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Abstract: Substance-use disorder represents a frequently hidden non-communicable chronic disease. Patients 

with intravenous drug addiction are at high risk of direct exposure to a variety of viral infections and are consid-

ered to be the largest subpopulation infected with the hepatitis C virus. Ribavirin is a synthetic nucleoside analog 

that has been used as an integral component of hepatitis C therapy. However, ribavirin medication is quite often 

associated with pronounced psychiatric adverse effects. It is not well understood to what extent ribavirin per se 

contributes to changes in drug-related neurobehavioral disturbances, especially in the case of psychostimulant 

drugs, such as amphetamine. It is now well-known that repeated amphetamine usage produces psychosis in hu-

mans and behavioral sensitization in animals. On the other hand, ribavirin has an affinity for adenosine A1 recep-

tors that antagonistically modulate the activity of dopamine D1 receptors, which play a critical role in the devel-

opment of behavioral sensitization. This review will focus on the current knowledge of neurochemi-

cal/neurobiological changes that exist in the psychostimulant drug-addicted brain itself and the antipsychotic-like 

efficiency of adenosine agonists. Particular attention will be paid to the potential side effects of ribavirin therapy, 

and the opportunities and challenges related to its application in already existing psychostimulant-use disorder. 
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1. INTRODUCTION 

 The drug in use is under the continuous supervision of clini-
cians and researchers responsible for monitoring and examining its 
effects, and sometimes it can lead to the discovery of its new appli-
cations and/or side effects. An introduction of a new drug to the 
market is a prolonged and expensive process which implies its dis-
covery, development, preclinical and clinical testing, and approval 
by the national regulatory authority. Discovering new uses for an 
old drug, i.e., drug repurposing or drug repositioning, is a highly 
efficient, low-cost, and a safe approach to find new or to extend 
current therapeutic purposes of an existing drug [1, 2]. Conversely, 
detection of the side effects of a drug, once it is approved for use, 
leads to its application with great caution or even more complete 
avoidance in some conditions. 

 Ribavirin is a synthetic nucleoside analog that has been used as 
an antiviral drug for many years [3-13]. It has been revealed that 
ribavirin treatment causes side effects, such as depression, anxiety, 
psychosis, cognitive impairment, and body weight loss [14-18], 
which significantly limit or detain its application in patients with 
psychiatric disorders and/or substance abuse. Although it is typi-
cally used as an antiviral drug, it can also modulate behavioral re-
sponse induced by amphetamine (AMPH) [19-21], implying its 
possible application in counteracting psychostimulant-induced ef-
fects. These findings indicate the importance of further monitoring 
and examining the effects of ribavirin in these conditions in order to 
determine the benefits and adverse consequences of its treatment. 
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2. SUBSTANCE-USE DISORDER AS A NON-COMMU-

NICABLE CHRONIC DISEASE 

 Non-communicable diseases are chronic diseases characterized 
by long duration and slow progression. They affect people of all 
ages and are the leading cause of death worldwide. According to 
the global status report released by the World Health Organization 
[22], they were responsible for 38 million (68%) of the world’s 56 
million deaths in 2012. Unhealthy diets, physical inactivity, expo-
sure to tobacco smoke, or harmful use of alcohol are four main risks 
contributing to non-communicable diseases [23-26]. The most 
common are cardiovascular diseases such as, heart attacks and 
stroke, cancers, chronic respiratory diseases such as, chronic ob-
structive pulmonary disease and asthma, and diabetes. 

 The substance-use disorder is one of the frequently hidden and 
neglected non-communicable diseases despite causing a consider-
able health burden [27]. In many countries, it is separated from 
general healthcare with resources that are not adequate for the bur-
den. Treatment rates for people with substance-use disorders are 
low and slow, with treatment gaps of more than 90% in developing 
countries [28-30]. 

 The substance-use disorder is a medical condition related to 
repeated use of a substance that leads to severe health and social 
problems, including addiction [31]. The term “substance” refers to 
psychoactive compounds, such as nicotine, alcohol, cannabinoids, 
hallucinogens, opioids, sedatives, hypnotics or anxiolytics, as well 
as stimulants. These compounds can be legal (e.g., nicotine), illegal 
(e.g., heroin and cocaine), or prescribed for medical purposes (e.g., 
opioids), and they have one thing common that is, their use pro-
duces feelings of pleasure. Substance abuse and drug dependence 
produce significant and lasting changes in the brain chemistry and 
function [32-36]. Due to long-term and severe consequences, which 
could be caused by substance abuse, there is a generally accepted 

1873-4286/20 $65.00+.00  © 2020 Bentham Science Publishers 

http://crossmark.crossref.org/dialog/?doi=10.2174/1381612826666200115094642&domain=pdf


Critical View on the Usage of Ribavirin in Already Existing Current Pharmaceutical Design, 2020, Vol. 26, No. 4    467 

view that substance-use disorder represents a chronic disease [37]. 
As the leading cause of life with a disability, substance-use disorder 
could be one of the biggest health problems of  future. 

3. PSYCHOSTIMULANT ADDICTION 

 Stimulants are known to alleviate fatigue, increase vigilance, 
and generally increase work output [38]. It has been suggested that 
their use might be motivated, at least in part, by a desire to relieve 
behavioral and cognitive deficits [39, 40]. AMPH-type stimulants 
are the fastest rising drugs of abuse worldwide, ranking the second 
most commonly used illicit drugs after cannabis, followed by co-
caine and opiates [41, 42]. North America is the second to the East 
and Southeast Asia, in the prevalence of AMPH users with an esti-
mated 3.92 million current users in North America [42]. 

3.1. Amphetamine-A Brief Historical Overview 

 AMPH was first synthesized by a Romanian chemist named 
Lazar Edeleanu at the University of Berlin in 1887. Biochemist 
Gordon Alles re-synthesized the drug in the 1920s, subsequently 
discovering its psychoactive effects. Searching for a decongestant 
and bronchodilator as a substitute for ephedrine, Gordon Alles dis-
covered the physiological activity of beta-phenyl-isopropylamine,  
known as AMPH. Although AMPH was thought to be a human 
invention, the compound was found in 1997, along with metham-
phetamine, nicotine, and mescaline, within two species of Texas 
acacia bushes [43, 44]. 

 In the early days of scientific drug discovery, researchers rou-
tinely experimented on themselves and familiarity with a compound 
made them the best observers of its effects. On June 3, 1929, a 
twenty-seven-year-old Gordon Alles took an injection of a chemical 
he had recently created (preliminary data known from guinea pig 
tests) and his doctor friend, Hyman Miller, discovered the changes 
which included a blood pressure rise within 10 min, dry and clear 
nose, a “sense of well-being” soon after, normal blood pressure 8 h 
after taking the drug, increased talkativeness and good spirit, and a 
“rather sleepless night” [45]. Alles began sharing the drug with a 
group of doctors and researchers for experimental use and pub-
lished his first clinical results with the substance in 1930 [46]. He 
protected his intellectual property and received a patent: a 1932 
U.S. patent that declared him the inventor of amphetamine sulfate 
and amphetamine hydrochloride, recognizedhim as the discoverer 
of their medicinal values. Meanwhile, the Philadelphia firm Smith, 
Kline and French (SKF) investigated the base form of AMPH and 
patented it in 1933 as the Benzedrine Inhaler, a capped tube con-
taining 325 mg of oily AMPH base (for congestion, one was meant 
to inhale AMPH vapor every hour as needed; [47]). There was no 
legal category of prescription drugs in the 1930s, and Benzedrine 
Inhaler was advertised for sale without a prescription [48]. 

 In the early 1937, the new drug, Benzedrine sulfate, appeared in 
the form of a pill. In 1936, researchers at the University of Minne-
sota had given pills to student volunteers to evaluate any psycho-
logical effects. The participants realized they could use it to stay 
awake and study harder. In 1937, psychiatrist Charles Bradley ad-
ministered Benzedrine sulfate to “problem” children in an attempt 
to alleviate headaches and noticed an unexpected effect upon the 
behavior of the children, i.e., improved school performance, social 
interactions, and emotional responses [49]. It was noted for the first 
time that AMPHs could produce a “paradoxical” relaxing effect in 
severely disruptive, institutionalized, hyperactive boys [49], which 
paved the way for their more common medical use in the attention-
deficit/hyperactivity disorder (ADHD). The greatest experiment in 
AMPH-based enhancement came in World War II. By mid-1940, 
the British and American militaries had begun their investigations 
of Benzedrine's ability to help combat fatigue and boost the morale 
of soldiers, and a study by the British War Office discovered a simi-
lar use within the German military [50]. As concluded in this excel-
lent review article, the grounds on which armies adopted AMPH 

had less to do with the science of fatigue than with the drug's mood-
altering effects, as judged by military men - increased confidence 
and aggression, and elevated “morale.” 

 As a molecule with a single chiral center, AMPH exists in two 
optically active forms, i.e., the dextro- (or d-) and levo- (or l-) iso-
mers or enantiomers. The l-AMPH (Cydril) achieved far less atten-
tion than either the racemate (Benzedrine) or d-isomer (Dexedrine), 
although clinical trials conducted in the 1970s demonstrated that 
both isomers of AMPHs were clinically effective in treating ADHD 
[51]. Nevertheless, l-AMPH produces more cardiovascular and 
peripheral effects than the d-enantiomer. Both AMPH isomers are 
equally potent noradrenaline releasers, but d-isomer is about three-
fold more potent than l-isomer as a dopamine releaser, which points 
to dopamine as the primary neurochemical mediator of AMPH’s 
stimulant properties [51-53]. 

 By 1940, AMPH was already known to have abuse potential, 
gaining popularity among nonmedical users, as the “pep pill” in the 
United States and “the confidence drug” in Britain [50]. Benze-
drine’s ability to improve mood and relieve feelings of monotony 
made it susceptible to abuse. After World War II, much of the 
stocks got into the “black market” and in the 1950s, AMPH abuse 
became evident [51]. By 1980, most of the countries that regulate 
drug use had severely restricted the legal use of AMPHs, but the 
number of prescriptions and prescription abuse continued to grow, 
particularly in North America [54]. In the United States and interna-
tionally, AMPH is classified as a Schedule II drug - accepted medi-
cal use, but tightly monitored due to its potential for abuse that can 
lead to severe psychological and physiological dependence [54]. 
Over 95% of pharmaceutical AMPHs are either d-isomer or a mix-
ture of d- and l-isomer salts [54]. 

3.2. Amphetamine Usage and Side Effects 

 An essential fact about AMPH is its use as an antidepressant in 
the 1950s before the discovery of the tricyclic monoamine reuptake 
inhibitors. When it was noted that a side effect of Benzedrine inges-
tion was the suppression of appetite, AMPH (especially Dexedrine) 
became a wildly popular diet drug. By 1962, the Food and Drug 
Administration (FDA) estimated that 8 billion pills, or an astonish-
ing forty-three per person, were being sold annually [55]. Ras-
mussen cites evidence that approximately 2 to 3 percent of those 
prescribed the drug in the 1960s became addicted; since 10 million 
Americans had been prescribed an AMPH in 1970, this would mean 
200,000 to 300,000 addicts [48]. Importantly, in a classic study of 
that period, Connell from the Institute of Psychiatry reported a 
group of heavy AMPH users who had become paranoid [56], high-
lighting the potential psychiatric dangers related to the use of this 
drug. 

 Because of their stimulant activity within the central nervous 
system (CNS; proposed mode of action described below), AMPHs 
have been examined for the treatment of several disorders, includ-
ing ADHD (most pharmaceutical AMPH is used in the treatment of 
ADHD, [54]), daytime sleepiness associated with narcolepsy ([57]; 
AMPHs produce objective improvement in 65-85% of patients with 
narcolepsy, [58]), and obesity [59]. Although AMPHs remain 
among the most effective appetite suppressants by the 1990s, the 
United States Pharmacopoeia's resource no longer recommended 
AMPH for treatment of obesity due to the high abuse potential and 
availability of equally effective appetite-suppressants with lower 
abuse potential [54]. Furthermore, AMPHs induce euphoria, in-
crease alertness, decrease appetite and fatigue, increase heart rate, 
blood pressure, and breathing rate, constrict blood vessels, dilate 
pupils, and release glucose and lipids into the bloodstream [60]; the 
user has an intense fascination with all his thoughts and activities 
[61]. The effects may appear within 30 to 40 min and last for 4 to 8 
h depending on the formulation (immediate-release or sustained-
release formulations), route of administration (orally, snorted, 
smoked, or injected intravenously), and the dose [54, 60]. To 
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achieve the most significant pharmacological effect and immediate 
gratification/pleasure the drug must be delivered into the CNS in 
the shortest possible time, which causes drug abusers to progress 
from relatively safe methods of self-administration (i.e., oral inges-
tion) onto more dangerous routes of administration (such as intra-
venous injection). The kinetics of AMPH, when taken orally, makes 
it less rewarding (pleasurable) than cocaine or methamphetamine, 
while the intravenous use of AMPH and other stimulants, although 
more pleasurable, still poses significant safety risks to the individu-
als indulging in this practice [51]. Chronic use of AMPH-like 
stimulants can culminate in addiction (the loss of control over drug 
taking) and psychosis with tolerance and sensitization (depending 
on the dose and the interval between the drug treatments), which is 
better explained within the next subheading. Special attention was 
paid to appetite suppression (subheading 3.4.) as a reduction in 
body weight due to continuous AMPH use may lead to malnutrition 
and consequently to decreased resistance to diseases. 

 The development of tamper-deterrent AMPH formulations has 
been a substantial objective of the pharmaceutical industry to pre-
vent this type of abuse. Several new once-daily AMPH-containing 
prescription drugs with a high degree of tamper deterrence have 
emerged (e.g., Adderrall XR). Besides, lisdexamfetamine as a pro-
drug of AMPH is the next step in the reduction of brain drug con-
centration, thereby further reducing the pleasurable effects of the 
AMPH [51]. 

 Importantly, many of the behavioral effects of AMPHs that 
have been observed in humans can be demonstrated in experimental 
animals. These include arousal, hyperactivity, stereotypic per-
severative movements, psychomotor depression, cognitive impair-
ment, hallucinatory-like behaviors, and chronic self-administration 
[51, 54]. Animal studies have been crucial in understanding the 
biology and pathophysiology of drug addiction and substance abuse 
because, in contrast to clinical studies, the subject population can be 
controlled for variables more efficiently, thus better reflecting the 
ability of the drugs to control the animal's behavior [62]. Animal 
studies have demonstrated that some of the typical behaviors asso-
ciated with drug abuse in humans involve biological processes 
common to mammalian species [63]. 

3.3. The Phenomenon of Behavioral Sensitization 

 Studies from several disciplines support the concept that while 
chronic, continuous stimulation with agents acting directly (apo-
morphine) or indirectly (AMPH, cocaine) at dopaminergic recep-
tors is often associated with the development of tolerance, intermit-
tent stimulation, under some circumstances, may have the opposite 
effect and be associated with sensitization or reverse tolerance [64]. 
These findings suggest that the interval between stimuli is vital in 
determining subsequent responsiveness. In humans, it is well 
documented that the chronic use of AMPH-like stimulants elicits a 
progressive augmentation in paranoid behaviors that can culminate 
in psychosis [65]. Tolerance after continuous administration has 
been described as well, initiating increases in dosage and frequency 
of administration to achieve a specific mental state [61]. Interest-
ingly, evidence of sensitization of behavioral effects in healthy 
adults after three identical administrations of 0.25 mg/kg of AMPH 
48 h apart has been reported [66]. 

 Behavioral sensitization has been well characterized for psy-
chomotor stimulants, and refers to the progressive enhancement of 
behavioral responses to drugs following their repeated intermittent 
administration [65, 67, 68]. The development of these maintained 
behavioral adaptations parallels the progressive and sustained en-
hancement of drug-craving and psychotic behaviors displayed by 
addicts only after repeated administration [69, 70]. Increased activ-
ity of the ventral tegmental area (VTA; A10 dopamine neurons) is 
crucial for the initiation, while ventral striatal adaptations (en-
hanced sensitivity of dopamine D1 receptor, enhancement of dopa-
mine release, increased activity of Ca2+/

calmodulin-dependent pro-

tein kinase IIα (CaMKIIα, a biochemical sensor of synaptic activ-
ity)) play a role in the expression of behavioral sensitization (Fig. 1) 
[71-73]. 

 

Fig. (1). Schematic presentation of neurocircuits associated with behavioral 

sensitization and drug addiction (for details see section 3.3.). Abbreviations: 

NAc - nucleus accumbens; VTA - ventral tegmental area.

 

 The findings by Cador et al. [74] showed that AMPH action 
solely at the level of dopamine cell bodies in the VTA is necessary 
and sufficient to promote changes subserving behavioral sensitiza-
tion, which can be later revealed by an AMPH action at the level of 
dopamine terminals in the nucleus accumbens. On the contrary, the 
sole AMPH action at the level of the nucleus accumbens is not 
sufficient to promote these changes, but it is necessary to allow 
their expression. These findings argue for a complete dissociation 
of neuroanatomical substrates, which mediate the induction and 
expression of behavioral sensitization to AMPH [74]. 

 The phenomenon of behavioral sensitization provides a rea-
sonably good rationale for establishing a model of AMPH psycho-
sis (while the AMPH neurotoxicity syndrome does not). This ra-
tionale goes hand in hand with the factual knowledge that the daily 
administration of only 0.3 - 1.2 mg/kg of AMPH can lead to 
AMPH-induced psychosis in healthy subjects [67]. Overall, low 
doses of stimulants cause increased arousal, attention, and cognitive 
enhancement (an inverted U-shaped dose-effect curve); moderate 
doses can lead to feelings of euphoria and power, as well as addic-
tion and cognitive impairment; and very high doses lead to psycho-
sis and circulatory collapse [75]. The ability of low-dose AMPH 
(that does not substantially impact locomotor activity) to maintain 
wakefulness and increase alertness has long been exploited, con-
tributing to the widespread use (in the treatment of ADHD and 
narcolepsy) and abuse of these drugs [76]. For healthy, adult hu-
mans, doses in the 0.07 - 0.40 mg/kg range, can be considered to be 
those that generally produce subjective effects consistently different 
from placebo, enhance mood as assessed by a variety of scales, and 
improve performance on a variety of physical and cognitive tasks, 
without inducing dysphoric reactions or disrupting task perform-
ance in most individuals [77]. The lowest reported dose of AMPH 
that produces sensitization of vigor and euphoria in healthy adults is 
0.25 mg/kg [66]. 

 It should be noted that some findings suggest that in patients, 
the effects of low-dose AMPH administration are negligible and 
could be used to enhance recovery from motor and language defi-
cits after a stroke [78, 79]. These discoveries overall questioned 
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prolonged usage of low AMPH doses (that presumably improve 
mood) in adults, and this has been recognized as a current research 
priority, especially considering medical/prescription usage of low 
doses [54]. Much remained unclear about the mechanisms and na-
ture of the dose-response relationship between the use of AMPH 
and psychotic response [80]. 

 Locomotor sensitization gained much interest in previous work 
mainly because it is believed to be related to incentive-sensitization 
or enhanced “drug wanting” [69, 70], i.e., rats that develop locomo-
tor sensitization subsequently show enhanced self-administration of 
psychomotor stimulants [71]. The mesolimbic and mesostriatal 
dopamine pathways are involved in locomotion and stereotypy, 
respectively [81, 82] with the mesolimbic dopamine system being 
recognized as more responsive than extrapyramidal dopamine sys-
tem to repeated intermittent exposure to moderately low doses of 
AMPH (0.5 - 2 mg/kg; [83]). Previous findings that suggested me-
diation of certain forms of AMPH-induced behaviors by different 
neuronal circuits (i.e., a strong coupling between locomotion elic-
ited by low and moderate doses of AMPH and the level of meta-
bolic activity in the nucleus accumbens, as well as between stereo-
typic behavior elicited by high and moderate doses of AMPH and 
an increase in glucose utilization in the extrapyramidal system) 
should be noted as well [84]. Literature indicates that in a rodent 
model, the sensitization to the rewarding effects of AMPH could be 
produced by doses less than 1.0 mg/kg, ranging up to 10 mg/kg, 
with typical injection frequencies of one or two times daily for 1 - 2 
weeks [83]. However, although all doses of AMPH increased en-
dogenous level of striatal dopamine they differentially influence 
dopamine synthesis, i.e., high doses of AMPH (5 - 10 mg/kg) de-
creased dopamine synthesis, the dose of 3 mg/kg produces a bipha-
sic response (increase followed by decrease), while low doses (to 
2.0 mg/kg) increase dopamine accumulation in the striatum [85, 
86]. 

 The dopaminergic system of the midbrain, especially its 
mesoaccumbens pathway, which mediates the stimulatory effect of 
psychostimulants on locomotion, has been the focus of research 
dealing with the neurobiological bases of AMPH-induced behav-
ioral sensitization for a while [65, 67, 87]. Aside from AMPH-
induced dopamine release through a dopamine transporter, a more 
recent study suggests that there might be a non-dopamine trans-
porter-mediated mechanism of dopamine release [87]. This mecha-
nism is mediated through AMPH-induced pronounced, rapid and 
dose- and time-dependent increase of norepinephrine in the prefron-
tal cortex, which in turn may alter the firing pattern of dopamine 
neurons, thus affecting the temporal pattern of dopamine release in 
the nucleus accumbens [87, 88]. This effect occurs predominantly 
by reuptake blockade at lower doses and by dopamine release at 
higher ones [89]. At doses of 2.0 mg/kg and higher, as well as over 
1.75 mg/kg, AMPH significantly increases extracellular concentra-
tions of serotonin and acetylcholine, respectively [90, 91]. There-
fore, although some reports indicate that single exposure to AMPH 
(5 mg/kg) is sufficient to induce long-term behavioral, neurochemi-
cal, and neuroendocrine sensitization in rats [92], this dose of 
AMPH belongs to the high dose range that allows specific neuro-
chemical alterations, as discussed above. 

3.4. The Appetite Reduction in Response to Amphetamine  

Usage 

 The appetite reduction in response to AMPH usage is another 
essential health problem as continuous use may lead to malnutrition 
and, consequently, to decreased resistance to diseases. It has been 
reported that following the drug usage appetite for food is sup-
pressed completely [61]. Anorexigenic effects of AMPH are not 
fully understood, but there is a view that due to the drug exposure, 
food does not have reinforcing properties, and therefore, does not 
serve as an incentive for a learned behavioral compensation [93]. It 
has been shown that when rats are given repeated injections of 

AMPH in an environment containing food, they develop tolerance 
to the initial suppression of feeding; tolerance does not develop 
when they are given the same number of drug injections in the ab-
sence of food [94]. One interpretation of this finding is that rats 
given AMPH with food gradually learn to suppress stereotyped 
head movements, which interfere with feeding, while rats given the 
drug without food have neither the opportunity nor the incentive for 
such learning [95]. However, some findings pointed out that in-
creased hypophagia was not well correlated with changes in stereo-
typy and emphasized the importance of a schedule of injections in 
determining AMPH's effects [96]. Nevertheless, in humans, drug 
use could take place in complex environments that may modify the 
pharmacological and behavioral effects of drugs. So far, there is a 
substantial disagreement regarding which of AMPH’s behavioral 
effects is altered by the presence of food [93]. It has been recog-
nized that the environment can modify the responsiveness to addic-
tive drugs, and that immediate surroundings during drug-taking can 
alter the behavioral, subjective, and rewarding effects of a given 
medication, thus influencing the propensity to use the same drug 
again [97]. 

 The mechanism by which AMPH causes a loss of body weight 
has been examined in early experimental studies on dogs and hu-
mans by Harris et al. [98]. The data showed clearly that loss of 
body weight due to the administration of AMPH is associated with 
a reduction of voluntary food intake, and that the appetite (or the 
attitude toward food) returns to normal after the drug administration 
is discontinued [98]. The dose of 0.14 mg/kg was recognized as 
effective in appetite suppression in humans, and this dose (9.8 
mg/70 kg) has been used extensively in behavioral studies with 
humans, and is well tolerated [99, 100]. In humans, acute admini-
stration of AMPH in the dose range of 10 - 30 mg/70 kg decreased 
24-h caloric intake by 24 - 30% [101]. 

 The effect of AMPH on food consumption in rats has been 
observed as well [102]. Several studies showed that [3

H]AMPH 
binds to receptors in brain tissue, demonstrating the presence of 
both a low- and a high-affinity saturable stereospecific protein-
binding site for AMPH and mazindol (appetite suppressant) on 
synaptosomal membranes in the hypothalamus and corpus striatum 
[103, 104]. AMPH acts mainly by blocking the dopamine trans-
porter that inhibits the dopamine reuptake and therefore increases 
the concentration of dopamine at the synapse, but the mechanism 
underlying the anorectic response of AMPH is also attributed to its 
inhibitory effect on hypothalamic neuropeptide Y (NPY), an orexi-
genic peptide in the brain [105]. It has been shown that adult male 
Wistar rats receiving 1, 2, or 4 mg/kg AMPH at the beginning of 
the dark period (in rats, most feeding behaviors took place in the 
dark phase along with feeding behavior activation) markedly de-
crease the amount of food intake compared with the control [106]. 
These authors also showed that AMPH treatment at doses of 2 and 
4 mg/kg resulted in a significant decrease in the concentration of 
hypothalamic NPY that has a pattern of circadian rhythm, with high 
concentration appearing at the beginning of the dark phase. The 
proposed mechanism of the action of AMPH administered periph-
erally in the dose of 1 mg/kg accentuated the role of dopamine and 
norepinephrine release into the anterolateral hypothalamus as nec-
essary for the suppressive effect of the treatment on feeding behav-
ior [107]. 

 From a clinical perspective, AMPH withdrawal in humans 
could be related to increased appetite [108], and some findings 
reported an increased rate of weight gain during the 29-day with-
drawal period in AMPH-treated rats relative to saline-treated con-
trols [109]. Other studies also reported that cessation of systemic 
injection of AMPH (3 mg/kg, for 9 consecutive days) increases 
food consumption over the course of 30 days, indicating AMPH-
induced sensitization of mechanisms involved in reward motivation 
and suggesting that weight gain following drug cessation in humans 
could be due to similar mechanisms [110]. Importantly, it has also 
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been recognized that withdrawal from psychostimulants produces 
depressive-like symptoms and affects response to natural reinforces 
[111]. Experimental findings also suggest that inadequate body 
weight gain could be detected in experimental animals for up to 3 
weeks after AMPH administration [112]. 

3.5. Injection Drug Use and Infectious Diseases 

 Abuse of AMPHs administered intravenously has become a 
well-established and extensive form of drug abuse, and it has been 
suggested that the abuse potential of these drugs, when taken by the 
intravenous route, is comparable to that of heroin or cocaine [61]. 
Methamphetamine and AMPH-type stimulant use has increased in 
the United States in the last 20 years and has been recognized as a 
risk factor for hepatitis C virus (HCV) infection [113]. When 
AMPH is taken intravenously, dirty needles and unhygienic condi-
tions may damage the body and cause infections. Importantly, it has 
been accentuated in the recent studies that substance use (and psy-
chiatric disorders) is common among patients with HCV infection 
and that there has been a minimal examination of the type of sub-
stance use and impact on HCV-related outcomes in the clinical 
setting [113]. Globally, 71 million people were estimated to be 
living with HCV infection in 2015, of which 5.6 million (8%) were 
“currently” injecting drugs [114]. Also, there is a large, undeter-
mined fraction of those with chronic HCV infection that have 
stopped injecting drugs [115]. 

 Within past years, antiviral treatment of HCV has evolved from 
pegylated interferon and ribavirin to pegylated interferon and ri-
bavirin with new direct-acting antiviral (DAA) medications, to 
interferon-free DAA combinations. Some studies suggest that the 
careful treatment management among addicts treated with directly 
observed pegylated interferon alfa-2a plus self-administered ri-
bavirin sustained virologic response is comparable to that seen in 
clinical trials of non-drug users, and the rate of HCV reinfection is 
low [116]. However, it has been recognized that patients with HCV 
infection, psychiatric disorders, and/or substance abuse sometimes 
face significant barriers to antiviral treatment and may complicate 
tolerance and adherence to antiviral therapies [117]. Moreover, side 
effects of standard antiviral treatment for HCV infections have been 
recognized, and include depression, anxiety, psychosis, cognitive 
impairment, and body weight loss [14-18], which may further com-
plicate its application in HCV-infected patients with psychiatric 
disorders and/or substance abuse. 

4. THE ROLE OF ADENOSINE RECEPTORS IN  

PSYCHOSTIMULANT ADDICTION 

 Adenosine has physiological roles and is also involved in 
pathological processes such as epilepsy, neurodegenerative, and 
psychiatric disorders [118-121]. It acts as a neuromodulator in the 
CNS that fine-tunes neuronal activity and is responsible for homeo-
stasis maintenance and prevention of functional and metabolic acti-
vation. These effects of adenosine are mediated by activation of 
Gi/o-/Gq-coupled A1 and A3 or Gs/Golf-coupled A2A and A2B 
receptors [122]. Extracellular concentrations of adenosine are ap-
proximately 30 to 300 nM under physiological conditions [123, 
124] and above 1 μM in conditions of seizures, hypoxia, ischemia, 
electrical stimulation, etc. [125, 126]. They are a reflection of the 
balance between multiple mechanisms that, on the one hand, in-
crease extracellular adenosine level, and on the other hand, promote 
its uptake and metabolism. 

 So far, it is determined that adenosine A1 and A2A receptors are 
highly abundant in the mesolimbic system of the brain, especially in 
the ventral striatum and nucleus accumbens [127]. Functional ma-
nipulation with these receptors has revealed their role in the behav-
ioral effects of several addictive drugs, including reinforcement, sen-
sitization, and withdrawal, as well as the reinstatement of instrumen-
tal responding [128, 129]. Pharmacological studies showed that both 
A1 and A2A agonists inhibit acute AMPH-induced locomotion in 

intact animals and apomorphine-induced rotation in rats unilaterally 
lesioned with 6-OHDA [19, 20, 130-133]. A critical role of A1 and 
A2A receptors in the development of psychostimulant-induced be-
havioral sensitization has also been recognized [134, 135]. 

4.1. Adenosine System in Addiction and Psychosis 

 The adenosine system is the central controller of neurotransmit-
ter systems that are affected in psychostimulant addiction [128, 136, 
137]. Therefore, adenosine receptors are of particular interest in the 
development of therapeutic strategies in counteraction of psy-
chostimulant-induced effects [128]. Indeed, there is increasing evi-
dence of antagonistic interactions between dopamine and adenosine 
receptors in methamphetamine and cocaine addiction [137, 138]. 
The importance of the adenosinergic system in these effects, such 
as disturbed locomotor activity encountered in behavioral sensitiza-
tion, was definitively confirmed in experiments done on A2A re-
ceptor knockout mice. For example, Chen et al. [135] reported that 
there is a selective absence of AMPH-induced behavioral sensitiza-
tion in A2A knockout mice, thus confirming a critical role of these 
receptors in the development of psychostimulant-induced behav-
ioral sensitization. Also, some genetic experiments confirmed that 
variations among the Japanese population in the A2A adenosine 
receptor (ADORA2A) gene could be a vulnerability factor that 
increases genetic susceptibility to methamphetamine depend-
ence/psychosis, especially in females and/or in patients using only 
methamphetamine [138]. In addition to all these genetic pieces of 
evidence, scientists further confirm that the genetic blockade of 
A2A receptors induces cognitive impairments and anatomical 
changes related to psychotic symptoms in mice [139]. 

 On the other hand, there are argumentative suggestions that hypo-
function of adenosine signaling may contribute to the pathophysiol-
ogy of schizophrenia [140]. At least two adenosine depots, striatal 
and hippocampal, might be implicated in schizophrenia. However, 
the above mentioned structurally-located adenosine systems show the 
independent contributions of these two interconnected brain regions 
in the pathophysiology of schizophrenia, at least in the case of Adk 
transgenic mice [140]. It is now widely believed that the treatment of 
schizophrenia relies not only on restoring a dysregulated striatal do-
pamine and prefrontal cortex glutamate neurotransmission, but 
adenosine neurotransmission as well [141]. Standard treatments of 
schizophrenia symptoms rely on drugs that act on the restoration of 
dysregulated striatal dopamine and prefrontal cortex glutamate neuro-
transmission - these treatments are usually insufficient to fully cover 
all the disease symptomatology (i.e., negative and cognitive symp-
toms) [141]. Keeping in mind that the disruption of adenosine ho-
meostasis in the brain has many behavioral symptoms similar to 
schizophrenia, and the fact that adenosine interferes with both dopa-
minergic and glutamatergic neurotransmission, it has been postulated 
that restoring adenosine concentration within the schizophrenia-
related brain areas might have beneficial antipsychotic properties 
[141]. Also, in quinpirole sensitization-induced obsessive-compulsive 
disorder (OCD) - model in mice, the administration of an A2A an-
tagonist (istradefylline) alleviated both  the quinpirole-induced ab-
normal OCD behaviors with only short-term administration [142]. 
Therefore, successful antipsychotic strategies based on the manipula-
tion of the adenosine system of the brain will constitute a new oppor-
tunity for therapeutic intervention in psychoses such as schizophrenia 
and OCD. In this respect, targeting the high-affinity adenosine recep-
tors (A1 and A2A), and the regulatory enzyme adenosine kinase pro-
vides the rationale for further development of effective adenosine-
based antipsychotic drugs [143]. 

4.2. Adenosine A1 and A2A Receptors in the Basal Ganglia: 

Distribution and Function 

 The basal ganglia represent a substrate for the multiple actions 
of psychostimulants that, by altering dopaminergic neurotransmis-
sion within their distinct pathways, cause behavioral perturbations 
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[144]. The basal ganglia consist of several interconnected subcorti-
cal nuclei, including striatum, globus pallidus (external or lateral 
segment - GPe and internal or medial segment - GPi), subthalamic 
nucleus, and substantia nigra [145]. The central component is the 
striatum, and it is divided into dorsal and ventral sections in pri-
mates. The dorsal striatum is composed of the caudate nucleus and 
the putamen, and it is involved in controlling motor movements and 
executive functions. The ventral striatum is composed of the nu-
cleus accumbens and the olfactory tubercle, and it is responsible for 
limbic functions of reward and aversion. The striatum receives 
excitatory projections from the cortex, thalamus, and limbic areas, 
and dopaminergic projections from the mesencephalon (Fig. 2). 
Striatal outputs are primarily composed of GABAergic medium-
sized spiny neurons divided into two equally large subpopulations 
based on their projections and protein content. One subpopulation 
projects directly to the output nuclei (substantia nigra pars reticulata 
and GPi), contains substance P and dynorphin, and is a part of “di-
rect pathway.” Another subpopulation projects indirectly to the 
output nuclei via GPe and the subthalamic nucleus contains 
enkephalin and is a part of the “indirect pathway.” The direct path-
way projection neurons primarily express dopamine D1 receptors, 
while those of the indirect pathway mostly express dopamine D2 
receptors. The nigrostriatal and mesolimbic dopaminergic pathways 
represent the major feedback systems within the basal ganglia, and 
dopamine plays a vital role in the coordination and regulation of the 
two major output pathways [146]. The most acceptable model of 
the basal ganglia assumes that the direct and indirect paths have an 
inhibitory and excitatory effect, respectively, on the neuronal activ-
ity of the output structures that tonically inhibit motor activity 
[145]. In this model, dopamine inhibits the indirect pathway acting 
on D2 receptors and stimulates direct pathway acting on D1 recep-
tors, resulting in activation of motor behavior. 

 

Fig. (2). Schematic presentation of the major afferent/efferent projections of 

the basal ganglia and distribution of adenosine (A) and dopamine (D) recep-

tors (for details see section 4.2.). Abbreviations: GPe - external segment of 

the globus pallidus; GPi - internal segment of the globus pallidus; STN - 

Subthalamic nucleus; SNr - Substantia nigra pars reticulata; SNc - Substan-

tia nigra pars compacta.

 

 Adenosine A1 receptors are found pre- and postsynaptically 
[122, 147] in the striatum, globus pallidus, substantia nigra, and 
nucleus accumbens [147, 148]. Activated by nM concentrations of 
extracellular adenosine present under physiological conditions [123, 
124], they reduce adenylyl cyclase activity and cyclic adenosine 
monophosphate (cAMP) production, inactivate Q-, P-, and N-type 
voltage-gated Ca

2+
 channels, and stimulate K

+ 
conductance and 

phosphoinositide metabolism [122, 149, 150] leading to strong 
inhibition of synaptic transmission. The presence of A1 receptors 
was confirmed on corticostriatal, thalamostriatal, and nigrostriatal 
afferents, where they are involved in the depression of glutamater-
gic and dopaminergic neurotransmission [151-153]. Besides, A1 
receptors are co-expressed with D1 receptors on striatonigral-
striatoentopenduncular neurons, and their stimulation reduces D1 
receptor-mediated GABAergic neurotransmission [154, 155]. 

 Adenosine A2A receptors, located pre- and postsynaptically 
predominantly in dopamine-rich brain regions including striatum, 
olfactory tubercle, and nucleus accumbens [156, 157], are tonically 
activated by endogenous adenosine [158]. Stimulation of A2A re-
ceptors increases adenylyl cyclase activity leading to an increase in 
cAMP level and activation of cAMP-dependent protein kinase, 
which then phosphorylates and activates numerous receptors, ion 
channels, phosphodiesterases, and phosphoproteins such as CREB 
(cAMP response element-binding protein) and DARPP-32 (dopa-
mine and cAMP-regulated phosphoprotein) [157]. Unlike A1 recep-
tors, activation of A2A receptors potentiates P/Q type Ca

2+
 currents 

[159, 160], resulting in increased synaptic transmission. In the stria-
tum, A2A receptors are co-expressed with D2 receptors on 
GABA/enkephalin striatopallidal neurons, and their activation inter-
feres with effects mediated by D1 receptors [157]. 

 Adenosine A1 and A2 receptors fulfill important neuromodula-
tory and homeostatic functions by interacting with dopamine and 
other neurotransmitters in the brain, which are responsible for mo-
tor, emotion, learning, and memory function. A1 receptors play a 
crucial role in neuroprotection since they decrease glutamate re-
lease and hyperpolarize neurons in various pathological conditions 
[118-121]. Not only can the use of A1 agonists and antagonists aid 
in brain neuroprotection, but coupling A2A antagonists with activa-
tion of A1 receptors might also constitute the more robust neuro-
protective strategy based on the adenosine neuromodulatory system 
[161]. Indeed, balanced activation of inhibitory A1 receptors im-
poses a tonic brake on excitatory transmission, whereas facilitatory 
A2A receptors activation selectively engages in promoting synaptic 
plasticity phenomena [162]. Thus, A1 receptors mostly act as a 
hurdle in the temporal vicinity of brain insults which need to be 
surmounted in order for neurodegeneration to begin [162]. In con-
trast, the blockade of A2 receptors alleviates the long-term burden 
of brain disorders in different neurodegenerative conditions and 
also seems to afford benefits in some psychiatric conditions [162]. 

 It is now widely recognized that critical changes in adenosiner-
gic neurotransmission occur within aged brain structures, including 
the striatum, hippocampus, and cortex [163-168]. An earlier paper 
by Cunha et al. [164] suggested that there are age-related and struc-
turally specific changes in the balance between inhibitory A1- and 
excitatory A2A-adenosine receptor-mediated actions. Indeed, these 
authors noticed that in the cortex and hippocampus, the balance 
might be shifted towards adenosine-mediated excitatory actions, 
since there is an increase in the number of A2A receptors and a 
decrease in the number of A1 receptors upon aging. In contrast, in 
the striatum, the A1/A2A ratio might be only slightly affected in an 
aged brain. Others reported that in aged animals, the motor inhibi-
tory adenosinergic tone seems to be increased compared to young 
animals [165]. More recent studies based on the use of positron 
emission tomography (PET) neuroimaging technique revealed the 
decreased density of extra-striatal A1 receptors in the cortex and 
thalamus of patients with Alzheimer's disease [167-169]. Using the 
same technique, Mishina et al. [170] described a decrease in A1 
receptors in the human striatum, which correlates with the age-
related declines in D1 and D2 receptors, and lack of changes in the 
distribution of A2 receptors in the function of aging. 

4.3. Adenosine/Dopamine Interactions 

 Adenosine has an essential role in the modulation of dopa-
minergic activity acting through adenosine receptors - A1 receptors 
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co-localize with dopamine D1 receptors, and A2A receptors with 
dopamine D2 receptors in heteromeric complexes [171, 172]. So 
far, the interaction of adenosine and dopamine receptors has been 
experimentally confirmed in the striatum [132, 154, 158], globus 
pallidus [173], limbic structures [174], and substantia nigra pars 
reticulata [175]. Direct intramembrane A1/D1 and A2A/D2 recep-
tor heteromerization may alter the affinity as well as the G protein 
coupling and thus the transmembrane signal pathways [171, 172]. 
Generally speaking, adenosine/dopamine interactions at the behav-
ioral level probably reflect those found at the molecular level of 
receptor binding and signal transduction [172]. A1 and D1 recep-
tors interact antagonistically, which is vital data for attempts to 
pharmacologically modulate disorders associated with excessive 
release of dopamine from intracellular depots. Indeed, negative 
modulation of post-synaptic dopaminergic transmission, which is a 
desirable process in case of drug-overuse, can probably be ex-
plained by antagonistic interactions between A1/D1 receptors both 
at the level of binding and the second messengers [129, 136]. The 
interaction between A1/D1 and A2A/D2 receptors is enhanced in 
the striatum of the dopamine deficient “weaver” mutation, which 
serves as a mouse genetic model of Parkinson's disease [176]. All 
these above discussed studies suggest that adenosinergic system 
modulates both hyper- and hypoactivity of the dopaminergic system 
of the brain, and thus motor and non-motor aspects of the organiza-
tion and realization of behavioral patterns. 

4.4. Approaches to Studying Psychostimulant-Induced  

Behavior 

 Response to novelty is very complex, and it reflects a desire to 
explore novelty, novelty-related anxiety, and, regarding the time-
dependent profile of the activity, adaptability to the specific envi-
ronment [177]. Exploration of novel environments enhances brain 
plasticity and promotes learning [178]. Novelty co-activates the 
hippocampus [179] and the substantia nigra/ventral tegmental area 
(SN/VTA) dopaminergic circuits; through a back-projection to the 
hippocampus dopamine enhances hippocampal synaptic plasticity 
for novel events and has a motivationally energizing effect, i.e., 
improves motivation through striatal mechanisms (reward process-
ing and representation in the striatum [180-182]). Thus, although it 
may sound like easy/incidental, the dynamic of psychomotor re-
sponse to the novel environment should not be underestimated, 
especially considering subjects with already existing complex 
changes in dopaminergic reward circuits due to repeated psy-
chostimulant usage (mentioned in 3.3.). New findings indicate that 
psychomotor activity observation may serve as a potential objective 
tool capable of monitoring the course of affective states in everyday 
life [183]. 

 In neurologically intact rats, which represent the biomedical 
species of choice for testing drug efficacy, dosage and toxicology 
for preclinical research having enhanced cognitive abilities and a 
rich social repertoire paired with neural complexity [184], the lo-
comotor and vertical activities reflect exploratory activity and are 
also used as an index of psychomotor activation after exposure to 
low doses of psychostimulant drugs [185]. Rearing or vertical activ-
ity is a useful marker of environmental novelty and one of the sev-
eral ethological measures that can be used to assess information-
gathering (and escape) behavior [186]. Stereotypy is typically de-
fined as abnormal, repetitive, and purposeless motor behavior using 
either frequency-of-occurrence tables, derived from behavioral 
checklists or interruption of photo beams in a test chamber [187]. 
The elevated plus maze (EPM) test represents one of the most 
widely used tests for the study of anxiety-related (approach-
avoidance) behavior in rodents and has been recently introduced as 
the first ecologically valid assay to track actual human approach-
avoidance behavior under laboratory conditions [188]. In this test, 
anxiety is typically measured by indices of open-arm avoidance and 
general locomotor activity by the frequency of closed-arm entries 
[189]. In addition to classical parameters measured in the EPM, 

there are ethological measures (with the accent on stretched-attend 
postures that reflect approach-avoidance conflict), which permit 
comprehensive reporting of animal behavior in the maze, thereby 
proving valuable facts about anxiolytic or anxiogenic action of 
specific pharmacological treatments. Thus, changes in parameters 
of motor and approach-avoidance behavior in rodents tested in par-
ticular behavioral paradigms could give essential data about the 
subjective experience of the testing environment, as well as about 
existing drug-induced changes in the subjective perception of en-
hancement, threat, and risk. For example, considering that both 
drug-induced locomotor sensitization and reactivity to novelty in 
rodents have been related to drug-craving mechanisms in humans, it 
has been shown that a complex and plastic interaction between the 
anxiogenic and motivational properties of both novelty and AMPH 
can modify the behavioral expression of craving-related mecha-
nisms [190]. 

 Psychostimulant-induced behavioral sensitization can lead to 
supersensitivity and upregulation of D1 receptors in the nucleus 
accumbens, and substantia nigra pars reticulata after an abstinence 
period of 24 h to a few weeks [191-193]. Adenosine A1 receptors 
modulate the release of various neurotransmitters such as dopa-
mine, glutamate, GABA, and acetylcholine [122]. Nevertheless, the 
release of dopamine and glutamate in the striatum is under the in-
hibitory control of A1 receptors, and in particular, this endogenous 
A1 receptor-mediated tonic inhibition can be observed in the ven-
tral striatum (nucleus accumbens) [194, 195]. The blockade of this 
tonic inhibition leads to increased dopamine and glutamate release, 
while stimulation decreases the level of these neurotransmitters in 
the striatum [195]. At first glance, it was suggested that A1 recep-
tor-mediated inhibition of dopamine release in the striatum is sec-
ondary, i.e., glutamate-dependent, but it was proven that it is also 
glutamate-independent [195]. It likely depends on the activation of 
dopamine D1 receptors [196]. Importantly, it has been shown that 
the selective activation of central Al adenosine receptors induces 
anxiolytic-like behavior, while the activation of A2 sites causes 
locomotor depression and reduces the effects of Al receptor activa-
tion [197]. As Al receptors are widely distributed throughout the 
CNS, including presynaptic terminals where they mediate a potent 
inhibition of the release of a variety of neurotransmitters (gluta-
mate, acetylcholine, 5-hydroxytryptamine) and some peptides, it 
has been proposed that an inhibition of release of these endogenous 
agonists is responsible for Al receptor-mediated anxiolysis, raising 
the possibility of developing CNS selective purine receptor agonists 
as novel anxiolytic drugs [197]. 

 Exposure to novelty activates, at least in part, the same neuronal 
substrate that mediates the rewarding effects of drugs of abuse [198, 
199]. Novelty-induced motor activity strongly depends on excita-
tory glutamatergic inputs to the VTA and consequential elevation of 
mesolimbic dopaminergic transmission. It has been documented 
that stimulation of A1 receptor activity in the VTA negatively in-
fluenced motor activation [200]. It has also been shown, using an 
open field test, that novelty-induced locomotor activity is blocked 
by microinjection of dopamine antagonists directly into the nucleus 
accumbens [201]. At this point, A1 receptor desensitization as a 
consequence of repeated or chronic exposure to agonist [202, 203] 
should not be forgotten. It can significantly affect the outcome of 
the treatment, i.e., chronic therapy with A1 agents can result in the 
effects that are opposed to those observed following their acute 
administration [204-206]. 

5. RIBAVIRIN: AN ADENOSINE AGONIST WITH STILL 

ELUSIVE MECHANISM(S) OF ACTION 

 Ribavirin (1-β-D-ribofuranosyl-1,2,4-triazole-3-carboxamide; 
C8H12N4O5) was first discovered and developed in 1970 by chem-
ists Joseph T. Witkowski and Roland K. Robins from the Interna-
tional Chemical and Nuclear Corporation (ICN) [207] and approved 
for medical use in 1985. It is a synthetic nucleoside analog with a 
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broad-spectrum antiviral activity against different human and ani-
mal viruses including HCV, respiratory syncytial virus (RSV), viral 
hemorrhagic fever (VHF), influenza, bornavirus, measles, adenovi-
rus, subacute sclerosing panencephalitis (SSPE), human immunode-
ficiency virus (HIV), etc. [3-13]. Ribavirin has also been reported to 
possess antiparasitic activity by affecting the metabolism of Try-
panosoma sp., Plasmodium sp., etc. [208, 209]. The beginning of 
the 21

st
 century marked a shift in interest from the study of antiviral 

activity of ribavirin to its application in fundamental and clinical 
neuroscience. These studies are focused on deciphering how ri-
bavirin affects the adaptive functioning of the dysregulated neurons, 
astrocytes, and microglia. Accordingly, the research related to the 
CNS virus infections [7], traumatic brain injury [210], experimental 
autoimmune encephalomyelitis [211, 212] and AMPH-induced 
locomotor and stereotypic activities [19-21] is one of the most 
prominent attempts to elucidate the potential therapeutic use of 
ribavirin in treating  CNS disorders. Moreover, some studies sug-
gest that ribavirin may be used as an antitumor drug because of 
observed dose-dependent and cell line-dependent inhibition of can-
cer cell growth [213]. So far, the antitumor potential of ribavirin 
alone or in combination with interferon alfa has been explored 
through several research and clinical trials, in multiple cancers in-
cluding acute myeloid leukemia, oropharyngeal squamous cell car-
cinoma, metastatic breast cancer, glioblastoma, human renal carci-
noma, pediatric osteosarcoma, etc. [214-218]. 

5.1. Mechanism(s) of Ribavirin Action 

 Ribavirin is a prodrug that, after the administration, undergoes 
successive intracellular phosphorylation to monophosphate, 
diphosphate, and triphosphate anabolites [219]. The exact mecha-
nism by which ribavirin exerts its antiviral activity is unclear and 
still under intensive research. In general, it may differ depending on 
the cell and tissue type, as well as in vitro and in vivo experimental 
conditions. Beaucourt and Vignuzzi [11] nicely summarized the 
current knowledge of molecular and cellular mechanisms of ri-
bavirin antiviral action. Accordingly, (1) the inhibition of inosine 
monophosphate dehydrogenase (IMPDH) by ribavirin-5'-
monophosphate and (2) immunomodulatory effects on antiviral 
cellular responses (enhancing the T-helper type 1 over type 2 re-
sponses or upregulating the interferon-stimulated response element) 
are two main indirect ways of to combat viral infections by ri-
bavirin. The direct mechanisms include (1) the inhibition of the 
viral RNA-dependent RNA polymerase (RdRp) through direct in-
teraction with ribavirin-5'-triphosphate; (2) interference with RNA 
capping activity, and (3) increase of viral mutation rates through the 
misincorporation of ribavirin into the genome. Identification of a 
growing number of ribavirin-resistant and sensitive viruses implies 
the specific mechanisms of its action against different virus infec-
tions. Ribavirin is a multi-target drug that greatly contributes to its 
antiviral effectiveness. In addition to the commonly adopted inhibi-
tion of viral replication, it also affects the viral genome. The 
mutagenic activity of ribavirin may induce erroneous viral replica-
tion causing inhibition of virus growth or enhance the selection and 
survival of mutant viruses that may lead to the inefficacy of ri-
bavirin treatment [220]. Therefore, via immunomodulation, deple-
tion of guanozine-5'-trifosfat (GTP) pools, modulation of inter-
feron-stimulated gene expression, interference with viral methyl-
transferase activity, direct inhibition of the viral polymerase, and 
inhibition of eukaryotic initiation factor 4E interfering with cap-
dependent translation, ribavirin can lead to lethal mutagenesis with 
potentially favorable as well as unfavorable therapeutic conse-
quences [220-222]. 

 The antiparasitic activity of ribavirin probably involves the 
inhibition of time-dependent inactivation of the human S-adenosyl-
L-homocysteine hydrolase (Hs-SAHH) and Trypanosoma cruzi S-
adenosyl-L-homocysteine hydrolase (Tc-SAHH), enzymes that 
catalyze the conversion of S-adenosyl-L-homocysteine to adenosine 
and homocysteine [208]. Due to  structural similarity to adenosine, 

ribavirin binds to the adenosine-binding site of the two SAHHs and 
reduces the NAD

+
 cofactor to NADH [208]. 

 As a nucleoside analog, ribavirin shows a moderate affinity for 
adenosine A1 receptors [223]. These receptors are expressed 
throughout the body, particularly in the brain, and their stimulation 
through Gi/o proteins leading to inhibition of adenylyl cyclase, 
reduction of Ca

2+
 entry, and activation of phospholipase C and K

+
 

channels [122, 149, 150]. Thus, many physiologically- and clini-
cally-relevant effects of ribavirin on different aspects of animal and 
human physiology, such as nociception, neuroinflammation, and 
behavior [20, 210, 212, 224], are probably the result of A1 recep-
tors activation in different regions of the brain. 

5.2. A Story of Ribavirin Dosage and Route of Administration 

 Ever since ribavirin was introduced as an antiviral drug, the 
search for optimal doses, route of administration, combination with 
other medications, side effects, the emergence of ribavirin resistant 
variants of viruses, the role of transmembrane transporters and car-
riers in its uptake, occupies an essential place in clinical pharma-
cology of ribavirin [8, 11, 225-228]. The dosage and route of ad-
ministration of this drug are specific for certain types of viruses, the 
severity of infection, and also depending on the viral genotype [3, 
4, 10, 225, 229-231]. 

 Ribavirin is quite often combined and used with other antiviral 
drugs. For instance, ribavirin monotherapy is not efficacious against 
chronic HCV, and it usually requires a combination with interferon 
[10, 225, 232]. The doses of ribavirin and its successful combina-
tion with interferon are highly dependent on the HCV genotype. It 
has been shown that HCV genotype 2- and 3-infected patients re-
quire 24 weeks of treatment and a low dose of ribavirin, i.e., 800 
mg daily, while HCV genotype 1-, 4-, 5-, and 6-infected patients 
require 48 weeks of treatment and a higher, body weight-based dose 
of ribavirin, i.e., 1000-1400 mg daily [232]. In patients who can 
tolerate ribavirin without significant side effects, cumulative ri-
bavirin exposure and its optimal concentrations are essential for the 
success of therapy [10]. Therefore, the optimization of ribavirin 
dose and duration of treatment ensure the highest chance for a du-
rable response to the therapy. In contrast to HCV infection, lower 
doses of ribavirin, alone or combined with other drugs, are required 
to treat Chikungunya virus infection. It has been reported that the 
oral doses of ribavirin (400 mg daily for 7 days) have a direct anti-
viral effect against Chikungunya arthritis caused by a viral infection 
[229]. 

 The treatment of HCV based on the combined use of ribavirin 
and pegylated interferon, such as pegylated interferon alfa-2a and 
pegylated interferon alfa-2b, which has been validated in large-
scale studies and clinical practice, may remain an essential element 
of therapy [10, 221, 225, 232]. Even more so, triple therapy consist-
ing of DAA plus pegylated interferon/ribavirin is quite effective in 
treating difficult-to-cure patients infected with HCV genotype 3 or 
with resistance-associated variants [233]. Three classes DAAs with 
a significant number of developed drugs such as HCV NS3 protease 
inhibitor telaprevir or boceprevir are now used solely or combined 
with ribavirin and pegylated interferon in the treatment of HCV 
infections [221, 233, 234]. The combinations of different DAAs 
could be the holy grail of HCV therapy, as some researchers sug-
gest that they have the potential to cure HCV infection completely 
[221]. Ribavirin and interferon alfa may also exert a strong syner-
gistic antiviral effect against Chikungunya virus infection [235, 
236]. In vitro studies on Chikungunya virus-infected human cell 
lines (Vero, HUH-7, and A549 cells) demonstrated cell-line sensi-
tivity to ribavirin, interferon alfa, and favipiravir drugs. While ri-
bavirin was effective in the fight against Chikungunya virus-
infected HUH-7 cells, the treatment with interferon alfa and favipi-
ravir has led to substantial reductions in viral burden in clinically 
achievable concentrations in A549 and Vero lines [237]. Some 
recent studies reported that antibiotic doxycycline and mefenamic 
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acid, a non-steroidal anti-inflammatory drug, when combined with 
ribavirin, alleviate Chikungunya infection symptoms [238, 239]. 

 In animals and humans, ribavirin is given orally, nasally, intra-
venously, intraventricularly, and intraperitoneally [9, 19-21, 229, 
240-242]. Ribavirin, as an aerosol, was the first specific therapy 
available for RSV infections [240]. Aerosolized ribavirin is very 
costly, teratogenic, and inconvenient [12]. Instead of using nasal 
aerosol treatment of RSV, clinicians today are looking toward the 
promising oral use of ribavirin even in immunocompromised pa-
tients. Therefore, it seems that oral ribavirin (600-800 mg twice 
daily with or without intravenous immunoglobulin) is a well-
tolerated treatment for RSV infection in moderately to severely 
immunocompromised patients [12]. Although some studies did not 
reach any consensus regarding the effective use of oral versus in-
haled ribavirin [243], still oral ribavirin appears to be a safe and 
cost-effective alternative to aerosolized ribavirin for the treatment 
of RSV infection in immunocompromised patients [244]. Unlike 
oral and aerosol formulations, the intravenous administration of 
ribavirin does not have US FDA approval [245]. There are excep-
tions to these regulations as intravenous ribavirin can, however, be 
authorized for use as a result of an Emergency Investigational New 
Drug (EIND) application for patients with acute viral infections, 
including rare infections for which no alternative treatment is avail-
able. So, the oral intake is the main route of administration of ri-
bavirin in case of VHF [246, 247], but there are case reports that the 
intravenous ribavirin was effective in a few patients with Bolivian 
hemorrhagic fever [248]. 

5.3. Side Effects of Ribavirin Therapy 

 Adequate exposure to ribavirin seems crucial for achieving the 
best virological response. However, long-term treatment with the 
combination of interferon and ribavirin aside from systemic side 
effects, such as anemia and body weight loss [16, 232] is associated 
with pronounced neuropsychiatric problems including fatigue, 
mood disorders, anxiety, irritability, emotional ability, and agitation 
[228, 249, 250]. The exact contribution of each component of com-
bined therapy to the mentioned side effects has not been elucidated, 
but there is a view that they are mainly related to interferon-alpha 
[14, 251-255]. 

 Ribavirin mainly shows toxicity at a relatively low concentra-
tion (250 to 400 μg/g) [5]. Furthermore, SSPE was treated safely 
and effectively with a high dose of intravenous ribavirin combined 
with intraventricular interferon [241], and by intraventricular ad-
ministration of ribavirin [9]. Tomoda et al. [241] reported that high 
doses and long-term ribavirin treatment improved the neurologic 
states of patients, but neurologic deterioration was observed a few 
months after the high-dose intravenous ribavirin therapy was 
stopped. Because of systemic toxicity, these authors reported that 
they could not proceed with further intravenous treatment. So as 
part of their later study or the clinical intervention, Hosoya et al. [9] 
administered ribavirin intraventricularly and observed a less pro-
nounced neurologic and systemic side effects of ribavirin treatment 
in these patients. 

 Some of the side effects of ribavirin could be avoided by its 
structural modification. It has been shown that the l-enantiomer of 
ribavirin (ICN 17261) shows reduced toxicity but antiviral efficacy 
compared to d-nucleoside ribavirin [256]. The other option is ri-
bavirin dose modification or dose adjustment. However, the critical 
question is how to modify the dose of ribavirin in such a way that 
the effectiveness of the therapy is not compromised while the side 
effects are reduced. One way to counter anemia symptoms and to 
avoid ribavirin dose reduction is to tilt the hormonal balance toward 
the production of red blood cells. Indeed, some studies have proved 
that erythropoietin can improve hemoglobin values and maintain 
ribavirin dosage levels [257, 258]. In addition, the absence of side 
effects and improvement of patients' quality of life without ribavirin 

dosage reduction could be achieved by using hematopoietic growth 
factors such as epoetin alfa and darbepoetin alfa [259]. 

5.4. Ribavirin and the Brain 

 In the treatment of brain and non-brain viral infections, a par-
ticular challenge is how to distribute ribavirin to the brain effec-
tively, given the difficulties of its transporting through the cell 
membranes and blood-brain barrier [226]. Indeed, the in vivo 
efficacy of ribavirin towards the cerebral viral load seems to be 
limited by the selective permeability of the blood-brain barrier 
[230]. Ribavirin uptake is restricted primarily by concentrative 
nucleotide transporters (CNTs) and equilibrative nucleotide trans-
porters 1 and 2 (ENT1 and ENT2) in various cell lines [226, 260]. 
ENT1 protein expression is the highest in structures, such as the 
adrenal gland, ovary, stomach, small intestine, and colon, while 
ENT2 protein expression is the highest in neurological tissues, heart 
muscle, pancreas, etc. [261]. A significant difference between these 
ENTs and CNTs is their sodium dependence [262]. While CNTs are 
characterized as sodium-dependent with high affinity for nucleo-
sides, thus far, the lower affinity ENTs facilitate bidirectional, so-
dium-independent transport of nucleosides [261, 262]. 

 Ribavirin, as other antiviral drugs, often shows dramatic 
difficulties in entering the brain compartments from the blood-
stream. The main reason for this long-lasting problem of antiviral 
pharmacology is that ribavirin and other antiviral drugs are sub-
strates for active efflux transporters (AETs) located in the physio-
logical barriers between blood and the CNS and in macrophage 
membranes, which actively efflux them into the bloodstream [263]. 
The attempts to counter this problem are extensively studied. One 
way is to apply AETs inhibitors, but the co-administration of AETs 
with antiviral drugs leads to severe side effects [263]. The other 
way to solve this problem is by using potent drug carriers and inno-
vative technological formulations such as thermoreversible gels, 
polymeric micro- and nano-particles, solid lipid microparticles, 
nanoemulsions, absorption enhancers (chitosan, papaverine), and 
mucoadhesive agents (chitosan, polyvinylpyrrolidone) [263]. For 
example, Jeulin et al. [264] demonstrated that whatever the tested 
dose (intraperitoneal 40 or 100 mg/kg), the amount of ribavirin in 
the brain was significantly higher when the drug was injected as a 
complex with alpha-cyclodextrin, in healthy or measles virus-
infected mice. 

 Despite the difficulties of ribavirin transport through the blood-
brain barrier, there is evidence that it still enters the brain. Ribavirin 
was detected in different brain regions including cerebellum, olfac-
tory bulb, cerebral cortex, basal ganglia, and hippocampus 20 min 
after intravenous or nasal application at a dose of 10 mg/kg [230], 
and reached the maximum concentration in the brain at 8 h after a 
single intramuscular injection of the same dose [265]. The brain 
bioavailability of ribavirin largely depends on its excretion from the 
body. It has been shown that 82% of intramuscularly administered 
ribavirin at a dose of 10 mg/kg was excreted in the urine of rats 
within 24 h [265], while the total radioactivity in the urine of rats 
treated intravenously with [

14
C] ribavirin at a dose of 30 mg/kg 

encompassed 84% of the initial dose [266]. 

6. POTENTIAL EFFECTIVENESS OF RIBAVIRIN AS AN 
A1 AGONIST IN PSYCHOMOTOR-USE DISORDER 

 Many A1 receptor-mediated effects, observed to a lesser extent 
or absent under physiological conditions, are markedly increased 
during pathological conditions, and in that context, they are neuro-
protective [20, 118, 267-269]. The specificities in the distribution of 
A1 receptors and their role in maintaining homeostasis and prevent-
ing overactivation in the brain could explain this observation. These 
receptors are widely expressed pre- and postsynaptically throughout 
the brain [147, 148], and are involved in the reduction of neuro-
transmitter release and the modulation of synaptic transmission 
[122]. The inhibitory effect of adenosine mediated by A1 receptors 
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is the most prominent on excitatory synaptic transmission (glutama-
tergic) that is very often completely blocked, while it is less fre-
quent on inhibitory synaptic transmission (GABAergic) [118, 270, 
271]. By differentially affecting the excitatory and inhibitory synap-
tic transmission, adenosine changes the excitation-inhibition bal-
ance and causes an overall shift to lower excitability in different 
brain regions [270, 271]. Also, it has been shown that A1 receptors 
interact antagonistically with D1 receptors [171, 272-274]. This 
finding imposes the need for examining the influence of A1 recep-
tors activation on dopamine-mediated processes in the brain and 
offers a reasonable basis for designing new substances for the 
treatment of diseases associated with disturbed dopaminergic neu-
rotransmission. Even though targeting adenosine in some patho-
logical states appears attractive and rational, the fact that the same 
receptors play essential roles in normal or extreme physiology pro-
vides a cautionary note [120]. Also, a problem that may arise from 
the therapeutic use of A1 agonists, especially in the case of chronic 
dosing, is receptor desensitization, which can progressively reduce 
the effectiveness of treatment with repeated substance administra-
tion [202, 203].  

 Studies dealing with the effects of ribavirin as an A1 agonist on 
dopaminergic neurotransmission in the brain are scarce. So, it has 
been shown that ribavirin applied intraperitoneally (i.p.) at doses of 
10, 20 or 30 mg/kg did not significantly affect either basal locomo-
tor or stereotypic activities, while pretreatment with doses of 20 and 
30 mg/kg significantly decreased only AMPH (1.5 mg/kg, i.p.) - 
induced hyperlocomotor response [20]. The obtained results re-
vealed the ability of ribavirin to pass the blood-brain barrier, enter 
the brain, and modify synaptic transmission, especially in condi-
tions when it is disrupted. The existence of regional differences in 
sensitivity to ribavirin was attributed to its unequal distribution, 
heterogeneous expression of A1 receptors, and/or differences in the 
intensity of A1-D1 receptor-receptor interaction in subregions of 
the basal ganglia. In our recent work (in drug-naive rats), it has 
been shown that 7-day ribavirin treatment (10 and 30 mg/kg/day, 
i.p.), in addition to a decrease in novelty-induced motor activity, 
also produced a significant reduction in body weight gain in treated 
animals compared to controls [21]. We explained these findings by 
the ability of 7-day ribavirin treatment to provoke peculiar changes 
in the regulation of midbrain dopaminergic system activity, thus 
influencing/diminishing physiological (novelty-induced motor ac-
tivity and food-directed behavior) responses that depend on it. 
Briefly, the regulated release of dopamine is essential for sustained 
feeding [275], and consumption of food is related to dopamine 
transmission in several regions of the striatum (in the caudate pu-
tamen for response to the caloric value of food and regular feeding, 
in the nucleus accumbens for the rewarding aspect of feeding) 
[276]. The A1 receptors, which antagonistically modulate the activ-
ity of dopamine D1 receptors [171, 272-274], are highly abundant 
in the mesolimbic system of the brain, especially in the ventral 
striatum and nucleus accumbens [277] and their overactivity pro-
duces hypophagia [278]. Given the affinity of ribavirin for A1 re-
ceptors [223], the physiological/neurobiological consequences of 
prolonged ribavirin administration could largely depend on previ-
ous drug exposure. 

 In the material discussed above, we considered some aspects of 
ribavirin action and its potential application in conditions of dis-
turbed dopaminergic neurotransmission, but still there are many 
questions about the benefits and side effects of its treatment. One of 
the challenging domains is the detection of ribavirin in the brain 
tissue. Although several methods have been described for ribavirin 
determination in plasma [279, 280], its detection in the brain seems 
to be more complicated. Free ribavirin concentration in mice brain 
was measured by Jeulin et al. [264], but recently a specific method 
for ribavirin determination in brain tissues by liquid chromatogra-
phy-tandem mass spectrometry (LC-MS/MS) has been developed 
and deemed satisfactory in terms of selectivity, sensitivity, and 

accuracy [281]. Overall, these findings indicate that the combined 
work of scientists from different disciplines is essential to fully 
define the correlation between physiological consequences of ri-
bavirin usage and actual drug concentration at the time of testing. 
Implementation of the model by age, gender, and the baseline fea-
tures of metabolic activities of the examined model systems should 
be considered as well. 

CONCLUSION AND FUTURE PERSPECTIVES 

 This multifaceted review tried to accentuate complex neuro-
chemical/neurobiological changes that may appear in the drug-
addicted brain per se and after the usage of ribavirin, a nucleoside 
analog with a moderate affinity for adenosine A1 receptors. Ri-
bavirin has been used as an antiviral agent for several decades, 
continuing to be a critical antiviral agent in treating HCV for which 
substance abusers are at higher risk. Numerous patients who start 
antiviral therapy for HCV do not perform it through the entire 
course of treatment because of the side effects that are not insignifi-
cant. Moreover, these side effects are still mostly unexplored on 
account of already existing changes in the brain due to previous 
drug usage. Specific neurobehavioral states related to psychostimu-
lant misuse in patients with HCV infection may complicate accep-
tance and reaction to the antiviral treatment. This issue is, overall, 
highly delicate. It should be mentioned that throughout contempo-
rary history, it has been suggested that antiviral therapy for HCV 
should not be conducted in those with recent and current drug us-
age, although people who inject drugs represent a key HCV-
affected population, which was excellently summarized by Grebely 
et al. [282] who strongly recommended that there is no good ethical 
or health-based evidence for such discriminations.  

 The conceptualization of addiction as a brain disease reflects in 
part findings from brain imaging studies and preclinical research 
that have identified the brain circuits that are disrupted by the 
drugs. It should be noted that the treatment of psychostimulant ad-
diction remains a significant problem worldwide and a big chal-
lenge because there are no corresponding forms of pharmacological 
interventions that have met the criteria for regulatory approval or 
generally accepted use [283]. Recovery in psychostimulant drug-
dependent individuals is particularly challenging because psy-
chostimulant drugs induce significant changes in the brain regions 
associated with learning/memory, decision making, impulsivity, 
motivation, and impaired control of behavioral output [284]. As it 
has already been accentuated [27], integrated care is fundamental 
for the treatment of infectious (communicable) diseases, such as 
HCV and parallel treatment of the substance use disorder as well.  

 Facts presented in this manuscript suggest that different psy-
chomotor and neurobehavioral reactions to ribavirin could be ex-
pected in drug-naive and psychostimulant drug-dependent individu-
als, but this presumption needs additional examination and experi-
mental confirmation with respect to a particular drug, as there are 
fundamental differences in mechanisms of action among psycho-
motor stimulant drugs (i.e., [285]) and the important role of dose in 
determining psychostimulant action [75]. We have tried to accentu-
ate this important topic in our recent research article devoted to 
psychomotor and physiological response to low ribavirin doses in a 
rodent model, emphasizing the role of the treatment duration [21, 
232]. Our previous research also indicates that low doses of ri-
bavirin can modulate behavioral response induced by AMPH [19-
21] implying its possible application in counteracting psychostimu-
lant-induced effects. The view that the potential adenosine A1 re-
ceptor agonists could be used as an effective strategy to counteract 
psychostimulant-induced effects has also been posted by others 
[128]. Once again, although ribavirin has not been primarily as-
sessed as a neuroactive drug, and we do not know its specific 
mechanism(s) of action, the behavioral changes in particular ex-
perimental settings confirm that this drug affects the brain. Thus, 
more effective promotion of mental health problems related to the 
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central effects of antiviral drugs/ribavirin usage is needed among 
neurobiologists to encourage the basic studies that will work on this 
question of clinical relevance. 
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