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Deregulation of centriole duplication has been implicated in cancer and

primary microcephaly. Accordingly, it is important to understand how key

centriole duplication factors are regulated. E3 ubiquitin ligases have been

implicated in controlling the levels of several duplication factors, including

PLK4, STIL and SAS-6, but the precise mechanisms ensuring centriole homeo-

stasis remain to be fully understood. Here, we have combined proteomics

approaches with the use of MLN4924, a generic inhibitor of SCF E3 ubiquitin

ligases, to monitor changes in the cellular abundance of centriole duplication

factors. We identified human STIL as a novel substrate of SCF-bTrCP. The

binding of bTrCP depends on a DSG motif within STIL, and serine 395

within this motif is phosphorylated in vivo. SCF-bTrCP-mediated degradation

of STIL occurs throughout interphase and mutations in the DSG motif causes

massive centrosome amplification, attesting to the physiological importance of

the pathway. We also uncover a connection between this new pathway and

CDK2, whose role in centriole biogenesis remains poorly understood. We

show that CDK2 activity protects STIL against SCF-bTrCP-mediated degra-

dation, indicating that CDK2 and SCF-bTrCP cooperate via STIL to control

centriole biogenesis.
1. Introduction
In animal cells, centrosomes serve as microtubule organizing centres to shape

the architecture of microtubule networks [1,2]. Accordingly, they influence

microtubule-dependent processes, notably cell shape, polarity and motility

[3]. Centrosomes also associate with mitotic spindle poles, and thereby partici-

pate in spindle formation and orientation, ensuring equal distribution of

chromosomes during cell division [4,5]. Moreover, centrosomes may function

as solid-state platforms to help accumulate proteins implicated in signalling

processes [6]. Centrosomes comprise centrioles that are surrounded by a protein

matrix, the pericentriolar material (PCM). While the PCM contains a multitude

of proteins, including factors that nucleate and anchor microtubules, centrioles

are composed of stabilized microtubule triplets, resulting in cylindrical struc-

tures with evolutionary conserved ninefold symmetry [7,8]. Centrioles not

only form the core of centrosomes, but also function as basal bodies to allow

ciliogenesis [9,10]. In quiescent cells, docking of a centriole to the plasma mem-

brane promotes the outgrowth of a primary cilium, which functions as an

antenna to receive and integrate extracellular stimuli [11,12].

In cycling cells, centrioles are duplicated exactly once during S phase [13–15].

While G1 phase cells contain one centrosome comprising two loosely connected

centrioles, at the G1/S phase transition, one new procentriole is assembled in

orthogonal orientation near the proximal end of each pre-existing (parental)

centriole. The newly formed procentrioles then elongate throughout G2 phase,

but initially remain unable to recruit PCM [16,17]. Procentrioles remain closely
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connected to their parents, until centriole disengagement is

triggered during mitosis by Separase and PLK1 activities

[4,18]. Also at mitotic entry, the flexible protein linker connect-

ing parental centrioles is dissolved [19] and the PCM enlarges

in a process termed centrosome maturation [8]. This results in

the formation of two independent centrosomes with high

microtubule nucleation capacity, ready to participate in bipolar

spindle formation.

Centriole duplication requires the sequential interaction

between a defined set of centriole duplication factors. During

initial steps, PLK4, STIL and SAS-6 cooperate in the assembly

of a ninefold symmetrical structure, termed cartwheel, that

then supports procentriole formation [7,14,20]. To trigger the

process, the kinase PLK4 is recruited by CEP152 and CEP192

to the proximal base of each parental centriole [21–23]. Then,

towards the G1/S transition, STIL and SAS-6 co-localize with

PLK4 to the future site of procentriole formation [23–26]. The

exact mechanisms that determine the location of procentriole

formation on the circumference of procentrioles remain to be

understood, but the available evidence indicates that PLK4

first binds to STIL and phosphorylates STIL’s STAN domain,

promoting STIL interaction with SAS-6 [25–29]. In addition,

the STIL–PLK4 interaction has been demonstrated to increase

PLK4’s kinase activity, which in turn is likely to influence PLK4

abundance and localization [27,28]. Subsequently, other cen-

triole duplication factors, notably CEP135, CPAP and CP110,

are recruited to allow the building of the emerging procentriole

and its elongation [15].

Deregulation of centriole duplication has been linked to a

number of diseases, emphasizing the need for a better under-

standing of the mechanisms that regulate centriole numbers

under physiological and patho-physiological conditions.

Both numerical and structural centrosome aberrations are

common in cancer cells, and have been linked to genome

instability and invasion [30–37], as well as impaired ciliary

signalling [38]. Furthermore, deregulation of centriole dupli-

cation has been implicated in the aetiology of primary

microcephaly or dwarfism [39–43].

To prevent unscheduled formation of extra centrioles, regu-

latory mechanisms must exist to limit centriole duplication to

once per cell cycle (cell cycle control) and to restrict the for-

mation of procentrioles to one per parental centriole (copy

number control) [44], and recent studies begin to elucidate

the underlying mechanisms [15]. In brief, the licensing of cen-

trioles for a new round of duplication (cell cycle control) is

recognized to require centriole disengagement as well as cen-

triole-to-centrosome conversion during M phase progression

[16–18,45–48]. Regarding the mechanisms ensuring the for-

mation of a single procentriole per pre-existing centriole

(copy number control), most attention is focused on the ques-

tion of how cells control PLK4 activity in time and space.

Overexpression of PLK4, STIL or SAS-6 overrides copy

number control and results in the near-simultaneous formation

of multiple procentrioles [49–56], demonstrating that the abun-

dance of these three centriole duplication factors and/or their

recruitment to centrioles are tightly regulated.

Of particular interest, PLK4, STIL and SAS-6 are all regu-

lated by proteasomal degradation [57]. This focused attention

on two prominent cell cycle regulatory E3 ubiquitin ligases,

the anaphase-promoting complex/cyclosome (APC/C) and

the SKP1-CUL1-F-box-protein (SCF) ubiquitin ligase. While

APC/C operates during mitosis and G1 phase, and uses the

co-activators CDC20 and CDH1 for substrate recognition,
SCFs operate throughout the cell cycle and require a large set

of different F-box proteins for substrate recognition [58].

CDC20, CDH1 and F-box proteins all recognize short motifs,

referred to as destruction motifs or degrons, on their sub-

strate proteins, and most F-box proteins additionally require

phosphorylation of the motifs [59]. SAS-6, STIL as well as

CPAP all contain a KEN box destruction motif, which results

in APC/C-CDH1-mediated degradation during late mitosis

and early G1 phase [39,52,54,56,60]. This probably contributes

to prevent unscheduled initiation of centriole duplication

prior to the G1/S phase transition, when APC/C is inactivated

through Emi1 binding and CDK2 activity [61]. Additionally, an

auto-regulatory feedback mechanism prevents active PLK4

from reaching excessive levels that would otherwise trigger cen-

triole overduplication: PLK4 trans-auto-phosphorylates on a

DSG motif, which results in binding of the F-box protein

bTrCP, followed by ubiquitination and degradation via the

SCF-bTrCP pathway [62–65]. Finally, other F-box proteins

have also been implicated in the regulation of centriole dupli-

cation. First, SAS-6 has been reported to be degraded not only

by APC/C but also by SCF-FBXW5, leading to the proposal

that inhibition of SCF-FBXW5 by PLK4-dependent phosphoryl-

ation during S phase triggers SAS-6 stabilization and cartwheel

formation [66]. Second, the abundance of CP110 during G2

phase has been reported to be regulated by SCF-Cyclin F [67],

in a process counteracted by the deubiquitinase USP33 [68].

To preserve genome stability, proliferating cells need to

coordinate centriole duplication with DNA replication. While

little is presently known about the mechanisms underlying

this coordination, several studies point to a central role of the

cell cycle regulatory kinase CDK2 [69–72]. This raises the ques-

tion of how CDK2 contributes to control centriole duplication.

CDK2 is known to phosphorylate CP110, but the consequences

of this phosphorylation are not fully understood [73]. Likewise,

the CDK2 substrates MPS1 and nucleophosmin have been

reported to associate with centrosomes [74–76], but the role

of these proteins in centriole duplication remains controversial.

Thus, the role of CDK2 in centriole duplication remains

largely enigmatic.

Here, we have sought to identify novel pathways contri-

buting to the regulation of centriole biogenesis. We identify

STIL as a novel substrate of the ubiquitin ligase SCF-bTrCP,

and we present data to suggest that CDK2 controls both

STIL abundance and localization.
2. Results
2.1. Inhibition of SCF E3 ubiquitin ligase complexes by

MLN4924 triggers accumulation of STIL
Cellular levels of PLK4, the master regulator of centriole

duplication, are tightly controlled by proteolysis in response

to SCF-mediated PLK4 ubiquitination [62–65,77]. Further-

more, both SAS-6 and CP110 have been identified as

substrates of SCF [66,67]. Motivated by these findings, we

sought to identify novel substrates of SCF ubiquitin ligases,

whose proteolytic degradation might be important for centriole

homeostasis. To this end, we quantified cellular levels of candi-

date proteins by combining mass spectrometry approaches

with the use of MLN4924, a small molecule that blocks all

SCF-mediated protein degradation through inhibition of the

NEDD8-activating enzyme.
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In pilot experiments, we treated U2OS cells for 24 h with

different concentrations of MLN4924, or DMSO for control,

with the expectation that inhibition of SCF-bTrCP should

result in PLK4 accumulation and, consequently, centriole ampli-

fication. Indeed, treatment of U2OS cells with 0.1 mM MLN4924

resulted in 25% of cells with more than four centrioles, including

a population that showed near-simultaneous formation of

multiple daughter centrioles (referred to as a flower-like

arrangement; electronic supplementary material, figure S1a,b).

Upon use of MLN4924 at 0.5 mM, the proportion of cells

harbouring more than four centrioles was increased to greater

than 60%, including 20% with flower-like arrangements (elec-

tronic supplementary material, figure S1a,b). Given that these

latter conditions caused sufficient inhibition of SCF E3 ligases

to trigger extensive centriole amplification, they were adopted

for proteomics studies on HEK 293T cells. Sufficiently abundant

cellular proteins could readily be quantified through non-

targeted mass spectrometry. Additionally, low-abundance

centrosomal proteins were quantified through application

of a targeted approach based on parallel reaction monitoring

(PRM). Making use of isotope-labelled reference peptides,

PRM enables quantification of proteins that would be difficult

to monitor by conventional mass spectrometry [78].

To demonstrate the sensitivity and reliability of our

proteomics approaches, we first measured the effects of SCF

inhibition on several abundant cellular proteins, including

three well-established substrates of SCF E3 ubiquitin ligases,

Aurora A [79,80], b-Catenin [81] and ORC1 [82] (electronic

supplementary material, figure S1c). While the levels of these

known SCF substrates markedly increased upon MLN4924

treatment, those of housekeeping proteins, notably tubulin a,

tubulin b and glyceraldehyde-3-phosphate dehydrogenase

(GAPDH) were not altered, as expected (electronic supple-

mentary material, figure S1d). Following this validation,

we next used PRM to measure the effects of SCF inhibition

on the levels of eight proteins previously implicated in

centriole duplication, notably PLK4, CEP152, CEP192, SAS-6,

CEP135, CPAP, CP110 and STIL (figure 1a). As expected,

PLK4, a well-established substrate of SCF-bTrCP ubi-

quitination [62–65,77], showed a strong accumulation upon

MLN4924 treatment. Furthermore, and most intriguingly, we

also observed a robust accumulation of the centriole dupli-

cation factor STIL. By contrast, no significant accumulations

were seen for CEP152, CEP192, SAS-6, CEP135, CPAP and

CP110. Considering that SAS-6 and CP110 have previously

been reported to constitute targets of SCF-FBW5 [66] and

SCF-Cyclin F [67], respectively, we were surprised that these

proteins showed no significant accumulations. One possible

explanation is that SAS-6 and CP110 might be recognized

by their respective F-box proteins only during specific cell

cycle stages, which might make it difficult to detect their stabil-

ization in an experiment performed on asynchronously

growing cells.

STIL is known to be degraded by APC/C-CDH1 during

late M and early G1 phase [39,54,56,83]. However, an invol-

vement of an SCF ubiquitin ligase in STIL regulation has

not previously been reported. This prompted us to corrobo-

rate our mass spectrometry data by treating HEK 293T cells

with MLN4924 and then monitoring STIL protein levels by

western blotting (figure 1b). Already at 0.1 mM MLN4924,

accumulation of STIL could readily be detected, and a further

increase was seen at 0.5 mM. CEP135, analysed as negative

control, showed no increase, whereas Aurora A, examined
as positive control, strongly accumulated with increasing

doses of MLN4924. These results fully corroborate the mass

spectrometry data shown in figure 1a.

Given that MLN4924 has been reported to induce a G2

arrest in certain cell types [84] and that STIL protein levels

increase towards G2 phase of the cell cycle [54,56], it was

important to exclude that the observed accumulation of STIL

might simply reflect a G2 arrest. To this end, the mass spec-

trometry-based quantification experiments were repeated in

cells that had been thymidine-arrested in S phase prior to

MLN4924 treatment. As seen for asynchronously growing

cells, we again observed a significant upregulation for both

PLK4 and STIL, demonstrating that accumulation of STIL

cannot be attributed to a G2 cell cycle arrest (electronic sup-

plementary material, figure S1e). Furthermore, we detected a

minor upregulation of SAS-6, in line with the proposed SCF-

mediated turnover in S-phase-arrested cells [66]. To assess

the kinetics of STIL accumulation, we next conducted a time

course experiment in S-phase-arrested HEK 293T cells and

used western blotting to monitor STIL levels every 2 h, for a

total of 8 h, after MLN4924 addition (figure 1c). An increase

in STIL could be detected within a few hours of drug addition.

Accumulation of Aurora A showed a comparable response,

while CEP135 levels remained constant throughout the time

of treatment, as expected. These results confirm that the

observed accumulation of STIL is not due to perturbation of

cell cycle progression.

Importantly, massive centriole amplification induced by

PLK4 overexpression did not result in increased cellular STIL

abundance (electronic supplementary material, figure S2),

indicating that the MLN4924-induced STIL stabilization is

not an indirect consequence of centriole amplification and/or

PLK4 overexpression. Instead, our data raise the possibility

that STIL is a direct target of an SCF E3 ubiquitin ligase.
2.2. bTrCP recognizes a conserved but non-canonical
DSG motif within STIL

SCF E3 ligases comprise F-box proteins that recognize

well-defined amino acid sequences, so-called degron motifs,

within substrate proteins [59]. Inspection of the human STIL

amino acid sequence for the presence of potential binding

sites for F-box proteins revealed a DSG motif within the

N-terminal part (residues 394–399) (figure 2a). However,

while canonical DSG motifs usually contain two phospho-

acceptor sites (DSGXXS) that permit bTrCP binding in

response to double phosphorylation, in the putative DSG

motif of STIL, the second phosphorylation site has been

replaced by aspartate (DSGXXD). This is not a priori expected

to prevent degron recognition by bTrCP, as illustrated by the

case of CDC25 phosphatases, which undergo destruction

through recognition of a motif in which both phosphorylation

sites are replaced by aspartate (DDGXXD) [85]. The DSG motif

within STIL is well conserved among vertebrates (figure 2a),

except for many rodents (electronic supplementary material,

figure S3), but not in ANA2 or SAS-5, the STIL orthologues

in Drosophila melanogaster and Caenorhabditis elegans, respect-

ively. Importantly, S395 within DSG is one of the most

prevalent phosphorylation sites within STIL listed on www.

phosphosite.org, and the site can readily be phosphorylated

in vivo, as indicated by mass spectrometry experiments

http://www.phosphosite.org
http://www.phosphosite.org
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Figure 1. (a) Scatter plots show relative protein levels of the indicated centriole duplication factors in HEK 293T cells, as determined by PRM mass spectrometry.
Cells were treated with either DMSO (control, n ¼ 3) or 0.5 mM MLN4924 (n ¼ 3) for 24 h. To indicate fold-changes in protein levels in response to MLN4924-
treatment, the average values measured in DMSO-treated control cells were set to 1.0. Error bars denote s.d., p-values from t-tests (two-tailed, unpaired) are
indicated. (b) Western blot analysis shows levels of STIL, CEP135 and Aurora A after 24 h treatment of HEK 293T cells with DMSO (control) or the indicated con-
centrations of MLN4924. Levels of a-tubulin were analysed for loading control. (c) Western blot analysis shows levels of STIL, CEP135 and Aurora A after treatment
of HEK 293T cells with MLN4924 (0.5 mM) for the indicated times (h). Prior to drug addition, cells had been synchronized by a 24 h thymidine treatment. Levels of
a-tubulin were analysed for loading control.
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detecting the corresponding phosphopeptide in overexpressed

STIL (electronic supplementary material, figure S4).

To directly test whether bTrCP can bind STIL, lysates from

transfected HEK 293T cells were used for co-immunoprecipita-

tion experiments. Full-length FLAG-STIL could readily be

co-immunoprecipitated with myc-bTrCP immobilized on
beads (figure 2b). Furthermore, analysis of different truncated

versions of STIL confirmed that STIL binding to myc-bTrCP

required the presence of the DSG motif within N-terminal frag-

ments (figure 2c,d), and mutation of the central serine residue

to alanine (DAG) or replacement of all three amino acids to ala-

nine (AAA) abrogated bTrCP binding (figure 2e). Given that
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S395 is a major STIL phosphorylation site in vivo, this strongly

suggests that phosphorylation of the DSG motif contributes

to strengthen STIL–bTrCP interaction, but because replace-

ment of S395 by aspartate also abrogated STIL binding, this

phospho-mimetic mutant could not be used to probe the

effects of constitutive STIL phosphorylation. Taken together,

the above data corroborate the conclusion that interactions

between STIL and bTrCP occur in vivo. Further evidence sup-

porting an interaction between STIL and bTrCP within cells

stems from a large-scale Bio-ID proximity labelling screen:

use of STIL as a bait led to the identification of both bTrCP

paralogues, bTrCP1 (FBXW1) and bTrCP2 (FBXW11), as well
as the SCF core component Cul1 [86], indicating that all

these proteins are interacting with each other, or at least in

close proximity.

The above data raised the question of whether the

MLN4924-induced accumulation in STIL could be attributed

exclusively to SCF-bTrCP acting on the DSG motif, or whether

additional MLN4924-sensitive pathways might also be

involved. To address this issue, we analysed the effect of

MLN4924 treatment on STIL mutants with impaired DSG

functionality (figure 2f ). Compared with transfected STIL

WT, which was present at low levels but accumulated strongly

in response to MLN4924, both STIL DAG and STIL AAA were
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Figure 3. (a) U2OS cells were transfected with FLAG-STIL WT for a total of 60 h and either left untreated (asyn, upper panel), synchronized in S phase by thymidine
treatment (thym, middle panel) or arrested in G2 phase by RO-3306 treatment (RO-3306, lower panel). Cells were subsequently incubated with cycloheximide for a
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loading control. (b) Graph shows quantification of relative FLAG-STIL WT intensity (normalized to time 0), as measured by western blotting in three independent
experiments (as described in (a)). Curves for asynchronously growing cells are shown in black (asyn), for S-phase-arrested cells in blue (thym) and for G2-phase-
arrested cells in red (RO). (c) The same experiment as described in (a), except that FLAG-STIL DAG was used for transfection. (d) The same analysis as in (b), except
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120 centrioles per time point. (h) Representative images of the experiment described in (g). STIL is depicted in green; CP110 in red. Scale bar indicates 1 mm.
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expressed at higher levels, and only minor additional accumu-

lation could be detected in response to the drug. These results

indicate that accumulation of STIL in response to MLN4924

treatment results primarily, but not exclusively, from inhibition

of STIL degradation mediated by SCF-bTrCP acting through

the DSG motif.

2.3. Cytoplasmic STIL is degraded in interphase
Next, we sought to obtain temporal and spatial information

about STIL degradation. First, we asked whether SCF-

dependent STIL degradation occurs at any specific stage of the

cell cycle, and with what kinetics. To this end, U2OS cells expres-

sing either FLAG-STIL WT or FLAG-STIL DSG mutants were
arrested at different cell cycle stages, before protein synthesis

was blocked by addition of cycloheximide (CHX) and levels of

FLAG-STIL proteins were monitored for 8 consecutive hours

by western blotting. We found that exogenous STIL WT was

degraded with similar kinetics, regardless of whether cells

were growing asynchronously, arrested in S phase with thymi-

dine or in G2 phase with RO-3306; in all cases, STIL levels

dropped by approximately 75% after 8 h of CHX treatment

(figure 3a,b). From these results, we conclude that STIL is subject

to turnover throughout interphase of the cell cycle. By contrast,

the transfected DSG mutants—STIL DAG (figure 3c,d) or STIL

AAA (figure 3e,f)—showed markedly increased stability

under all conditions, confirming that the observed decays in

STIL levels were largely due to SCF-mediated degradation via
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the DSG motif. To obtain spatial information about STIL degra-

dation, we next used immunofluorescence microscopy to

examine levels of endogenous, centrosome-associated STIL.

Although 24 h thymidine arrest caused some centrosome ampli-

fication in U2OS cells, we focused quantitative analyses on the

majority of cells showing normal centrosome numbers. We

found that STIL levels at the centrosomes of U2OS cells

remained remarkably stable, even after CHX treatment for up

to 8 h (figure 3g,h). This suggests that the association of STIL

with the centrosome probably protects the protein from recog-

nition by bTrCP and subsequent proteasomal degradation,

implying that degradation mostly affects the cytoplasmic pool

of STIL. Furthermore, these data confirm that the bulk of STIL

is stably incorporated into centrioles [27], restricting its

exchange with the cytoplasmic pool.

2.4. Mutation of the STIL DSG motif causes centriole
amplification

Having established that SCF-bTrCP mediates cytoplasmic STIL

turnover in interphase cells, we next asked whether interference

with SCF-mediated STIL degradation would suffice to promote

centriole amplification. Because transient transfection generally

results in high levels of protein expression, so that even STILWT

already triggers substantial centrosome amplification [54], we

used a Flp-In T-REx system, which allowed us to express WT

and DAG mutant versions of EGFP-STIL in a tetracycline-

inducible manner from the same genomic locus. In this

system, induction of EGFP-STIL WT expression for up to 72 h
resulted in protein levels that were only marginally above

those seen for endogenous STIL (figure 4a), and this modest

level of overexpression did not trigger centriole amplification

(figure 4b,c), confirming previous results [39]. In stark contrast,

24–72 h after tetracycline addition, EGFP-STIL DAG was

expressed to much higher levels than either EGFP-STIL WT

or endogenous STIL, in line with the expectation that impaired

degradation causes an accumulation of this mutant (figure 4a).

Staining of the corresponding cells with anti-CP110 antibodies

revealed that EGFP-STIL DAG triggered massive centriole

amplification, with roughly 40% of cells containing greater

than four centrioles already after 24 h of expression, and this

phenotype was seen in nearly 60% of cells after 72 h

(figure 4b,c). These results demonstrate that impaired

SCF-mediated degradation of STIL results in sufficient STIL

stabilization to trigger massive centriole amplification.
2.5. Inhibition of CDK2 activity triggers loss of STIL
One question raised by our discovery of SCF-mediated degra-

dation of STIL relates to the identity of the kinase(s) involved in

phosphorylation of S395 within the DSG motif. In an attempt to

identify this upstream kinase(s), we have explored a possible

involvement of several candidates. Specifically, we have

added inhibitors of PLK4 (centrinone), PLK1 (BI-2536) and

GSK-3 (GSK-3 inhibitor IX), as well as inhibitors with broader

specificity (staurosporine, PKC-412) to S-phase-arrested U2OS

cells and then monitored STIL levels by western blotting.

Unfortunately, no reproducible stabilization of STIL could be
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observed under any of these conditions and so this assay failed

to identify the kinase(s) responsible for phosphorylation

of S395. However, in the course of these experiments, we

discovered an unexpected link between STIL abundance and

CDK2 activity. When adding the CDK inhibitor Roscovitine

to S-phase-arrested U2OS cells, we were surprised to see a

gradual decrease in STIL protein levels, amounting to a

drop of roughly 60% after 8 h of treatment (figure 5a). Very

similar results were obtained when using the CDK2-specific

inhibitor SNS-032, which also caused a substantial drop in

STIL protein levels after 8 h of treatment even at the lowest con-

centration assayed (0.1 mM) (electronic supplementary

material, figure S5a). Together, these data indicate that CDK2

inhibition triggers a loss of STIL protein, which in turn implies

that under physiological conditions CDK2 contributes to

stabilize STIL.

To explore possible mechanisms accounting for the

above observations, we asked whether CDK2 regulates

STIL abundance at the transcriptional level. CDK2 has in

fact been implicated in the regulation of E2F transcription fac-

tors at the G1/S phase transition [87,88] and STIL has been

identified as a potential E2F target gene [89]. Thus, inhibition

of CDK2 activity could potentially decrease the production

of STIL mRNA. To explore this possibility, the Roscovitine

time course experiment was repeated, but instead of monitor-

ing endogenous STIL, we examined the fate of FLAG-STIL
WT transiently transfected into HEK 293T cells. This ectopi-

cally expressed FLAG-STIL protein showed a very similar

response to CDK2 inhibition as the endogenous STIL

(figure 5b), even though it was expressed from a promoter

that is not expected to respond to E2F. We thus conclude

that the Roscovitine-induced loss of STIL is not caused by a

transcriptional mechanism.

Considering that STIL is degraded by APC/C [39,54], we

also explored the possibility that CDK2 inhibition might

affect STIL levels via regulation of this ubiquitin ligase. This

possibility was suggested by a report indicating that CDK2

inhibition in S-phase-arrested cells can lead to reactivation of

APC/C under certain experimental conditions [90]. However,

both Cyclin B and SAS-6, two prominent substrates of APC/C,

remained stable in response to Roscovitine treatment, arguing

that APC/C reactivation did not occur and thus cannot explain

the observed drop of STIL levels (figure 5c).

Having eliminated two potential explanations for the

observed drop in STIL levels in response to CDK2 inhibition,

we next asked whether this phenotype requires SCF-mediated

degradation. To this end, we pre-treated cells with MLN4924 to

inhibit SCF E3 ubiquitin ligases, before performing Roscovitine

time course experiments. Owing to synergistic toxicity of the

two compounds, cells could only be monitored for up to 4 h.

This limitation notwithstanding, we found that inhibition of

functional SCF E3 ubiquitin ligases by MLN4924 prevented
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the drop in STIL levels that was triggered by Roscovitine in the

DMSO-treated control cells (figure 5d; electronic supplemen-

tary material, figure S5b). This led us to postulate that the

enhanced STIL degradation seen upon CDK2 inhibition

reflects the fact that CDK2 normally protects STIL against

SCF-bTrCP-mediated degradation. If this were the case, one

would predict that mutation of the DSG motif should render

STIL levels resistant to CDK2 inhibition. To test this prediction,

we transfected FLAG-STIL DSG mutants into HEK 293T cells

and examined the stability of the corresponding proteins in

the presence of Roscovitine. Whereas FLAG-STIL WT was sen-

sitive to Roscovitine treatment (figure 5b), both FLAG-STIL

DAG and FLAG-STIL AAA completely resisted Roscovitine-

induced STIL degradation (figure 5e; electronic supplementary

material, figure S5c). We thus conclude that the loss of STIL

triggered by CDK2 inhibition requires an intact DSG

motif, implying that CDK2 antagonizes SCF-bTrCP-mediated

degradation of STIL.
2.6. Degradation-resistant STIL does not circumvent the
requirement for CDK2 in centriole duplication

CDK2 is known to be required for initiation of centriole dupli-

cation, but the molecular basis for this requirement has

remained elusive [69–72]. The data presented above indicate

that one important function of CDK2 consists in antagonizing

SCF-mediated degradation of STIL, thereby stabilizing STIL for

centriole biogenesis at the G1/S transition. This prompted the

question of whether stabilization of STIL represents the one key

role of CDK2 in centriole duplication, as opposed to CDK2

having multiple targets relevant to the process. In the former

case, we reasoned that it should be possible to bypass the

requirement for CDK2 by providing cells with non-degradable

STIL. It has previously been shown that centriole amplification

can be triggered by overexpression of either PLK4 or STIL

[49,51,54–56]. However, while PLK4-induced centriole ampli-

fication does not occur in the absence of CDK2 activity [49], it

has not previously been tested whether centriole amplification

caused by excess STIL also requires CDK2. If the sole function

of CDK2 was to increase STIL stability at the G1/S phase tran-

sition, then providing sufficient amounts of STIL should

trigger centriole amplification regardless of the CDK2 activity

status in the cell.

To determine whether STIL stabilization might be sufficient

to rescue centriole duplication in CDK2 inhibited cells, we

co-transfected the CDK2 inhibitor myc-p27 (or empty myc

plasmid for control) with EGFP-PLK4 or EGFP-STIL

WT/DAG into S-phase-arrested U2OS cells. As expected,

expression of PLK4, STIL WT or STIL DAG caused strong

centriole amplification (approx. 50% of transfected cells

harbouring greater than four centrioles) in the absence of

CDK2 inhibition (empty myc plasmid) (figure 6a). By contrast,

centriole amplification was blocked when PLK4 was co-

expressed with myc-p27, as shown before [49], and, likewise,

neither STIL WT nor STIL DAG were able to rescue centriole

amplification in the presence of myc-p27 (figure 6a). This

indicates that enhanced STIL stabilization is not sufficient to

circumvent the requirement of CDK2 in centriole duplication,

arguing that stabilization of STIL is not the sole function of

CDK2 relevant to centriole biogenesis.

Regarding additional centriole-related function(s) of

CDK2, we considered the possibility that CDK2 regulates not
only the abundance of STIL but also its subcellular localization.

In support of this notion, we observed that recruitment of

STIL to centrioles was sensitive to the presence or absence of

CDK2 activity. While overexpressed EGFP-PLK4 formed

rings around pre-existing centrioles, regardless of CDK2

activity status and procentriole formation, both EGFP-STIL

WT and EGFP-STIL DAG formed rings around pre-existing

centrioles in control cells expressing active CDK2, but failed

to accumulate at centrioles in cells harbouring myc-p27

(figure 6b,c). This suggests that CDK2 plays an important

role not only in shielding STIL from SCF-bTrCP-mediated

degradation, but also in controlling the recruitment of STIL

to the sites of procentriole formation.
3. Discussion
It is well established that PLK4, STIL and SAS-6 cooperate to

initiate the first steps in centriole biogenesis, and that the abun-

dance of all three proteins is regulated by ubiquitin-dependent

degradation [14,15,20]. While SCF-bTrCP controls levels of the

kinase PLK4 [62–65], APC/C functions to degrade both STIL

and SAS-6 during late M and early G1 phase [39,52,54,56,91].

Here, we describe a novel mechanism that contributes to

centriole homeostasis in human cells by controlling the abun-

dance and localization of the centriole duplication factor

STIL. Through the use of quantitative mass spectrometry, we

identified STIL as a direct target of SCF ubiquitin ligases. More-

over, we found that the F-box proteinbTrCP binds a DSG motif

located within the N-terminus of STIL, and that mutation

of this degron leads to STIL stabilization and consequent

centriole overduplication. We also discovered an unexpected

link between STIL and CDK2. Our data suggest that CDK2

activity protects STIL against SCF-bTrCP-mediated degra-

dation and, additionally, may contribute to control STIL

recruitment to centrioles. Figure 7 summarizes these findings

in a schematic model.

As substrate recognition by SCF-bTrCP generally depends

on degron phosphorylation, we sought to identify the kinase

acting on S395 within STIL’s DSG motif. However, although

we tested several kinase inhibitors for their ability to stabilize

STIL, including inhibitors targeting plausible candidate

kinases such as PLK4, PLK1 and GSK-3, we have been

unable to identify the kinase(s) acting on S395. These negative

results might reflect redundancies among multiple kinases,

and therefore do not exclude a role for PLK4, PLK1, GSK-3

or any other kinase in the regulation of STIL abundance. Alter-

natively, however, it is also conceivable that phosphorylation

of S395 may not be strictly required for STIL degradation,

which would explain our inability to identify a pertinent

kinase through stabilization-based assays. Some support for

this possibility stems from the observation that S395 can be

readily detected in cell lysates, which would not be expected

if phosphorylation of this residue was the rate-limiting step

triggering STIL degradation.

Collectively, our results make a strong case implicating

SCF ligases in the regulation of STIL abundance. Moreover,

they specifically link bTrCP to STIL degradation via a DSG

degron. Surprisingly, however, siRNA-mediated depletion of

bTrCP did not allow us to detect robust accumulation

of STIL. Although this may reflect incomplete depletion of

bTrCP, it also raises the possibility that other F-box proteins,

or even other MLN4924-sensitive ligases, may cooperate
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with SCF-bTrCP to regulate STIL levels. Co-regulation of

important regulatory proteins by multiple F-box proteins and

cullin-RING ubiquitin ligases has previously been observed,

as exemplified by Wee1 and Cdt1 [92–95].

Although the DSG motif within STIL is well conserved in

most vertebrates, it is conspicuously absent in several rodent

species, notably mouse and rat, indicating that subtle differ-

ences exist in the regulation of STIL levels in different

organisms. For example, it is intriguing to consider the possi-

bility that the physiological role of SCF-bTrCP-mediated

degradation of vertebrate STIL may differ depending on the

mode of centriole inheritance during fertilization. In humans

and most mammals, the entry of a spermatozoon into an egg

results in the introduction of a centriole, which can then be

duplicated during each zygotic division [96,97]. By contrast,

the first zygotic divisions in mouse and rat are acentriolar,

before centrioles form de novo at the blastocyst stage [98–

101]. It thus appears tempting to speculate that differences in

STIL regulation between rodents and other mammals might

somehow relate to differences in centriole inheritance and de
novo biogenesis during early development.

Our data suggest that STIL is protected from SCF-bTrCP-

mediated degradation as soon as this centriole duplication

factor has been recruited to and integrated into centrioles.

While future work will be required to address the mechanism

underlying this protection, we note that STIL physically interacts

with CPAP and that the STIL–CPAP interaction is essential for

successful completion of centriole duplication [55,56,102,103].

It is intriguing, therefore, that the DSG motif within STIL is

located in very close proximity to the purported CPAP binding

motif (PRPXXP) [102,103]. Considering that the two motifs are

only a few amino acids apart, this raises the possibility that

CPAP binding to STIL results in masking of the DSG motif,

thereby protecting STIL from degradation. If this were the

case, our results would predict that STIL and CPAP interact

primarily at centrioles, rather than within the cytoplasm.

Finally, we report the unanticipated observation that

CDK2 activity interferes with SCF-bTrCP-mediated STIL

degradation. The precise mechanism underlying this antagon-

ism remains to be determined, but one possibility is that CDK2
directly phosphorylates STIL, thereby interfering with recog-

nition of STIL by bTrCP. In this context, it is interesting that

STIL was reported to bind the prolyl-isomerase PIN1 [104]

and that phosphorylation-induced prolyl-isomerization has

previously been shown to antagonize bTrCP-mediated protein

degradation [105]. Alternatively, CDK2 might interfere with

SCF-bTrCP activity itself. Although CDK2 activity has long

been implicated in the regulation of centriole numbers

[69–72,106], the precise centriole-related function(s) of this

kinase remain to be elucidated. Our observation raised the

possibility that one key function of CDK2 consists in stabilizing

STIL at the G1/S transition. However, overexpression of either

WT STIL or DSG mutant versions of STIL did not bypass the

requirement for CDK2 activity for centriole overduplication,

indicating that CDK2 must play additional roles. One prospect

suggested by our data is that CDK2 regulates not only STIL

abundance but also STIL recruitment to centrosomes. In fact,

whereas centrosome-association of PLK4 was independent of

the activity status of CDK2, overexpressed STIL did not localize

to centrioles when CDK2 was inhibited.

As depicted schematically in figure 7, we propose that

cytoplasmic STIL is subject to degradation by SCF-bTrCP

throughout interphase. According to this model, SCF-bTrCP-

mediated STIL degradation ensures that STIL levels do not

rise above a critical threshold at inappropriate times, thus pre-

venting unscheduled centriole (over-)duplication. At the G1/S

phase transition, however, a rise in CDK2 activity interferes

with this STIL degradation pathway. This then allows the

accumulation of STIL to levels sufficient for centriole dupli-

cation. In addition, our data suggest that CDK2 is required

for the recruitment of STIL to centrioles, where integration

into a procentriolar structure is proposed to protect STIL

from degradation. One attractive possibility is that this protec-

tion results from masking of the DSG degron by binding of

CPAP to a neighbouring site on STIL. Upon passage through

the next M phase, STIL will again be released into the cyto-

plasm, in response to phosphorylation by CDK1, where it is

degraded by APC/C [39]. While additional work will be

required to substantiate or refute the model depicted in

figure 7, these findings propose new lines of investigation

into the mechanisms that underlie the regulation of centriole

duplication during cell cycle progression.
4. Material and methods
4.1. Cloning procedures
Site-specific point mutations were introduced into STIL WT via

the QuikChange II XL Site-Directed Mutagenesis Kit (Agilent

Technologies, Santa Clara, CA, USA), using the Gateway

entry vector pENTR/D-TOPO_STIL 1-1287 [39] as template

and oligonucleotides ccaatacatgatcacgacgctggtgttgaagatgaag

and cttcatcttcaacaccagcgtcgtgatcatgtattgg to generate the

point mutation S395A, and oligonucleotides gatgccaatacatgat-

cacgccgctgctgttgaagctgaagatttttctccaagac and gtcttggagaaaa-

atcttcagcttcaacagcagcggcgtgatcatgtattggcatc to generate the

point mutations D394A, S395A and G396A, respectively. The

Gateway LR Clonase Enzyme mix (Thermo Fisher Scientific,

Waltham, MA, USA) was used to catalyse the recombination

of entry vectors (pENTR) with destination vectors (pDEST) to

generate expression vectors (pEXP). The entry vector pENTR/

D-TOPO_STIL_S395Awas recombined with destination vectors
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pDEST_pcDNA3.1_N3xFLAG [39] and pgLAP1 (Addgene

plasmid number 19702, gift from Peter Jackson) to generate

expression vectors pEXP_N3xFLAG_STIL_S395A (used to

express FLAG-STIL S395A) and pEXP_NEGFP_S_FRT_

STIL_S395A (used to express EGFP-STIL S395A and to generate

U2OS Flp-In T-Rex cell line harbouring EGFP-STIL DAG). The

entry vector STIL D394A, S395A, G396A was recombined

with pDEST_pcDNA3.1_N3xFLAG [39] to generate expression

vector pEXP_N3xFLAG_STIL_D394A, S395A, G396A (used to

express FLAG-STIL AAA). The PLK4 full-length sequence

was amplified from a myc-PLK4 plasmid [49] by polymerase

chain reaction using oligonucleotides CACCGCGACCTGC

ATCGGG and TCAATGAAAATTAGGAGTCG. The blunt-

ended PCR product was ligated into the pENTR/D- TOPO

vector (Invitrogen, Carlsbad, CA, USA) to generate the entry

vector PLK4 pENTR/D-TOPO_PLK4, which was subsequently

recombined with the destination vector pgLAP1 by LR reaction

to generate pEXP_NEGFP_S_FRT_PLK4 (used to express

EGFP-PLK4). Clonings of myc-bTrCP1 (FBXW1A) [107], myc-

p27 [71], pEXP_NEGFP_S_FRT_STIL fl [39] and FLAG-STIL

FL, N-ter, MD, C-ter DC, DN [39] were described previously.

4.2. Cell culture, cell synchronization and transfections
All cells were grown in a 378C incubator with 5% CO2 and reg-

ularly tested for mycoplasma. U2OS and HEK 293T cells were

maintained in Dulbecco’s modified Eagle’s medium (DMEM),

supplemented with 10% fetal calf serum (FCS) and 5%

PenStrep (Thermo Fisher Scientific). The doxycycline-inducible

U2OS T-REx cell line harbouring myc-tagged PLK4 [51]

was cultured in the same medium, except that tetracycline-

free fetal bovine serum was used and the medium was

supplemented with 500 mg ml21 G418 (Biovision, Milpitas,

CA, USA) and 50 mg ml21 hygromycine (Thermo Fisher

Scientific). Expression of myc-PLK4 was induced by addition

of 10 ng ml21 doxycycline. Generation of the tetracycline-

inducible U2OS Flp-In T-Rex cell line harbouring EGFP-

tagged STIL WT has been described previously [39]. The

tetracycline-inducible U2OS Flp-In T-REx cell line harbouring

EGPF-STIL DAG was generated according to the manufac-

turer’s protocols (Thermo Fisher Scientific). To select for

transgene integration and culture cells after selection, DMEM

with 10% tetracycline-free fetal bovine serum, 5% PenStrep

(Thermo Fisher Scientific), 100 mg ml21 hygromycin (Thermo

Fisher Scientific) and 15 mg ml21 blasticidine (Thermo Fisher

Scientific) was used. Transgene expression was induced with

1 mg ml21 of tetracycline. To synchronize cells in S phase,

2 mM thymidine (Sigma-Aldrich, St Louis, MO, USA) was

applied for 24 h (except for the experiment described in

figure 6, where thymidine was added for 36 h). To synchronize

cells in G2 phase, 10 mM RO-3306 (Merck Millipore, Darmstad,

DE, USA) was applied for 24 h. Transient transfections of 293T

and U2OS cells were performed using TransIT-LT1 transfection

reagent (Mirus Bio, Madison, WI, USA) according to the

manufacturer’s protocol.

4.3. Immunofluorescence microscopy
U2OS cells were fixed and permeabilized in methanol (5 min,

2208C). U2OS Flp-In T-REx cells were fixed in 3% paraformal-

dehyde for 15 min, followed by permeabilization with 0.5%

Triton X-100 for 2 min. Fixed samples were prepared for immu-

nofluorescence microscopy, as described previously [71], and
analysed using a DeltaVision microscope on a Nikon TE200

base (Applied Precision, Issaquah, WA, USA) with a Plan

Apochromat 60� 1.42 N.A. oil-immersion objective (Olympus,

Tokyo, Japan) and 1.6� auxiliary magnification. A CoolSNAP

HQ2 camera (Photometrics, Tucson, AZ, USA) was used to

capture images. Serial optical sections acquired 0.2 mm apart

along the z-axis were deconvoluted and projected into one

image using Softworx (Applied Precision). Primary antibodies

were rabbit anti-STIL (CA66 [54]), mouse anti-CP110

(91.390.21; EMD Millipore), rabbit anti-CP110 [108] and

mouse anti-myc (9E10). Mouse and rabbit anti-CP110 anti-

bodies were directly coupled to Alexa-555, and mouse

anti-myc antibodies to Alexa-647, using antibody labelling

kits (Thermo Fisher Scientific). Alexa-488-labelled anti-rabbit

and Alexa-555-labelled anti-mouse secondary antibodies were

from Thermo Fisher Scientific. For quantifications of STIL,

GFP-PLK4 and GFP-STIL WT/DAG levels at centrosomes,

ImageJ was used to measure intensities; background signal

intensity was subtracted from cytoplasmic regions adjacent to

centrosomes. Identical image acquisition and processing set-

tings were applied whenever measurements were used for

comparison (OMERO; Open Microscopy Environment [109]).
4.4. Cell extracts, immunoprecipitation and western
blot analysis

Cells were lysed as described before [63], using either Tris

(50 mM Tris–HCl, pH 7.4, 150 mM NaCl, 0.5% NP-40

(IGEPAL CA-630) or RIPA (50 mM Tris–HCl, pH8.0,

150 mM NaCl, 5 mM EDTA, 1% NP-40 (IGEPAL CA-630),

0.5% sodium deoxycholate (SDC), 0.1% SDS) lysis buffers, sup-

plemented with protease and phosphatase inhibitors. For

immunoprecipitation experiments, cell extracts (2–5 mg total

protein) were incubated for 2 h at 48C with Affi-Prep protein

A matrix beads (Bio-Rad Laboratories, Hercules, CA, USA)

cross-linked with 9E10 anti-myc antibodies. After incubation,

beads were washed four to six times with wash buffer

(50 mM Tris–HCl, pH 7.4, 150–300 mM NaCl, 0.5–1%

IgePal), eluted with gel sample buffer and analysed by western

blotting. Rabbit anti-STIL (ab89314; Abcam, Cambridge, UK),

rabbit anti-Cep135 (ABE1857; EMD Millipore), mouse anti-

Aurora A (610939; BD Biosciences, San Jose, CA, USA),

mouse anti-FLAG (M2; Sigma-Aldrich), mouse anti-myc

(9E10), mouse anti-SAS-6 (91.390.21; EMD Millipore), mouse

anti-Cyclin B1 (GN53; Merck Millipore, Darmstad, DE, USA)

and mouse anti-a-tubulin (T9026; Sigma-Aldrich) antibodies

were used for western blotting. Western blots were developed

using SuperSignal West Femto maximum sensitivity chemilu-

minescent reagent (Thermo Fisher Scientific) and a CCD-based

imaging system (Bio-Rad, Hercules, CA, USA). ImageJ was

used to measure band intensities and background signal

intensity was subtracted.
4.5. Protein sequence alignments
Protein sequences were fetched using BLAST (Basic Local

Alignment Search Tool) and aligned with the ClustalW algor-

ithm in the program CLC MAIN WORKBENCH 7 (v. 7.6.4 CLC

Bio, Qiagen, Aarhus, Denmark).
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4.6. Sample preparation for LC – MS analysis
To analyse phosphorylation sites on STIL, 3 � 106 HEK 293 T

cells were transfected for 48 h with FLAG-STIL FL [39],

collected and lysed in 500 ml Tris lysis buffer (50 mM Tris–

HCl, pH 7.4, 150 mM NaCl, 0.5% NP-40 (IGEPAL CA-630),

supplemented with protease and phosphatase inhibitors. After

centrifugation (15 min, 48C, 16 000g), cell extracts were incu-

bated at 48C with Anti-FLAG M2 Affinity Gel (Sigma-Aldrich)

for 2 h, thereafter beads were washed three times with Tris

lysis buffer, followed by three washes with phosphate-buffered

saline. Proteins were eluted with 100 mM glycine, pH 2.8,

neutralized with 1 M Tris–HCl (pH 8.0), reduced in 5 mM

Tris-2-carboxyethyl-phosphin (TCEP) for 10 min at 958C, alkyl-

ated in 10 mM iodoacetamide at 258C for 30 min in the dark

and incubated in 12.5 mM N-acetylcysteine at 258C for 10 min.

Proteins were digested by incubation with sequencing-grade

modified trypsin (1/50, w/w; Promega, Madison, WI, USA)

overnight at 378C and peptides were cleaned up using C18

Sep-Pak Vac columns (Waters, Baden-Dättwil, Switzerland)

according to the manufacturer’s instructions. Samples were

dried under vacuum and stored at 2808C until further use.

To determine relative protein abundance, 4–6 � 106

HEK 293T and 2 � 106 U2OS T-REx cells were collected and

lysed in 100 ml lysis buffer (1% SDC, 0.1 M ammoniumbicarbo-

nate, 10 mM TCEP) using strong ultra-sonication (10 min,

Bioruptor, Diagnode). Protein concentration was determined

by BCA assay (Thermo Fisher Scientific) using a small aliquot.

Sample aliquots containing 50 mg of total proteins were

reduced for 10 min at 958C and alkylated by adding chloro-

acetamide to 15 mM final concentration for 30 min at 378C.

Proteins were digested by incubation with sequencing-grade

modified trypsin (1/50, w/w; Promega) overnight at 378C.

An aliquot of a heavy reference peptide mix containing 16

chemically synthesized proteotypic peptides (AQUA-grade,

Thermo Fisher Scientific, see Bauer et al. [78] for details)

was spiked into each sample at a concentration of 10 fmol of

heavy reference peptides per 1 mg of total endogenous protein

mass. Then, the peptides were cleaned up using iST cartridges

(PreOmics, Munich) according to the manufacturer’s instruc-

tions. Samples were dried under vacuum and stored at

2808C until further use.
4.7. Targeted PRM-LC-MS analysis of selected peptides/
proteins

In a first step, parallel reaction monitoring (PRM) assays [110]

were generated from a mixture containing 500 fmol of each

heavy reference peptide and shotgun data-dependent acqui-

sition (DDA) LC-MS/MS analysis on a Q-Exactive HF

platform. The set-up of themRPLC-MS system was as described

previously [111]. Chromatographic separation of peptides was

carried out using an EASY nano-LC 1000 system (Thermo

Fisher Scientific), equipped with a heated RP-HPLC column

(75 mm � 30 cm) packed in-house with 1.9 mm C18 resin

(Reprosil-AQ Pur, Dr Maisch). Peptides were analysed per

LC–MS/MS run using a linear gradient ranging from 95% sol-

vent A (0.15% formic acid, 2% acetonitrile) and 5% solvent B

(98% acetonitrile, 2% water, 0.15% formic acid) to 45% solvent

B over 60 min at a flow rate of 200 nl min21. Mass spectrometry

analysis was performed on an Q-Exactive HF mass spec-

trometer equipped with a nanoelectrospray ion source (both
Thermo Fisher Scientific). Each MS1 scan was followed by

high-collision-dissociation of the 10 most abundant precursor

ions with dynamic exclusion for 20 s. Total cycle time was

approximately 1 s. For MS1, 3e6 ions were accumulated in the

Orbitrap cell over a maximum time of 100 ms and scanned at

a resolution of 120 000 FWHM (at 200 m/z). MS2 scans were

acquired at a target setting of 1e5 ions, accumulation time of

50 ms and a resolution of 30 000 FWHM (at 200 m/z). Singly

charged ions and ions with unassigned charge state were

excluded from triggering MS2 events. The normalized collision

energy was set to 27%, the mass isolation window was set to 1.4

m/z and one microscan was acquired for each spectrum. The

acquired raw files were database searched against a human

database (UniProt: download date: 4 February 2016, total of

20 204 entries) by MAXQUANT software (v. 1.0.13.13) using

default parameters. The best six transitions for each peptide

were selected automatically using an in-house software tool

and imported to SKYLINE (version 1.4). Two mass isolation lists

containing the peptides of the medium and low abundant

protein, respectively, were exported from SKYLINE and imported

into the QE-HF operating software for PRM analysis using

the following settings: the resolution of the orbitrap was set to

60/120 k FWHM (at 200 m/z) and the fill time was set

to 150/250 ms to reach a target value of 3e6 ions for the

medium/low-abundance peptides. Ion isolation window was

set to 0.4 Th and the first mass was fixed to 100 Th. An MS1

scan using the same conditions as for DDA was included in

each MS cycle. Each condition was analysed in biological tripli-

cates. All raw files were imported into SKYLINE for protein/

peptide quantification. To control for variation in injected

sample amounts, the total ion chromatogram (only comprising

ions with two or more charges) of each sample was determined

using LFQ (see below) and used for normalization.

4.8. Quantitative shotgun LC – MS analysis
After five PRM LC–MS analysis, a standard DDA LC–MS

analysis of the previous sample was carried out using the

same gradient and MS parameters as described above. These

samples were also included in the subsequent label-free quanti-

fication analysis to increase the number of identified and

quantified proteins. The generated raw files were imported

into the PROGENESIS QI software (Nonlinear Dynamics

(Waters), v. 2.0) and analysed using the default parameter set-

tings. MS/MS data were exported directly from PROGENESIS QI

in mgf format and searched against a decoy database the for-

ward and reverse sequences of the predicted proteome from

Homo sapiens (download date: 4 February 2016, total of 41 158

entries) using MASCOT (v. 2.4.1). The search criteria were set

as follows: full tryptic specificity was required (cleavage after

lysine or arginine residues); three missed cleavages were

allowed; carbamidomethylation (C) was set as fixed modifi-

cation; oxidation (M) as variable modification. The mass

tolerance was set to 10 ppm for precursor ions and 0.02 Da

for fragment ions. Results from the database search were

imported into PROGENESIS QI and the final peptide measure-

ment list containing the peak areas of all identified peptides,

respectively, was exported. This list was further processed

and statically analysed using our in-house developed Safe-

Quant R script [111]. The peptide and protein false discovery

rate was set to 1% using the number of reverse hits in the data-

set. For the phosphorylation site analysis of antibody-enriched

FLAG-STIL samples (preparation see above), we carried out
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standard DDA LC–MS analyses, using the same parameters as

above, but adding phosphorylation (STY) as variable

modifications for database searching.
 .royalsocietypublishing.org
Ope
4.9. Mass spectrometry: accession codes
The proteomics data have been deposited to the ProteomeX-

change Consortium via the PRIDE [112] partner repository

with the dataset identifier PXD008272 and 10.6019/

PXD008272.
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