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The fine particulate matter baseline (PMB), which includes PM2.5 monitor readings fused with 

Community Multiscale Air Quality (CMAQ) model predictions, using the Hierarchical Bayesian 

Model (HBM), is less accurate in rural areas without monitors. To address this issue, an upgraded 

HBM was used to form four experimental aerosol optical depth (AOD)-PM2.5 concentration 

surfaces. A case-crossover design and conditional logistic regression evaluated the contribution of 

the AOD-PM2.5 surfaces and PMB to four respiratory-cardiovascular hospital events in all 99 12 

km2 CMAQ grids, and in grids with and without ambient air monitors. For all four health 

outcomes, only two AOD-PM2.5 surfaces, one not kriged (PMC) and the other kriged (PMCK), 

had significantly higher Odds Ratios (ORs) on lag days 0, 1, and 01 than PMB in all grids, and in 

grids without monitors. In grids with monitors, emergency department (ED) asthma PMCK on lag 

days 0, 1 and 01 and inpatient (IP) heart failure (HF) PMCK ORs on lag days 01 were 

significantly higher than PMB ORs. Warm season ORs were significantly higher than cold season 

ORs. Independent confirmation of these results should include AOD-PM2.5 concentration surfaces 

with greater temporal-spatial resolution, now easily available from geostationary satellites, such as 

GOES-16 and GOES-17.
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1. Introduction

The adverse effects of PM2.5 on the respiratory-cardiovascular system have been repeatedly 

confirmed [1–12]. Epidemiologic studies that assess exposure risk to different ambient 

PM2.5 concentration levels have relied on the U.S. Environmental Protection Agency’s 

(EPA) network of ground-based ambient air pollutant monitors [4,13–16]. Ambient air 

monitors are not equally spatially distributed, and most make measurements every 3 or 6 

days [13,16–18]. There are also characterization errors in available PM2.5 concentration 

measurements due to limited instrument measurement precision and spatial heterogeneity 

[19].

In 2004, the U.S. Centers for Disease Control and Prevention (CDC) and EPA established 

and logistically supported the CDC Public Health Air Surveillance Evaluation (PHASE) 

project [18,20–22]. One important PHASE project outcome was the development of the 

first-generation HBM that statistically fused PM2.5 monitor concentration readings with 

CMAQ PM2.5 model predictions [23–25]. In urban areas, PMB gives more “weight” to 

PM2.5 monitor readings than CMAQ PM2.5 model predictions. In rural areas, CMAQ PM2.5 

model predictions exert more influence than PM2.5 monitor readings on PMB, since there 

are fewer monitors or no monitors. Ambient air monitors are usually found in urban areas. In 

the last 15 years, PMB has turned out to be a more representative PM2.5 concentration 

surface, compared to the interpolation of PM2.5 monitor data, as a method to resolve spatial 

gaps between ambient air monitors [16,18,22]. CDC subsequently incorporated PMB into its 

Environmental Public Health Tracking (EPHT) network of state and New York City partners 
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[16,18,22,26]. To date, PMB has been used by federal and state epidemiologists completing 

EPHT projects in different parts of the US [16,18,22,26].

Within this decade, the availability and use of satellite AOD data have become more routine 

[6,16,27–31]. Newer generation satellite instruments measure AOD with increased temporal 

accuracy and finer spatial resolution [27,32–37]. AOD is a unitless measure of the scattering 

and absorption of visible light by aerosols (particles) in the atmosphere [38–40]. AOD data 

are, by definition, actual physical measurements, an improvement over CMAQ PM2.5 model 

predictions. Once AOD unitless measurements have been calibrated with actual PM2.5 

readings from on-the-ground ambient air monitors, it is then possible to utilize the derived 

AOD-PM2.5 concentration readings to estimate actual ambient PM2.5 concentration in areas 

where there are no on-the-ground air monitors. The relationship between AOD 

measurements and on-the-ground measurements of PM2.5 concentration readings has been 

confirmed in available publications [16,27–29,39–44].

By incorporating AOD-PM2.5 concentration values into the currently utilized PMB, we 

hypothesized there would be a further improvement in the fused AOD-PM2.5-PMB surface 

[16]. Our intention, in this preliminary work, was to test this hypothesis by using these four 

experimental AOD-PM2.5 and PMB fused concentration surfaces with linked health outcome 

data from Baltimore, Maryland, and New York City, New York, in a case-crossover 

epidemiologic study design data files analyzed by using conditional logistic regression [16]. 

From the beginning, our expectation was to complete the Baltimore and New York City 

epidemiologic studies at the same time [16]. Unexpected circumstances related to restricted 

access to the Maryland emergency department (ED) and inpatient hospitalization IP 

confidential hospital data files, delayed the completion of the Baltimore AOD-PM2.5 study 

component, and this delay made it possible for the Baltimore investigators to examine 

additional questions, such as completing a fine-grain evaluation of areas with and without 

ambient PM2.5 monitors. The New York City study, published in 2016, did not find 

differences between the four experimental AOD-PM2.5 concentration surfaces and PMB 

[16].

These were the objectives of the Baltimore study: firstly, replicate the New York City study 

by using all CMAQ 12 km2 grids, and completing further analyses in grids with and without 

PM2.5 ambient air monitors. Secondly, determine if the four experimental AOD-PM2.5 

concentration surfaces differed from PMB in grids with and without monitors. Thirdly, 

evaluate warm season versus cold season differences.

2. Methods

2.1. Description of Study Participants

This study used the same experimental methods described in the New York City publication 

[16]. The same procedural steps used in the two study sites are summarized in this Methods 

section, with more detail included on differences unique to the Baltimore study.

Figure 1 is a map of the 11 (south–north) by 9 (west–east) 12 km2 CMAQ grid cells, shown 

in blue circles, and the l7 Federal Reference Method (FRM) PM2.5 ambient air monitors, 
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shown in red triangles. Baltimore City had 6 PM2.5 ambient air monitors, more than in Anne 

Arundel (4), Prince George’s (3), Baltimore (2), Montgomery (1) and Harford (1) Counties. 

Other Counties in the study area did not have a single ambient air monitor. Table S1 

(Supplementary Materials) includes more information on each of the 17 FRM PM2.5 

ambient air monitors, e.g., CMAQ grid row-column identifier, site number, county name, 

city name, years in operation, between 2004–2006.

2.2. HBM Inputs

2.2.1. Monitor PM2.5—Baltimore study area 2004–2006 24-hour average PM2.5 

concentration data files were downloaded from the EPA Air Quality System (AQS) database 

[17]. The locations of the Maryland study area FRM PM2.5 monitors were mapped to the 12 

km2 CMAQ grid system prior to their incorporation into the upgraded HBM. If a grid cell 

contained two or more monitor concentration readings on any given day, a single daily mean 

was computed and retained. Grid cells without monitor measurements on a given day were 

set to the “missing” data condition.

2.2.2. CMAQ PM2.5—The 2004–2006 Baltimore study area CMAQ PM2.5 model 

predictions were obtained from EPA’s Community Modeling and Analysis System website 

[24,25]. CMAQ PM2.5 model predictions did not have missing values.

2.2.3. AOD-PM2.5—Moderate Resolution Imaging Spectroradiometer (MODIS) 

Collection 5 AOD 2004–2006 data files, at 10 km2 resolution, were downloaded from the 

National Aeronautics and Space Administration (NASA) Level 1 and Atmosphere Archive 

and Distribution System (LAADS) [45]. AOD data were available for Terra and Aqua 

satellites. There were two MODIS AOD observations per day, one for each satellite. Terra 

satellite had a late morning observation time, while the Aqua satellite had an early afternoon 

observation time. MODIS AOD data were re-mapped from NASA’s 10 km2 native grid 

system to CMAQ’s native 12 km2 grid system before the AOD data were uploaded in the 

upgraded HBM. Additional AOD dataset preparation details, including the technique used to 

estimate surface PM2.5 concentrations from the AOD data, have been published [16,46,47].

The HBM runs for New York City and Baltimore produced two AOD-estimated PM2.5 

datasets: one AOD dataset with missing observations, and another dataset where the missing 

observations were replaced with kriged values (ordinary kriging). The original HBM 

required separating and sequencing the Bayesian computations into discrete hierarchical 

steps and then modeling at each level, before combining PM2.5 monitor measurements with 

CMAQ model predictions [48,49]. The original HBM was modified to process input 

surfaces with missing data and simultaneously combine multiple datasets [46]. This latter 

HBM upgraded feature was “critical” to permit the incorporation of AOD-PM2.5 input 

surfaces, in addition to PM2.5 monitor concentration readings and CMAQ PM2.5 model 

predictions.

2.3. AOD-PM2.5 Fused Surfaces

The upgraded HBM was used to produce PMB and the four experimental AOD-PM2.5 

concentration surfaces, at the same time and utilizing the same statistical procedures, for 
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both New York City [16] and Baltimore: (1) PMB statistically fused PM2.5 monitor 

concentration measurements with CMAQ PM2.5 model predictions. (2) PMC, the first AOD-

PM2.5 surface, fused PM2.5 monitor concentration measurements with AOD-PM2.5 

concentration values. This PMC included missing observations resulting from satellite 

recording failure or cloud cover interference in the recording column, extending from a 

satellite to the surface of the earth. (3) PMCK fused PM2.5 monitor concentration 

measurements with kriged AOD-PM2.5 concentration values. Kriging eliminated missing 

data from the pre-kriged PMC surface. (4) PMCQ included monitor PM2.5 concentration 

readings, CMAQ PM2.5 model predictions and PMC (not kriged). (5) PMCKQ incorporated 

monitor PM2.5 monitor concentration readings, CMAQ PM2.5 model estimates and PMCK 

(kriged). The shared properties of the four experimental AOD-PM2.5 fused surfaces made it 

possible to evaluate differences between AOD surfaces with and without missing 

observations (not kriged [PMC, PMCQ] vs. kriged [PMCK, PMCKQ]) and the absence and 

presence of CMAQ PM2.5 model predictions (absent [PMC, PMCK] vs. present [PMCQ, 

PMCKQ]). Table S2 (Supplementary Materials) summarizes additional information about 

PMB and the four experimental AOD-PM2.5-fused surfaces into columns that included 

PMB/AOD-PM2.5 surface name, surface description, and input surfaces used to produce 

each fused surface.

2.4. ED/IP Chronic Diseases

2.4.1. Subjects—The 2004–2006 Maryland electronic ED visits and IP hospitalization 

confidential patient files, with one hospital record per patient per hospital encounter, were 

obtained from the Maryland Health Services Cost Review Commission (HSCRC) [50]. All 

hospitals in Maryland must report, by State statute, their ED visits/IP hospital events to the 

HSCRC quarterly. Available temporal variables only included years (2004–2006), quarters 

(winter, spring, summer, fall), and days of the week (Sunday through Saturday), but 

excluded month. Patient’s residential information was limited to 5-digit United States Postal 

Service Zone Improvement Plan (ZIP) codes (Maryland Department of Planning; MDP) 

[51]. Each patient record contained demographic variables, primary and secondary 

diagnoses, entered as International Classification of Diseases, Ninth Revision, Clinical 

Modification (ICD-9-CM) billing codes [52]. The ICD-9-CM codes were used to select 

asthma (493), myocardial infarction (MI, 410) and heart failure (HF, 428), as primary 

discharge diagnoses, and the co-morbid conditions of diabetes mellitus (250), hypertension 

(401), and atherosclerosis (414, 440), as secondary diagnoses. The Maryland Department of 

Health (MDH) Institutional Review Board approved this Baltimore AOD-PM2.5 data linkage 

and analysis study.

2.4.2. Cases–Controls—The case-crossover design was used to form three different 

controls for each case [53–57]. Controls differed from cases only in the assigned exposure 

period. A case had one quarterly exposure value. Each control had one monthly mean 

exposure value for each of the four quarters: the first control had monthly mean exposure 

data for January, April, July, and October; the second control had monthly mean exposure 

data for February, May, August, and November; the third control combined monthly mean 

exposure data for March, June, August, and December. Each monthly mean exposure data 

represented a different calendar quarter (January–March, winter; April–June, spring; July–
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September, summer; October–December, fall). For each of the three controls, the selected 

four monthly mean exposures values were averaged, and the overall mean was used as the 

annual background exposure estimate.

Maclure’s [56] case-crossover design paper proposed using cases as their own controls but 

assigning a different exposure period to the same cases that were also used as controls. Since 

the same cases are used as controls, the cases and controls should not differ from each other 

on patient attributes such as gender, age, race, and insurance coverage. This is what we did 

in this study, because the month temporal variable was not available in the confidential 

hospital files obtained from the Maryland HSCRC, but was available in the New York City 

study [16].

The overall average for four months, with each month serving as a proxy for each of the four 

quarters in one year, provided an estimate of annual (background) exposure level. Since a 

different month was used to represent each quarter in each of the three controls, the exposure 

assignment algorithm used in this study is “functionally” equivalent to the case-crossover 

bidirectional design used in the New York City study [16,53]. In this study, cases with 1st 

and 2nd quarter exposure values always preceded all three controls because their mean 

monthly ranks (Q1 = 2.0, Q2 = 5.0) were always numerically smaller than the mean monthly 

ranks of all three controls (1st = 5.5, 2nd = 6.5, 3rd = 7.5). However, when cases had 3rd and 

4th quarter exposure values they always came after all three controls, because their mean 

monthly ranks (Q3 = 8.0, Q4 = 11.0) were always numerically larger than the mean monthly 

ranks of all three controls.

2.5. Confounders

2.5.1. Co-Morbid Conditions (Diabetes, Hypertension, Atherosclerosis)—
Diabetes, hypertension, and atherosclerosis, when present in a patient’s hospital record, can 

synergistically contribute to the occurrence of a patient’s ED visit or IP hospitalization with 

a discharge diagnosis of asthma, MI, or HF. Diabetes mellitus, hypertension, and 

atherosclerosis by themselves have been shown to lead to an ED visit or IP hospitalization 

[13,16,58–62].

2.5.2. Apparent Temperature (AT and AT2)—Ambient temperature, relative 

humidity, and wind speed can contribute to the occurrence of respiratory-cardiovascular 

chronic disease ED visits or IP hospitalizations. AT is one summary variable that includes 

ambient temperature, relative humidity, and wind speed. All three weather parameters were 

obtained from the CMAQ model [25] and made available to the Baltimore investigators by 

one of the co-authors (ESH). AT was computed using the formula reported on the National 

Oceanic and Atmospheric Administration website (NOAA) [16,63,64]. AT2 was computed 

as the product of AT*AT, once AT was available. Both AT and AT2 have been shown to 

influence respiratory-cardiovascular ED visits and IP hospitalizations, even in the absence of 

elevated ambient PM2.5 [13]. AT and AT2 values were computed for each CMAQ grid cell, 

which were stratified by year, month, and day.

2.5.3. Pollen—Recent publications have implicated ambient pollen levels in respiratory-

cardiovascular chronic disease ED visits/IP hospitalizations [65–67]. The single pollen 
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counting station in Baltimore County, Maryland, provided the multi-year pollen readings. 

They were used as proxy measures for ambient pollen levels in the Baltimore study area 

[68].

2.5.4. Holidays—Each major holiday included the day after each holiday. The dates of 

recognized holidays were obtained from the U.S. Office of Personnel Management website 

(OPM) [69]. Each holiday was combined in a single annual dummy variable and coded as 1 

(holiday and day after) or 0 (no holiday). The holiday dummy variables were entered in each 

of the three annual data files for 2004–2006.

2.5.5. Snowstorms—Each snowstorm was coded as a dummy variable, 1 (snowstorm) 

or 0 (no snowstorm), for each of the three years separately (National Centers for 

Environmental Information (NCEI) [70]. The snowstorm variable was a proxy for physical 

exertion during winter snow removal and its precipitation of a cardiovascular event, such as 

MI taking place, followed by an ED visit or IP hospitalization.

2.6. Effect Modifiers

2.6.1. Poverty and Population Density—Population density and poverty co-occur 

more often in urban areas compared to rural locations. Brochu and colleagues [71] found a 

significant inverse association between economic resources and ambient PM2.5 

concentration levels. Bell and Ebisu [72] found a higher poverty percent in census tracts 

with ambient air monitors compared to census tracts without monitors. Both are associated 

with barriers to healthcare access, e.g., fewer hospitals in rural than urban areas, and more 

frequent use of ED medical services by persons with fewer economic resources and no 

health insurance. Maryland Zip Code Tabulation Area (ZCTA) poverty percent and 

population density (subsequently converted to the log10 scale) data were obtained from the 

US Census Bureau website (USCB) [73].

2.6.2. Season—Although Weber et al. [16] did not find warm–cold season differences, 

others have found season differences in the contribution of PM2.5 to respiratory-

cardiovascular chronic disease hospital events [12,59,74–79]. Warm vs. cold season 

differences were evaluated in this study.

2.7. File Linkage

Given that the ED visit and IP hospitalization files included temporal variables for year 

(2004–2006), quarter (winter, spring, summer, fall), day of week (Sunday through Saturday) 

and spatial variables for residential five-digit ZIP codes, it was necessary to map these ZIP 

codes to CMAQ grids. It was also necessary to map ZCTA polygons for poverty percent and 

population density log10 measures to CMAQ grids.

ZIP code and ZCTA latitude–longitude centroid coordinates were entered in a Geographic 

Information System (GIS), which included a multi-layered map of Baltimore City/Maryland 

Counties and a 11 (south to north) by 9 (west to east) 12 km2 CMAQ grid map layer of the 

Baltimore study area, to develop a ZIP code-ZCTA-CMAQ 12 km2 grid polygon 

correspondence file. This assignment was done for each year separately [51,73,80]. 
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Latitude-longitude centroid coordinates of 5-digit ZIP codes and ZCTAs were mapped to the 

interior area of a unique CMAQ 12 km2 grid cell. This ZIP code/ZCTA polygon assignment 

to CMAQ km2 grid cells was done for each of the three years separately, 2004–2006.

Base Statistical Analysis System (SAS) software, version 9.4, was used to link PMB and the 

four experimental AOD-PM2.5 concentration surfaces, de-identified ED/IP hospitalization 

records, confounders and effect modifiers by using the same assigned CMAQ grid identifier 

(1–99) and the temporal variables of year (3), quarter (4) and day of the week (7) [81].

2.7.1. Case-Crossover Analyses—Each stratum included one case and three controls. 

Based on the time-space grouping variables of year (three), quarter (4), day of week (7), and 

spatial CMAQ 12 km2 grid cells (99), there were 8316 possible combinations of space–time 

locations that a case paired with three controls could be assigned. SAS/STAT Proportional 

Hazards Regression (PHREG) Procedure (Proc) was used to perform a regression analysis of 

stratified subpopulation’s “survival time” data. These conditional logistic regression 

analyses, based on the SAS/STAT PHREG Proc, use the Cox proportional hazards model, 

and the results explain the effect of time-dependent explanatory variables on survival times 

[82]. SAS/STAT PHREG Proc, version 14.3, and Base SAS, version 9.4, software programs 

were used to complete all conditional logistic regression analyses [57,81,82]. In these 

regression analyses, ties (for [censored] survival/failure times or [uncensored] event times 

under the Cox proportional hazards model) were set using the Breslow methodology [82,83].

2.7.2. Statistical Analyses—The Chi Square test, in Base SAS, version 9.4, was used 

to evaluate case-control count data differences in age categories, gender, race, co-morbid 

conditions and health insurance [81]. By comparing the mean of one group with the lower 

and upper values for the 95% Confidence Interval (CI) of the reference group mean, it was 

possible to determine if the two means were significantly different from each other at p ≤ 

0.05. A group mean was significantly different from the reference group mean if the value 

for the first comparison mean was either below the lower limit or above the upper limit of 

the 95% CI of the reference group mean (p ≤ 0.05). The Means Procedure in Base SAS, 

version 9.4, was used to compute means and 95% CIs for poverty percent and population 

density [81].

2.8. Conditional Logistic Regression Analyses

2.8.1. Variable Selection—A multi-step variable evaluation procedure was used for all 

conditional logistic regression runs in all CMAQ grid cells, with and without ambient air 

monitors [57,84]. The starting statistical run only contained PMB, or one experimental 

AOD-PM2.5 concentration surface, and confounders (holidays, snowstorms, pollen, and AT 

and/or AT2). The index ED visit/IP hospitalization day was identified as lag day 0. The day 

before was lag day 1, and so on, through to lag day 4. Summary lag day measures for 

individual lag days of 0 through 4 were also computed. Summary lag days were obtained by 

taking the average of the included individual lag days. To illustrate, summary lag days 0 and 

1, displayed as lag days 01. Lag days 2–4 were referenced as lag days 24. Lag days of 0 

through 4 were named lag days 04. The AT2 was also entered on lag days 0, 1, 01 and 04. 

Effect modifiers were evaluated in separate conditional logistic regression runs (diabetes 
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mellitus, hypertension, atherosclerosis; gender, age, race; health insurance, poverty, 

population density; and, season). An effect modifier was retained and included in the 

subsequent variable assessment runs if it had a computed probability value of p ≤ 0.20.

2.8.2. Variable Evaluation of Effect Modifiers—This variable evaluation phase 

involved utilizing PMB or one of the four experimental AOD-PM2.5 concentration surfaces, 

and retained confounders on lag days of 0–4, 01, 24, and 04, in all grids and in grids with 

and without monitors. AT2 was added on lag days of 0, 1, 01 and 04. Each retained effect 

modifier was evaluated in a separate run. Each effect modifier with p ≤ 0.20 was evaluated in 

the final conditional logistic regression runs.

2.8.3. Final Models—A stepwise procedure, with a variable entry criterion of p ≤ 0.20 

and variable stay criterion of p ≤ 0.09, was used to identify the most parsimonious 

combination of confounders, effect modifiers for each PMB and the four experimental AOD-

PM2.5 concentration surfaces in all grids, and in grids with and without monitors. The 

Akaike Information Criterion (AIC) statistic was also used to confirm the selection of the 

“best” conditional logistic regression runs, with lower AIC values representing a better 

model fit [84]. The null hypothesis was rejected when p ≤ 0.05 [85].

2.8.4. Season and Monitor—Follow-up conditional logistic regression analyses 

evaluated the main factors of season (S), monitor (M) and the interaction term of S*M, for 

PMB and the four experimental AOD-PM2.5 concentration surfaces, at lag days of 0, 1 and 

01, in all grids, and in grids with and without monitors, for ED asthma, IP asthma, IP MI, 

and IP HF, in separate analyses.

3. Results

3.1. Cases and Controls

Case-control group characteristics are in Table 1 (ED and IP asthma) and Table 2 (IP MI and 

IP HF). As stated previously, there were three controls for each case in each of the four 

groups. There were more ED asthma cases (11,723) than IP asthma cases (3376), with IP MI 

(4745) and IP HF (6919) between two asthma case groups. ED asthma cases were 

significantly younger than IP asthma cases (p ≤ 0.05). The 0–14 age category included 

43.8% ED asthma cases but only 27.6% IP asthma cases. The 35+ age category contained 

61.8% of the IP asthma cases but only 28.7% of the ED asthma cases. There was also a 

significant age category difference between IP HF cases and IP HF controls (p ≤ 0.05), with 

lower percentages for cases (18.5%) and controls (19.2%) in the 35–59 age category and 

higher percentages for cases (44.9%) and controls (46.0%) in the 76+ age category. Other 

significant differences were found between grids without monitors and grids with monitors 

for poverty percent and population density for all case and control groups (all p’s ≤ 0.05).

3.2. AOD-PM2.5 Concentration Surfaces

3.2.1. PMB and AOD-PM2.5—Only the PMCK PM2.5 concentration three-year mean of 

14.38 µg/m3 (95% CI = 14.31–14.44) was significantly higher than the PMB PM2.5 three-

year mean of 14.19 (95% CI = 14.13–14.26) (p ≤ 0.05). The other three experimental AOD-
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PM2.5 concentration surface means (PMC = 13.66 (95% CI = 13.60–13.72), PMCQ = 13.79 

(95% CI = 13.73–13.85), and PMCKQ = 13.91 (95% CI = 13.85–13.97) were significantly 

lower than the PMB mean (all p’s ≤ 0.05). The unexpected finding was confirmation that the 

Baltimore PMB and four experimental AOD-PM2.5 concentration surfaces were significantly 
higher than the New York City PMB and four experimental AOD-PM2.5 concentration 

surfaces (PMB = 10.02; PMC = 12.03, PMCK = 10.51; PMCQ = 10.09; PMCKQ = 12.91) 

(all p’s ≤ 0.05). Table S3 (Supplementary Materials) summarizes these and other descriptive 

statistics (percentiles) for PMB and the four experimental AOD-PM2.5-fused surfaces.

3.2.2. Correlations between AOD-PM2.5 and PMB—The r2% statistic, representing 

the percentage of shared variance between PMB and another experimental AOD-PM2.5 

concentration surface, was highest between PMB and PMCQ in all three grid conditions 

(both, 94.7%; with monitors, 97.4%; without monitors, 94.3%). This measure of shared 

variance was lowest between PMCK and PMB (both, 30.6%; with monitors, 62.1%; without 

monitors, 26.5%). The r2% difference (no monitors versus monitors) produced a similar 

ranking, with the smallest negative difference for PMCQ (−3.1%), and the largest for PMCK 

(−35.6%), followed by PMCKQ (−15.9%) and PMC (−32.4%) with intermediate values 

between the first two. Table S4 (Supplementary Materials) contains correlation analyses for 

PMB with each of the four experimental AOD-PM2.5-fused surfaces.

3.2.3. PM2.5 Concentration Values—Three-year PM2.5 concentration means (95% 

CIs) were computed for all lag days, surfaces, and monitor grid conditions. All comparisons 

were between each AOD-PM2.5 concentration surface and PMB. PMCK PM2.5 

concentration means were significantly higher than PMB PM2.5 concentration means in all 

grids and in grids without monitors for all lag days (all p’s ≤ 0.05). The monitor PMCK 

PM2.5 concentration surface was significantly lower than the monitor PMB PM2.5 

concentration surface at all lag days (p ≤ 0.05). All other comparisons between PMC, 

PMCQ and PMCKQ PM2.5 concentration surfaces were also significantly lower than PMB 

for all lag days of 0–4, 01, 24 and 04 in all grids, in grids with monitors and in grids without 

monitors (all p’s ≤ 0.05). Supplementary Materials includes three-year PM2.5 concentration 

mean values for PMB and each of the four AOD-PM2.5 concentration surfaces on lag days 

0–4, 01, 24 and 04 in all CMAQ grids (Tables S5 and S6), in grids with monitors (Tables S7 

and S8) and in grids without monitors (Tables S9 and S10).

3.3. Conditional Logistic Regression

Significant conditional logistic regression analyses for the four health outcomes, three 

CMAQ grid conditions, and the four experimental AOD-PM2.5 concentration surfaces and 

PMB only occurred at lag days of 0, 1 and 01 (all p’s ≤ 0.01). Significant, but protective, 

population density (M) effect modifiers were found for ED asthma in all grids for PMB (lags 

of 01), PMCQ (lags of 0, 1 and 01) and PMCKQ (lags of 01) (all p’s ≤ 0.01). Significant, 

but protective, Season (S) effect modifiers occurred for ED asthma in all grids at lags of 01 

(PMB, PMC, PMCK, PMCQ and PMCKQ) and for IP HF in all grids at lags of 01 (PMB, 

PMC, PMCK, PMCQ, PMCKQ) (all p’s ≤ 0.05).
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Odds Ratios (ORs) and 95% Confidence Intervals (CIs) for the four health outcomes, under 

the three grid conditions, PMB and the four experimental AOD-PM2.5 concentration 

surfaces, are displayed graphically below, and separated into successive graphs by lag days 

of 0, 1 and 01. To determine if the AOD-PM2.5 concentration surface ORs differed from the 

PMB OR, each AOD-PM2.5 OR was compared to the PMB’s OR (95% CI). If the AOD-

PM2.5 OR was either below or above the PMB’s 95% CI lower or upper limit, the outcome 

was significant (p ≤ 0.05).

3.3.1. Lag Day 0 (Figure 2A–D)—For ED asthma (Figure 2A) in all grids (Both) and in 

grids without monitors (No) each of the four AOD-PM2.5 ORs were significantly higher than 

the PMB OR (all p’s ≤ 0.05). However, in grids with monitors (Yes), only the PMCK OR 

was significantly higher than the PMB OR (p ≤ 0.05). For IP asthma (Figure 2B), IP MI 

(Figure 2C) and IP HF (Figure 2D) in all grids and in grids without monitors, only PMC, 

PMCK and PMCKQ ORs were significantly higher than PMB ORs (all p’s ≤ 0.05). For all 

four health outcomes, only PMC and PMCK had significantly higher ORs in the no monitor 

condition than the PMC and PMCK ORs in the monitor condition (all p’s ≤ 0.05).

3.3.2. Lag Day 1 (Figure 3A–D)—The ED asthma (Figure 3A), IP asthma (Figure 3B), 

IP MI (Figure 3C) and IP HF (Figure 3D) OR results for all comparisons between each of 

the four AOD-PM2.5 concentration surfaces with the PMB ORs at lag 1 in all grids, and in 

grids without and with monitors were identical to the comparisons made on lag day 0 and 

described above (all p’s ≤ 0.05). No monitor versus monitor OR comparisons for all four 

health outcomes were also the same as those previously described above on lag day 0 (p ≤ 

0.05).

3.3.3. Lag Day 01 (Figure 4A–D)—ED asthma (Figure 4A), IP asthma (Figure 4B), IP 

MI (Figure 4C) and IP HF (Figure 4D) comparisons between AOD-PM2.5 ORs and PMB 

ORs at lag days 01 were the same as the comparisons at lag day 0 and lag day 1 and 

described above (all p’s ≤ 0.05). For IP asthma, IP MI, and IP HF in the no monitor grid 

condition PMCQ ORs were significantly higher than the PMB ORs (all p’s ≤ 0.05). In 

addition, in grids with monitors for ED asthma and IP HF PMCK ORs were significantly 

higher than the PMB ORs (both p’s ≤ 0.05). The no monitor OR versus the monitor OR 

comparisons for PMC and PMCK were the same as those previously described for lag days 

0 and 1 (all p’s ≤ 0.05). In addition, for ED asthma the no monitor PMCKQ OR was 

significantly higher than the monitor PMCKQ OR (p ≤ 0.05).

3.4. Lag Day and Monitor

Further evidence supporting the robustness of PMC and PMCK concentration surfaces, 

especially in grids without monitors, is summarized in Figure 5A–D. Percentage change in 

ORs in grids without monitors versus ORs in grids with monitors at lag days of 0, 1 and 01 

demonstrate the same pattern for ED asthma (A), IP asthma (B), IP MI (C) and HF (D): (1) 

PMC and PMCK concentration surfaces had positive percent change values, with the largest 

increase always occurring at lag days 01. (2) All PMB percent change values were negative. 

(3) PMCQ results resembled most the PMB outcomes, with negative percent change values 

at lag days of 0, 1 and 01 for IP asthma (B) and at lag days of 0 and 1 for IF HF (D), or close 
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to 0% change for IP MI (C) and ED asthma at lag days of 0 and 1 (A). (4) In all four panels, 

the PMCKQ surface had positive percent change values, thereby suggesting that kriging 

partly reversed the percent decrease due to the inclusion of CMAQ.

3.5. Lag Day and Season

Results of follow-up conditional logistic regression analyses evaluating warm–cold season 

(S) differences at lag days of 0, 1 and 01 on PMB and the four AOD PM2.5 concentration 

surfaces support these conclusions: (1) only the cold season ORs were protective, e.g., below 

1.000. (2) All warm season ORs were significantly higher than cold season ORs (all p’s ≤ 

0.05). (3) During the warm season, only ED asthma, IP MI, and IP HF PMCK ORs were 

significantly higher than PMB ORs (all p’s ≤ 0.05). Figure 6 below shows the percent 

change between warm season and cold season ORs for the four AOD-PM2.5 concentration 

surfaces and PMB on lag days of 0, 1 and 01 for the four hospital-based health outcomes. 

For all four health outcomes the largest percent increase occurred at lag day of 01. Figures 

S1–S3 (Supplementary Materials) display warm–cold season ORs for the four AOD-PM2.5 

experimental surfaces and PMB for ED asthma, IP asthma, IP MI, and IP HF at lag days of 

0, 1 and 01, respectively.

4. Discussion

The shared objectives of the Baltimore and New York City [16] studies were to evaluate the 

differential contribution of the four experimental AOD-PM2.5 concentration surfaces relative 

to the current baseline, PMB, on ED asthma, IP asthma, IP MI and HF hospitalizations. Our 

expectation was to find the most improvement in the new experimental AOD-PM2.5 

concentration surface, which included PMC (not kriged or kriged) fused with PMB (monitor 

PM2.5 and CMAQ PM2.5 model estimates). The New York City study did not find 

differences between PMB and the four AOD-PM2.5 concentration surfaces. Contrary to our 

expectation, these Baltimore study results suggest that PMC and PMCK, and not PMCQ or 

PMCKQ, are better estimates of ambient PM2.5, especially in grids without monitors.

Although the same upgraded HBM was used to generate the PMB and the four AOD-PM2.5 

concentration surfaces for Baltimore and New York City, all five Baltimore surfaces had 

significantly higher three-year mean PM2.5 concentration values than the New York City 

surfaces. Since both the Baltimore and New York City study sites analyzed the same asthma, 

MI and HF chronic diseases, used the case-crossover design to create three controls for each 

case, and used the same SAS conditional logistic regression procedure to analyze the linked 

exposure–health outcome files, the only remaining major difference was the significantly 

elevated ambient PM2.5 levels in Baltimore compared to New York City.

The three methodological differences between the two study sites included: (1) more 

asthma, MI, and HF cases (and associated controls) in the New York City study than in the 

Baltimore study. (2) Completion of separate ED asthma and IP asthma conditional logistic 

regression analyses in the Baltimore study than in the New York City study, because ED 

asthma cases (and associated controls) were significantly younger than the IP asthma cases 

(and associated controls). (3) In the Baltimore study, the three controls were formed by 

assigning a different exposure period to the cases that were also used as controls [56], while 
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the New York City study selected the three controls within a 28 day strata. Both test site 

replications attained the same case–crossover endpoint, since each case was preceded or 

followed by at least one control—the definition of a bidirectional case-crossover design 

[53,55]. It is unlikely that these methodological differences would be more important than 

the fact that the Baltimore study three-year mean PMB and four AOD-PM2.5 concentration 

surfaces had significantly higher concentration values than the New York City study.

This Baltimore study also found differences in the contribution of PMB and the four 

experimental AOD-PM2.5 concentration surfaces to asthma ED visits and IP asthma, IP MI, 

and IP HF hospitalizations in grids without monitors. In grids without monitors, PMC, 

PMCK and PMCKQ ORs were significantly higher than PMB ORs at lag days of 0, 1 and 

01, for all four ED/IP respiratory-cardiovascular chronic diseases. In grids with monitors, 

only ED asthma PMCK ORs were significantly higher than PMB ORs for all three lag days 

of 0, 1 and 01. A similar outcome occurred for IP HF, but only on lag days of 01. Additional 

no monitor versus monitor analyses showed that only PMC and PMCK had significantly 

higher ORs in grids without monitors than in grids with monitors at all three lag days of 0, 1 

and 01 for all four respiratory-cardiovascular chronic disease hospital events. The only 

exception was for IP asthma at lag day of 1, where the PMC no monitor versus monitor 

comparison was not significant.

Since two AOD-PM2.5 surfaces included CMAQ PM2.5 model estimates, PMCQ (PMC not 

kriged) and PMCKQ (PMCK kriged), we now know that a bias is introduced by the addition 

of CMAQ PM2.5 model estimates to the experimental AOD-PM2.5 concentration surfaces. 

This bias was expressed by shifting the PM2.5 concentration values of this surface, PMCQ, 

toward the PMB PM2.5 concentration values. PMCKQ resembled PMB less, a reversal that 

can be attributed to kriging.

Results from this Baltimore study support these conclusions: Firstly, only PMCQ ORs in all 

grids at lag days of 0, 1 and 01 and in grids without monitors at lag days of 0 and 1, were not 

significantly different from PMC ORs for IP asthma, IP MI and IP HF. Secondly, no monitor 

PMCQ, PMCKQ and PMB ORs were not significantly different from monitor PMCQ, 

PMCKQ and PMB ORs at lag days 0, 1 and 01 for ED asthma, IP asthma, IP MI, and IP HF. 

Thirdly, the difference in the r2% statistic between PMCQ and PMB in grids with monitors 

(97.4%) and grids without monitors (94.3%) was negatively smaller (−3.1%) than it was for 

PMCKQ (−15.9%), PMC (−32.4%) and PMCK (−35.6%). These results suggest that PMC 

and PMCK could be used as a replacement for CMAQ PM2.5 model estimates in an 

upgraded HBM-generated PMB.

We also found significant season effects in the Baltimore study, which were not found in the 

New York City study [16]. In this study only warm season ORs were greater than 1.000, 

while cold season ORs were below 1.000, and therefore protective for those affected cases. 

Warm season PMCK ORs at lag days of 01 were significantly higher than cold season 

PMCK ORs for ED asthma, IP MI, and IP HF. Some published studies have reported 

significant warm season effects [12,76,78], while other publications have reported 

significant cold season effects [74,75,77,79]. Kuo and colleagues [78] found an association 

between PM2.5 concentration level and asthma hospitalization in children in the fall season. 
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One interpretation of warm season effects, based on the positive results of this study and the 

non-significant outcome in the New York City study [16], is higher ambient PM2.5 

concentration levels during the warm season compared to the cold season [8].

Surprisingly, there are only two publications on PM2.5 concentration levels and respiratory-

cardiovascular hospitalizations in urban Baltimore [14,15], and no published papers in rural 

areas. This study demonstrated, for the first time, that PM2.5 concentration level does 

contribute to respiratory-cardiovascular hospital events, ED visits and inpatient stays, both in 

Baltimore City, with its higher population density and poverty, and in other study area grids 

that lacked ambient air monitors, and had lower population density and poverty. By 

analyzing grids without monitors, we were able to demonstrate that in these rural areas PMC 

and PMCK were associated with ED visits and IP hospitalizations of respiratory-

cardiovascular chronic conditions. Others have also found associations between ambient 

PM2.5 concentration levels and respiratory-cardiovascular hospital events in rural areas 

[6,71], but due to course PM [86]. Strickland and associates [10] reported an association 

between PM2.5 concentration and ED asthma visits, but no change due to levels of 

urbanicity.

There are methodological limitations and strengths to the Baltimore study. First, these 

results were based on 2004–2006 ED visits and IP hospitalizations that, in 2020, are more 

than a decade old. Baltimore ambient PM2.5 levels were higher in 2004–2006 than in 2020. 

Replicating the Baltimore study with more current HBM-generated PMB and experimental 

AOD-PM2.5 concentration surfaces and ED/IP respiratory-cardiovascular chronic diseases 

would go a long way to confirm the generalizability of these exploratory results. A second 

limitation is the smaller Baltimore study area that only included 99 CMAQ 12 km2 grids. A 

replication of this study should enlarge the CMAQ grid study area to contain the entire state 

of Maryland.

Methodological strengths include the inclusion of confounders in all conditional logistic 

regression analyses (apparent temperature, snow storms, major holidays, pollen apparent 

temperature), and the evaluation of effect modifiers (poverty, population density, season). A 

correspondence file was used to assign ZIP code and ZCTA polygons to a single CMAQ 

grid. This procedure was used to minimize differences in polygon shapes found between ZIP 

codes (United States Postal Service) and ZCTAs (United States Census Bureau), and to 

uniformly complete all analyses by only using CMAQ grids. Evaluation of conditional 

logistic regression runs in all three CMAQ grid conditions, all grids, and in grids with and 

without monitors was another methodological strength of this study.

Within this decade, AOD readings with a grid resolution of 10, 5, 2, 1 and <1 km2 have 

become easier to obtain and use [27–29,31,33–36]. Kumar and colleagues evaluated NASA 

MODIS Level 1 and 2 in grid dimensions of 10, 5, and 2 km2 [33,34]. They concluded that 

AOD in 2 km2 grids provided greater resolution than AOD in either 10 km2 or 5 km2 grids 

[34]. The major advantages of AOD data in 2 km2 grids are: (1) higher correlation with on-

the-ground ambient PM2.5 monitors; and, (2) a decrease in lost data due to cloud 

interference. Another advantage is related to “scale” effects. The higher resolution found in 
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smaller grids permits more precise AOD PM2.5 measurements of ambient PM2.5 

concentrations than in larger grids [87].

Another benefit of using AOD in <10 km2 grids is the possibility of replacing ZIP-code-

aggregated health data with address-level health data [23,30,88–91]. Patient privacy issues 

require obtaining the patient’s written consent before using a person’s ED visit or IP 

hospitalization record in an environmental health epidemiologic study. The dual benefits of 

having available AOD data in <10 km2 grids with address-level data include the possibility 

of evaluating the contribution of ambient PM2.5 to ED visits and IP hospitalizations for 

respiratory-chronic diseases in both urban and rural areas, and utilizing remote sensing data 

to better understand shared pathophysiological mechanisms responsible for the occurrence 

of asthma, MI and HF events, and the development and testing of newer population-based 

intervention efforts.

5. Conclusions

If these Baltimore experimental AOD-PM2.5 concentration surface results are confirmed, 

then a shift in using AOD-PM2.5 concentrations readings in place of CMAQ PM2.5 model 

predictions in the PMB may be warranted, particularly in light of the greater temporal (every 

5 min during daylight hours) and spatial (2 km2) data now available from geostationary 

satellites such as GOES-16 and GOES-17.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

AIC Akaike Information Criterion

AOD Aerosol Optical Depth

AQS Air Quality System

AT Apparent Temperature

AT2 Product of AT, AT*AT
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CDC U.S. Centers for Disease Control and Prevention

CI 95% Confidence Interval

CMAQ Community Multiscale Air Quality Model

ED Emergency Department

EPA U.S. Environmental Protection Agency

EPHT Environmental Public Health Tracking

FRM Federal Reference Method

GIS Geographic Information System

HBM Hierarchical Bayesian Model

HF Heart Failure

HSCRC Maryland Health Services Cost Review Commission

ICD-9-CM International Classification of Diseases, Ninth Revision, Clinical 

Modification

IP Inpatient Hospitalization

MDH Maryland Department of Health

MDP Maryland Department of Planning

MI Myocardial Infarction

MODIS MODerate resolution Imaging Spectroradiometer

LAADS Level-1 and Atmosphere Archive and Distribution System

NASA National Aeronautics and Space Administration

NCEI National Centers for Environmental Information

NOAA National Oceanic and Atmospheric Administration

OPM U.S. Office of Personnel Management

OR Odds Ratio

PHASE Public Health Air Surveillance Evaluation

PHREG Proportional Hazards Regression

PM2.5 Fine Particulate Matter

PMB PM2.5 Baseline Model (monitor PM2.5 and CMAQ PM2.5)

PMC AOD PM2.5 Model (monitor PM2.5 and AOD PM2.5)
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PMCK AOD PM2.5 Kriged Model (monitor PM2.5 and AOD PM2.5 Kriged)

PMCKQ AOD PM2.5 Kriged and CMAQ PM2.5 Model (monitor PM2.5 and 

AOD PM2.5 Kriged and CMAQ PM2.5)

PMCQ AOD PM2.5 and CMAQ PM2.5 Model (monitor PM2.5 and AOD 

PM2.5 and CMAQ PM2.5)

SAS Statistical Analysis System

USCB U.S. Census Bureau/Department of Commerce

ZCTA ZIP Code Tabulation Area (US Census)

ZIP Code Zone Improvement Plan (US Postal Service)
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Figure 1. 
Map shows Maryland’s Counties and Baltimore City in the study area. The extent of the 

study area is defined by the 1–11 (south–north row) by 1–9 (west–east column) Community 

Multiscale Air Quality (CMAQ) 12 km2 grids (blue circles). The 17 Federal Reference 

Method (FRM) PM2.5 ambient air monitors are shown as red triangles. Baltimore City and 

Maryland Counties within the CMAQ grid boundaries provided the 2004–2006 respiratory-

cardiovascular chronic disease hospital events included in this data analysis study.
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Figure 2. 
Odds Ratios (ORs) and 95% Confidence Intervals (CIs) for the four experimental aerosol 

optical depth (AOD)-particulate matter (PM)2.5 concentration surfaces and particulate matter 

baseline (PMB) under both grid conditions (Both), grids with monitors (Yes) and grids 

without monitors (No) at lag day 0: (A) ED asthma (top left panel), (B) IP asthma (top right 

panel), (C) IP MI (bottom left panel), and (D) IP HF (bottom right panel).
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Figure 3. 
Odds Ratios (ORs) and 95% Confidence Intervals (CIs) for the four experimental AOD-

PM2.5 concentration surfaces and PMB under both grid conditions (Both), grids with 

monitors (Yes) and grids without monitors (No) at lag day 1: (A) ED asthma (top left panel), 

(B) IP asthma (top right panel), (C)IP MI (bottom left panel) and (D) IP HF (bottom right 

panel).
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Figure 4. 
Odds Ratios (ORs) and 95% Confidence Intervals (CIs) for the four experimental AOD-

PM2.5 concentration surfaces and PMB under both grid conditions (Both), grids with 

monitors (Yes) and grids without monitors (No) at lag days 01: (A) ED asthma (top left 

panel), (B) IP asthma (top right panel), (C) IP MI (bottom left panel), and (D) IP HF 

(bottom right panel).
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Figure 5. 
Percent change between no monitor and monitor Odds Ratios (ORs) for the four 

experimental AOD-PM2.5 concentration surfaces and PMB at lag days of 0, 1 and 01: (A) 

ED asthma (top left panel), (B) IP asthma (top right panel), (C) IP MI (bottom left panel), 

and (D) IP HF (bottom right panel).
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Figure 6. 
Percent change between warm and cold season Odds Ratios (ORs) for PMB and the four 

experimental aerosol optical depth (AOD)-PM2.5 concentration surfaces at lag days of 0, 1 

and 01: (A) ED asthma (top left panel), (B) IP asthma (top right panel), (C) IP MI (bottom 

left panel) and (D) IP HF (bottom right panel).
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Table 1.

Demographics for ED Asthma and IP Asthma Cases and Controls in the Baltimore Study.

Variables 
1–2 ED Asthma Cases ED Asthma Controls IP Asthma Cases IP Asthma Controls

Total 11,723 (100) 35,533 (100) 3376 (100) 10,139 (100)

Age Category 
3–4

0–14 years 5131 (43.8) 
†

15,492 (43.6) 
† 930 (27.6) 2791 (27.5)

15–34 years 3223 (27.5) 9765 (27.5) 358 (10.6) 1080 (10.6)

≥35 years 3369 (28.7) 10,276 (28.9) 2088 (61.8) 6268 (61.8)

Gender—Female 6093 (52.0) 18,489 (52.0) 2125 (62.9) 6388 (63.0)

Male 5628 (48.0) 17,041 (48.0) 1251 (37.1) 3751 (37.0)

Race—Black 5618 (48.1) 17,078 (48.3) 1130 (33.5) 3380 (33.4)

Other 749 (6.4) 2311(6.5) 164 (4.9) 505 (5.0)

White 5305 (45.4) 15,989 (45.2) 2076 (61.6) 6236 (61.6)

Atherosclerosis—No 11675 (99.6) 35,387 (99.6) 3055 (90.5) 9176 (90.5)

Yes 48 (0.4) 146 (0.4) 321 (9.5) 963 (9.5)

Diabetes—No 11458 (97.7) 34,730 (97.7) 2842 (84.2) 8557 (84.4)

Yes 265 (2.3) 803 (2.3) 534 (15.8) 1582 (15.6)

Hypertension—No 11,111 (94.8) 33,650 (94.7) 2316 (68.6) 6950 (68.6)

Yes 612 (5.2) 1883 (5.3) 1060 (31.4) 3189 (31.4)

Insurance—No 2099 (17.9) 6409 (18.1) 207 (6.1) 623 (6.2)

Yes 9606 (82.1) 29,070 (81.9) 3164 (93.9) 9501 (93.8)

Poverty 
5 9.6 (9.5–9.7) 9.6 (9.5–9.7) 9.4 (9.2–9.6) 9.4 (9.2–9.5)

Monitor—No 6.3 (6.3–6.4) * 6.4 (6.3–6.4) * 6.3 (6.2–6.5) * 6.3 (6.3–6.4) *

Monitor—Yes 13.7 (13.5–3.9) 13.7 (13.6–13.8) 13.6 (13.3–13.9) 13.5 (13.4–13.7)

Population (Log10) 
6 3.3 (3.3–3.3) 3.3 (3.3–3.3) 3.2 (3.2–3.2) 3.2 (3.2–3.2)

Monitor—No 3.1 (3.1–3.1) * 3.1 (3.1–3.1) * 2.9 (2.9–2.9) * 2.9 (2.9–2.9) *

Monitor—Yes 3.6 (3.6–3.6) 3.6 (3.6–3.6) 3.5 (3.5–3.6) 3.5 (3.5–3.6)

1
Each column displays total observations (n) and percent (%) for emergency department (ED)/inpatient (IP) asthma case-control groups.

2
Significance was evaluated with the Chi Square test:

*
= p ≤ 0.05;

†
= p ≤ 0.01.

3
Significant age group differences between ED asthma cases and IP asthma cases, p ≤ 0.01.

4
Significant age group differences between ED asthma controls and IP asthma controls, p ≤ 0.01.

5
Significant differences between no monitor versus monitor within poverty, p ≤ 0.05.

6
Significant differences between no monitor versus monitor within population density (Population, L10), p ≤ 0.05.
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Table 2.

Demographics for IP Myocardial Infarction (MI) and IP Heart Failure (HF) Cases and Controls in the 

Baltimore study.

Variables 
1–2 IP MI Cases IP MI Controls IP HF Cases IP HF Controls

Total 4745 (100) 14276 (100) 6919 (100) 20,427 (100)

Age Category 
3–4

35–59 years 1477 (31.1) 
†

4462 (31.3) 
† 1279 (18.5) * 3921 (19.2)

60–75 years 1638 (34.5) 4907 (34.4) 2531 (36.6) 7119 (34.8)

≥76 years 1630 (34.4) 4907 (34.4) 3109 (44.9) 9387 (46.0)

Gender—Female 2041 (42.6) 6155 (42.7) 3559 (52.1) 10,808 (52.2)

Male 2749 (57.4) 8256 (57.3) 3267 (47.9) 9884 (47.8)

Race-Black 633 (13.2) 1913 (13.3) 1737 (25.5) 5292 (25.6)

Other 214 (4.5) 634 (4.4) 191 (2.8) 602 (2.9)

White 3937 (82.3) 11,843 (82.3) 4892 (71.7) 14,780 (71.5)

Atherosclerosis—No 1716 (35.8) 5163 (35.8) 3554 (52.1) 10,777 (52.1)

Yes 3074 (64.2) 9248 (64.2) 3272 (47.9) 9915 (47.9)

Diabetes—No 3363 (70.2) 10,101 (70.1) 3950 (57.9) 11,948 (57.7)

Yes 1427 (29.8) 4310 (29.9) 2876 (42.1) 8744 (42.3)

Hypertension—No 2511 (52.4) 7499 (52.0) 4022 (58.9) 12197 (59.0)

Yes 2279 (47.6) 6912 (48.0) 2804 (41.1) 8495 (41.1)

Insurance—No 149 (3.1) 443 (3.1) 111 (1.6) 324 (1.6)

Yes 4637 (96.9) 13,956 (96.9) 6710 (98.4) 20,356 (98.4)

Poverty 
5 8.3(8.2–8.4) 8.4 (8.3–8.4) 9.1 (9.0–9.2) 9.2 (9.1–9.2)

Monitor—No 6.0 (5.9–6.1) * 6.0 (6.0–6.1) * 6.4 (6.3–6.5) * 6.4 (6.3–6.4) *

Monitor—Yes 12.2 (11.9–12.4) 12.3 (12.2–12.4) 2.8 (12.6–13.0) 12.8 (12.7–12.9)

Population (Log10)
6 3.1 (3.1–3.1) 3.1 (3.1–3.1) 3.2 (3.2–3.2) 3.2 (3.2–3.2)

Monitor—No 2.8 (2.8–2.8) * 2.8 (2.8–2.8) * 2.9 (2.9–2.9) * 2.9 (2.9–2.9) *

Yes 3.6 (3.5–3.6) 3.6 (3.5–3.6) 3.6 (3.6–3.6) 3.6 (3.6–3.6)

1
Each column displays total observations (n) and percent (%) for IP MI and IP HF case-control groups.

2
Significance evaluated with the Chi Square test:

*
= p ≤ 0.05;

†
= p ≤ 0.01.

3
Significant age group difference between IP HF cases and controls, p ≤ 0.05.

4
Significant difference between no monitor versus monitor within poverty, p ≤ 0.05.

5
Significant difference between no monitor versus monitor within population density (Population, L10), p ≤ 0.05.

6
Significant differences between no monitor versus monitor within population density (Population, L10), p ≤ 0.05.
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