd.edu/ProteoSAFe/
status.jsp?task=b7d63e4ac9164971baf712b9752061c3 and https://proteomics2.ucsd.edu/
ProteoSAFe/status.jsp?task=d5707bfad1a94efbb6108759e47a0d4a, respectively.
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Figure 5. The networking analysis results of control and infected rice. (A) Visualized molecular networking. Network was
generated using MS/MS spectra through classical molecular networking of GNPS server and visualized with nodes and
edges through Cytoscape 3.8.0. Nodes consisted of pie charts based on peak intensity proportion in each metabolite. Blue,
control; red, infected rice. The thickness of the edges was determined by the similarity of the two connected nodes with
edge widths ranging from 7.5 to 15.0. (B) The network of the nodes annotated by network annotation propagation (NAP).
Blue hollow nodes are represented by NAP consensus top ranked candidates annotated in silico. (C) Venn diagram of
shared nodes for whole nodes in the classical molecular networking.

2.4. Metabolic Pathway Analysis

To determine the plant metabolic pathway activated in infected rice, pathway analysis
was conducted. Of the twelve most differentially induced metabolites, nine were annotated
with KEGG, HMDB, or PubChem ID (Table S1) and then submitted to MetaboAnalyst path-
way analysis based on the KEGG plant database. The following ten KEGG plant pathways
were detected: phenylalanine metabolism; phenylalanine, tyrosine, and tryptophan biosyn-
thesis; aminoacyl-tRNA biosynthesis; linoleic acid metabolism; tropane, piperidine, and
pyridine alkaloid biosynthesis; zeatin biosynthesis; tryptophan metabolism; glycine, serine,
and threonine metabolism; phenylpropanoid biosynthesis; purine metabolism (Figure 6,

https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=b7d63e4ac9164971baf712b9752061c3
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=b7d63e4ac9164971baf712b9752061c3
https://proteomics2.ucsd.edu/ProteoSAFe/status.jsp?task=d5707bfad1a94efbb6108759e47a0d4a
https://proteomics2.ucsd.edu/ProteoSAFe/status.jsp?task=d5707bfad1a94efbb6108759e47a0d4a
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Table 2). The pathways were related to five pathway modules and one genetic information
processing pathway (Table 3).
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Figure 6. Summary plot of KEGG pathway analysis. Pathway analysis was conducted to determine
biological processes and metabolic pathways of induced metabolites in infected rice. Out degree
centrality was selected as node importance measure method for topological analysis. The color and
size of each circle corresponds to its p-value and pathway impact, respectively.

Table 2. Result from KEGG pathway analysis activated in pathogen-infected rice.

KEGG Pathway Total a Hits b p-Value

Phenylalanine metabolism 12 2 1.83 × 10−3

Phenylalanine, tyrosine, and tryptophan biosynthesis 22 2 6.21 × 10−3

Aminoacyl-tRNA biosynthesis 46 2 2.60 × 10−2

Linoleic acid metabolism 4 1 2.26 × 10−2

Tropane, piperidine, and pyridine alkaloid biosynthesis 8 1 4.48 × 10−2

Zeatin biosynthesis 21 1 1.14 × 10−1

Tryptophan metabolism 23 1 1.24 × 10−1

Glycine, serine, and threonine metabolism 33 1 1.74 × 10−1

Phenylpropanoid biosynthesis 35 1 1.83 × 10−1

Purine metabolism 63 1 3.08 × 10−1

a Total, total number of compounds in the pathway; b hits, actually matched number from the user uploaded data.

Table 3. List of pathway modules containing ten detected KEGG pathways.

Pathway Module KEGG Pathway

Amino acid metabolism

Phenylalanine metabolism
Phenylalanine, tyrosine, and tryptophan biosynthesis

Tryptophan metabolism
Glycine, serine, and threonine metabolism

Biosynthesis of other secondary metabolites Tropane, piperidine, and pyridine alkaloid biosynthesis
Phenylpropanoid biosynthesis

Lipid metabolism Linoleic acid metabolism

Biosynthesis of terpenoids and polyketides Zeatin biosynthesis

Nucleotide metabolism Purine metabolism

Genetic transcription Aminoacyl-tRNA biosynthesis

Among nine identified compounds, amino acids phenylalanine, tryptophan, and the
phenylalanine derivative, phenylacetaldehyde, were found to be related to amino acid
metabolism consisting of phenylalanine metabolism, phenylalanine, tyrosine, and trypto-
phan biosynthesis, tryptophan metabolism, and glycine, serine, and threonine metabolism.
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Phenylalanine was also found to be involved in the biosynthesis pathway of secondary
metabolites, especially tropane, piperidine, and pyridine alkaloid biosynthesis and phenyl-
propanoid biosynthesis. In plants, phenylalanine and tryptophan are pivotal precursors for
secondary metabolite formation, such as indole alkaloids, phenylpropanoids, flavonoids,
and the phenolic polymer lignin [28,29]. Secondary metabolites biosynthesized from tryp-
tophan via two major intermediates, indole-3-acetaldoxime and tryptamine, are scattered
throughout the plant kingdom, and some of them are implicated in plant defense mecha-
nisms based on their antimicrobial activity [29,30]. Ueno et al. [31] pretreated rice leave with
indole-3-acetic acid (IAA), tryptamine, or tryptophan before infecting them with the rice
blast fungus M. oryzae, and the blast lesion formation was suppressed in IAA and tryptophan
treated leaves compared to control. From the study, the accumulation of tryptophan-derived
secondary metabolites reduced the damage caused by a fungal infection in rice leaves, which
suggested that tryptophan and tryptophan-derived secondary metabolites function as part
of the effective defense mechanism of rice. In addition, phenylalanine-derived secondary
metabolites accumulated via phenolic compound biosynthetic pathways significantly im-
pact plants’ defensive response to pathogenic infection [28,32].

Zeatin, a member of the cytokinin family, is a phytohormone that is involved in var-
ious growth and development processes in plants [33]. Zeatin-type cytokinin regulates
plant immunity against pathogens by suppressing symptom development and restrain-
ing the pathogen-induced cell death response in plants [33,34]. In the present study, we
hypothesized the activation of amino acid-related metabolism and the zeatin biosynthe-
sis pathway to be a result of the induced plant defense mechanism in infected plants.
The purine metabolism and the aminoacyl-tRNA biosynthesis pathways were also acti-
vated in infected rice by producing adenine and amino acids such as phenylalanine and
tryptophan, respectively.

Plant oxylipins, a large family of metabolites derived from polyunsaturated fatty
acids, represent a vast and diverse family of secondary metabolites, which contribute
to plants’ local and systemic defense mechanisms [35]. Some oxylipin profiling studies
report that a few genes encoding oxylipin biosynthetic enzymes are specifically induced in
pest or pathogen-inoculated plants, and the production of oxylipin was increased [36,37].
In accordance with previous studies, the results indicated that four among twelve most
induced metabolites in infected rice belong to the oxylipin family, prostanoids, namely,
PGJ2, prostaglandin F1α, 11-dehydro-thromboxane B3, octadecanoid, and 9-hydroperoxy-
10E,12Z-octadecadienoic acid (9-HPODE). In particular, 9-HPODE has been demonstrated
to produce a hypersensitive response cell death in pathogen-infected plants [38]. In the
lipid metabolism process, 9-HPODE is biosynthesized from linoleic acid and catalyzed by
lipoxygenase. Lipoxygenase induction is increased in response to wounding or herbivore
attack [39]. Similarly, both prostaglandins and thromboxanes are derived from arachidonic
acid by cyclooxygenase in the initial stage of arachidonic acid metabolism [40]. These
results suggest that pathogen-infected rice activates lipid metabolism that is involved in
the production of its by-products, prostanoids and octadecanoid, which are the most highly
induced metabolites in pathogen-infected rice compared to that of control.

3. Materials and Methods
3.1. Host Plant and Fungal Pathogen

Disease development using the rice (Oryza sativa, Poaceae) cultivar, Chucheong, as
the host plant was performed as previously described [41]. Briefly, two or three leaf stages
of rice plants grown in a greenhouse at 25 ± 5 ◦C for three weeks were inoculated by
spraying with a spore suspension of Magnaporthe oryzae KACC 46552 (Magnaporthaceae).
The fungal strain was provided by the Korean Agricultural Culture Collection (Jeonju,
Korea). Sporulation and maintenance were performed on oatmeal agar plates (5% oatmeal
(w/v) and 2% agar (w/v)) [42]. For the inoculum, a concentration of spore suspension
(5 × 105 spores/mL) was adjusted in 0.025% aqueous Tween 20 solution. Inoculated plants
were incubated in a humidified chamber (25 ◦C) for one day and then transferred to a
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growth chamber (25 ◦C and 80% relative humidity) for four days of incubation. As a
control, the same stage of rice plants were sprayed with 0.05% Tween 20 solution and
incubated as described above.

3.2. Sample Preparation

Rice leaves were collected under controlled conditions, flash-frozen, and stored at
−80 ◦C. Leaves were ground to a fine powder with a mortar and pestle in liquid nitrogen.
Leaf powder (10 mg) was transferred to a 5 mL glass vial, and 1 mL of methanol was added.
All processes were carried out under liquid nitrogen until the addition of solvent to the
sample vial. All experimental tools (such as glass vial and spatula) were kept frozen in
liquid nitrogen throughout the experiment. The sample was vortexed for 30 s and sonicated
for 30 min at room temperature. The supernatant was then filtered using a 0.2 µm pore
syringe filter (Whatman, Clifton, USA). The filtrate was then completely evaporated under
a nitrogen flow and stored at −20 ◦C until analysis. For LC-MS analysis, the dried sample
was weighed and dissolved in LC-MS grade methanol (JT Baker, Phillipsburg, USA) to a
concentration of 1 mg/mL.

3.3. UPLC-QTOF-MS Analysis

All samples were analyzed by an ultra-high performance liquid chromatography
(UPLC)-QTOF-MS analytical system. The instrument consisted of an Agilent 1290 Infinity
LC system (Agilent technologies, Palo Alto, CA, USA) coupled with an Agilent 6550
iFunnel QTOF LC/MS system equipped with dual Agilent Jet Stream (AJS) ESI source.
Each sample was injected in six replicates at a volume of 10 µL. Blank (100% MeOH) was
run at the beginning of the sample sequence for the elimination of background features.
Metabolite separation was performed using a YMC-Triart C18 column (2.0 × 150 mm,
1.9 µm; YMC KOREA Co., Seongnam, Korea) at 25 ◦C. The mobile phases were 0.1% formic
acid in water (A) and 0.1% formic acid in ACN (B) with the following gradients: 5–95% B
(0–20 min), 95–100% B (20–20.1 min), 100% B (20.1–23 min), 100–5% B (23–23.1 min), 5% B
(23.1–25 min). The flow rate was 0.4 mL/min.

The MS experiment was performed with a dual AJS ESI source under the following
conditions: drying gas temperature 300 ◦C, drying gas flow 8 L/min, nebulizer gas pressure
35 psi, sheath gas temperature 350 ◦C, sheath gas flow 11 L/min, and capillary voltage
+3.5 kV and −3.5 kV for the positive and the negative ionization modes, respectively.

QTOF parameters were set with a mass range of 100−1000 m/z and an acquisition
rate of five spectra/sec for MS and a mass range of 40−1000 m/z and an acquisition rate
of three spectra/sec for MS/MS. MS/MS fragment patterns were obtained using fixed
collision energies of 20 eV and 40 eV. Mass calibration was performed with an Agilent tune
mix (Agilent technologies, Palo Alto, CA, USA) from 100 to 1600 Da, and the data were
acquired in centroid mode using a high-resolution mode (4 GHz).

3.4. Feature Finding

Mass feature detection was performed using MZmine 2.53 [24]. The mzML files were
imported and cropped to a retention time range of 0–20 min. The mass detection noise
level was 1500 for MS1 and 20 for MS2. Chromatograms were built with a minimum
time span of 0.01 min, a minimum height of 5000, and an m/z tolerance of 0.001 m/z (or
5 ppm). Chromatogram deconvolution, which separates each detected chromatogram
into individual peaks, was achieved using a baseline cut-off algorithm with a minimum
peak height of 2500, a peak duration range of 0.02–0.4 min, and a baseline level of 500.
Deconvoluted peaks were deisotoped using the isotopic peaks grouper algorithm with
an m/z tolerance of 0.006 (or 10 ppm) and a retention time tolerance of 0.15 min. Peaks
were aligned in a peak table using the join aligner module, which aligns detected peaks
with a match score with an m/z tolerance of 0.006 (or 10 ppm), an absolute retention time
tolerance of 0.3 min, an m/z weight of 70, and a retention time weight of 30. Contaminated
features identified by blank injection and duplicated peaks were manually removed from
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the aligned peak table. Feature tables were then filtered to include only features that
contained a minimum of three peaks in a row.

3.5. Statistical Data Analysis

MetaboAnalyst 4.0 (http://www.metaboanalyst.ca) was used for univariate, mul-
tivariate, and clustering analyses [43]. The peak intensity table exported from MZmine
software was uploaded and normalized with a control group’s probabilistic quotient nor-
malization. Volcano plot analysis was conducted based on fold change (FC) analysis and
t-tests (p < 0.1). For the FC analysis, the data before column normalization were used to
compare the absolute value changes between two group means. Principal component
analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were performed
using R package’s prcomp and plsr functions, respectively. For heatmap clustering analysis,
Euclidean’s distance measure method and Ward’s hierarchical clustering algorithm was
used based on the hclust function of the stats R package.

3.6. Annotation of Metabolites and Metabolic Pathway Analysis

The most differentially induced metabolites of infected rice compared with control
were selected based on multivariate analysis results, and their annotation was made ac-
cording to exact mass, chemical formula, and MS/MS fragmentation spectra. Chemical
formulas were calculated with a mass accuracy of <7.5 ppm using MassHunter qual-
itative analysis software (Version B.06.00, Agilent Technologies, Palo Alto, CA, USA).
For metabolite annotation, our MS/MS fragmentation data were compared with those
of Metlin (http://metlin.scripps.edu/), MassBank (http://massbank.jp/), HMDB (http:
//www.hmdb.ca/), and GNPS (https://gnps.ucsd.edu/) spectra databases. Pathway
analysis of induced metabolites in infected rice was conducted using the pathway analysis
module of MetaboAnalyst 4.0. The pathways were analyzed based on the KEGG pathway
database (https://www.genome.jp/kegg/pathway.html), using the hypergeometric test
for over-representation analysis and out-degree centrality for pathway topology analysis.

4. Conclusions

In this study, rice plants’ metabolite changes resulted from the infection of M. oryzae
were investigated. Twelve metabolites were selected as the most induced metabolites
in pathogen-infected rice compared to a control. Among them, nine of the metabolites
were annotated using spectral databases. Pathway analysis revealed that most of the nine
highly induced metabolites are associated with plant defense metabolism. In particular,
the activation of lipid metabolism may explain the induction of prostanoids and octade-
canoids, which were the most highly induced secondary metabolites in the infected rice.
These results showed actual metabolite changes in pathogen-infected rice at the secondary
metabolite level. The use of untargeted metabolomics in infected plants may provide a
new perspective and further understanding of plant defense mechanisms.

Supplementary Materials: The following are available online at https://www.mdpi.com/2223-774
7/10/2/213/s1, Figure S1. Representative LC-MS chromatographic profiling of control and pathogen-
infected rice in negative ion mode. Figure S2. Box plot of twelve induced metabolites in infected rice.
Table S1. Standardized compound labels in HMDB, KEGG, and PubChem.
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42. Pluskal, T.; Castillo, S.; Villar-Briones, A.; Orešič, M. MZmine 2: Modular framework for processing, visualizing, and analyzing

mass spectrometry-based molecular profile data. BMC Bioinform. 2010, 11, 395. [CrossRef] [PubMed]
43. Chong, J.; Wishart, D.S.; Xia, J. Using MetaboAnalyst 4.0 for comprehensive and integrative metabolomics data analysis. Curr.

Protoc. Bioinform. 2019, 68, e86. [CrossRef] [PubMed]

http://doi.org/10.1067/mva.2002.125015
http://www.ncbi.nlm.nih.gov/pubmed/12096281
http://doi.org/10.1371/journal.pcbi.1006089
http://www.ncbi.nlm.nih.gov/pubmed/29668671
http://doi.org/10.1016/j.foodchem.2019.05.099
http://doi.org/10.5511/plantbiotechnology.26.523
http://doi.org/10.1016/j.phytochem.2010.11.001
http://doi.org/10.1073/pnas.040569997
http://doi.org/10.1007/s10327-011-0300-7
http://doi.org/10.1146/annurev.py.30.090192.002101
http://doi.org/10.4161/psb.24798
http://doi.org/10.1094/PHYTO-98-11-1242
http://doi.org/10.1104/pp.105.066274
http://doi.org/10.1046/j.1365-313x.2002.01195.x
http://doi.org/10.1074/jbc.274.51.36446
http://doi.org/10.1104/pp.010787
http://doi.org/10.1021/cr2002992
http://doi.org/10.1002/ps.318
http://doi.org/10.1186/1471-2105-11-395
http://www.ncbi.nlm.nih.gov/pubmed/20650010
http://doi.org/10.1002/cpbi.86
http://www.ncbi.nlm.nih.gov/pubmed/31756036

	Introduction 
	Results and Discussion 
	LC-MS Based Untargeted Metabolomics 
	Mass Differences between Two Rice Groups 
	Putative Identification of Differentially Induced Metabolites 
	Metabolic Pathway Analysis 

	Materials and Methods 
	Host Plant and Fungal Pathogen 
	Sample Preparation 
	UPLC-QTOF-MS Analysis 
	Feature Finding 
	Statistical Data Analysis 
	Annotation of Metabolites and Metabolic Pathway Analysis 

	Conclusions 
	References

