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Abstract

Motivation: The development of an open-source platform to predict protein 1D features and 3D structure is an
important task. In this paper, we report an open-source toolkit for protein 3D structure modeling, named OPUS-X.
It contains three modules: OPUS-TASS2, which predicts protein torsion angles, secondary structure and solvent
accessibility; OPUS-Contact, which measures the distance and orientation information between different residue
pairs; and OPUS-Fold2, which uses the constraints derived from the first two modules to guide folding.

Results: OPUS-TASS2 is an upgraded version of our previous method OPUS-TASS. OPUS-TASS2 integrates
protein global structure information and significantly outperforms OPUS-TASS. OPUS-Contact combines multiple
raw co-evolutionary features with protein 1D features predicted by OPUS-TASS2, and delivers better results than the
open-source state-of-the-art method trRosetta. OPUS-Fold2 is a complementary version of our previous method
OPUS-Fold. OPUS-Fold2 is a gradient-based protein folding framework based on the differentiable energy terms in
opposed to OPUS-Fold that is a sampling-based method used to deal with the non-differentiable terms. OPUS-Fold2
exhibits comparable performance to the Rosetta folding protocol in trRosetta when using identical inputs.
OPUS-Fold2 is written in Python and TensorFlow2.4, which is user-friendly to any source-code-level modification.

Availabilityand implementation: The code and pre-trained models of OPUS-X can be downloaded from https://
github.com/OPUS-MaLab/opus_x.

Contact: jpma@bcm.edu.

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Protein 3D structure prediction is crucial since the experimental
approaches are usually time-consuming. In recent years, with the de-
velopment of deep learning techniques, many methods have been
proposed (Jumper et al., 2020; Senior et al., 2020; Song et al., 2013;
Wang et al., 2017; Wu et al., 2021; Yang et al., 2020; Yang and
Zhang, 2015), improving the performance of protein structure pre-
diction by a large margin. In the recent 14th Community-Wide
Experiment on the Critical Assessment of Techniques for Protein
Structure Prediction (CASP14), AlphaFold2 developed by
DeepMind exhibits astonishingly performance (Jumper et al., 2020),
indicating that the computational methods have reached a practic-
able level.

Although protein 3D structure prediction is important, there are
scenarios in which high-accuracy prediction of low-dimensional

structural features, such as 1D features like torsion angles (U and
W), secondary structure (3-state and 8-state) and solvent accessibil-

ity, may be useful for successive modeling (Xu et al., 2020a). Protein

backbone torsion angles (U, W and X) determine the entire protein
conformation. Among them, X is around 180� in most case.

Therefore, most researches only take U and W into consideration

(Hanson et al., 2019; Heffernan et al., 2017; Klausen et al., 2019;
Xu et al., 2020c). Protein secondary structure has been classified

into either 3- or 8-state (Kabsch and Sander, 1983), and it can be

used to describe protein local conformation. Protein solvent accessi-
bility measures the residue’s exposure to solvent at its folded state.

Many successful methods have been proposed to predict protein 1D

features (Fang et al., 2018; Gao et al., 2018; Hanson et al., 2019;
Heffernan et al., 2017; Klausen et al., 2019; Xu et al., 2020c),

among which SPIDER3 (Heffernan et al., 2017) and NetSurfP-2.0
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(Klausen et al., 2019) adopted bidirectional recurrent neural net-
works to measure long-range interactions, SPOT-1D (Hanson et al.,
2019) integrated the predicted contact map (Hanson et al., 2018) to
capture protein global information. Our previous work OPUS-TASS
(Xu et al., 2020c) introduced some new features derived from our
potential functions (Lu et al., 2008; Xu et al., 2017, 2018) to im-
prove the accuracy.

Protein contact map is critical to template-free modeling. At first,
protein contact map is used to predict whether the Euclidean dis-
tance between two Cb atoms is less than 8.0 Å (Hanson et al., 2018;
Wang et al., 2017). Then, some studies demonstrated the advantages
of predicting real values of contact distance for the folding (Ding
and Gong, 2020; Wu et al., 2021). Recently, trRosetta (Yang et al.,
2020) expanded the definition of contact information, including
both distance and orientation information. In trRosetta, the distance
information refers to the traditional Cb–Cb distance, and the orienta-
tion information between residues one and two contains three dihe-
drals (x, h12, h21) and two angles (u12, u21) (Yang et al., 2020).
Here, x denotes the dihedral of Ca1–Cb1–Cb2–Ca2, h12 denotes the
dihedral of N1–Ca1–Cb1–Cb2, u12 denotes the angle of Ca1–Cb1–Cb2.
Their results showed that orientation-guided folding performs better
than distance-guided folding.

Protein 3D structure can be generated directly by optimization
using energy-guided information. For instance, RaptorX-Contact
(Wang et al., 2017) used Crystallography and NMR System (CNS)
(Brunger et al., 1998) to optimize its predicted distance constraints.
trRosetta (Yang et al., 2020) developed a Rosetta protocol to opti-
mize its distance and orientation constraints based on pyRosetta
(Chaudhury et al., 2010; Rohl et al., 2004). Currently, trRosetta-
style’s folding is the most common one since it is fast and accurate.

In this research, we propose an open-source toolkit for protein 3D
structure modeling, named OPUS-X. It consists of three modules:
OPUS-TASS2, OPUS-Contact and OPUS-Fold2. Comparing with its
previous version OPUS-TASS (Xu et al., 2020c), OPUS-TASS2 introdu-
ces the results from trRosetta (Yang et al., 2020) to measure its global
information and adds protein solvent accessibility as its extra outputs.
OPUS-Contact combines three raw co-evolutionary features similar to
TripletRes (Li et al., 2019b) [including the covariance matrix (COV),
the precision matrix (PRE) (Li et al., 2019a) and the coupling parame-
ters of the Potts model by pseudo-likelihood maximization (PLM)
(Ekeberg et al., 2013, 2014)], the results from trRosetta (Yang et al.,
2020), and the protein 1D features predicted by OPUS-TASS2 to de-
liver the final trRosetta-style’s outputs (x, h12, h21, u12, u21). Different
from our previous sampling-based protein folding framework OPUS-
Fold (Xu et al., 2020a), OPUS-Fold2 is a gradient-based method and
can be used to perform the modeling guided by the trRosetta-style’s
outputs from OPUS-Contact.

The contributions of this work can be summarized as follows:

• The protein torsion angles, secondary structure, solvent accessibility

predicted by OPUS-TASS2 are significantly more accurate than

those predicted by the state-of-the-art methods in the literature.
• The protein 3D folding performance of OPUS-Contact is better

than that of trRosetta, which is an open-source state-of-the-art

method.
• We develop a flexible gradient-based protein folding method,

OPUS-Fold2, which is written in Python and TensorFlow2.4, pro-

viding an alternative for the researchers who may need to modify

the folding protocol or energy terms at source-code level. The accur-

acy of the results modeled by OPUS-Fold2 is comparable to that

modeled by the Rosetta folding protocol in trRosetta.

2 Materials and methods

2.1 Datasets
OPUS-TASS2 and OPUS-Contact use the same training and valid-
ation sets as OPUS-TASS (Xu et al., 2020c), which were culled from
the PISCES server (Wang and Dunbrack, 2003) by SPOT-1D

(Hanson et al., 2019) on February 2017 with following constraints:
resolution > 2.5 Å, R-free < 1 and sequence identity < 25%.
There are 10 029 and 983 proteins in the training set and validation
set, respectively.

In this research, we use five independent test sets to evaluate the
performance of different approaches. CASP-FM (56), collected by
SAINT (Uddin et al., 2020), contains 10 template-free modeling
(FM) targets from CASP13, 22 FM targets from CASP12, 16 FM
targets from CASP11 and 8 FM targets from CASP10. CASP13 (26)
contains 26 FM targets from CASP13. CASP14 (15) contains 15 FM
targets from CASP14. The native structures of the targets in CASP13
(26) and CASP14 (15) are downloaded from the CASP website
(http://predictioncenter.org). CAMEO-Hard61 (60), collected by
OPUS-Rota3 (Xu et al., 2020b), contains 60 proteins (one is dis-
carded since it contains over 900 residues) released between January
2020 and July 2020, and labeled as hard targets by the CAMEO
website (Haas et al., 2018). CAMEO (78), collected by trRosetta
(Yang et al., 2020), contains 78 hard targets (we remove the targets
that have missing residues for better evaluation) released between
December 2018 and June 2019.

2.2 Performance metrics
MAE(U) and MAE(W) are used to measure the mean absolute error
(MAE) between the native protein backbone torsion angle and pre-
dicted one. SS3 and SS8 denote the percentage of correct prediction
for 3- and 8-state protein secondary structure, respectively. ASA
denotes the Pearson Correlation Coefficient of protein solvent
accessibility.

To evaluate the performance of contact distance prediction, we
use Ps�24 and Ps�12 to denote the precision of the top L predicted
contacts with sequence separation of s, F/M and F/L to denote the
F1-score of all possible contacts with sequence separation of
12 �s<24 and 24 � s, respectively. TM-score (Zhang and Skolnick,
2004) is used for protein 3D structure evaluation.

2.3 Framework of OPUS-X
OPUS-X consists of three modules: OPUS-TASS2, OPUS-Contact
and OPUS-Fold2. More details are shown in Figure 1.

2.4 OPUS-TASS2
The input features of OPUS-TASS2 can be categorized into three
parts. The first part contains the same 76 features as OPUS-TASS
(Xu et al., 2020c), including 20 Position Specific Scoring Matrix
(PSSM) profile features generated by three iterations of PSI-BLAST
(Altschul et al., 1997) v2.10.0þ with default parameters against
UniRef90 database (Suzek et al., 2015) updated in December 2019,
30 HHM profile features generated by HHBlits v3.1.0 (Steinegger
et al., 2019) with default parameters against Uniclust30 database
(Mirdita et al., 2017) updated in August 2018, 7 physicochemical
properties and 19 PSP19 features (Lu et al., 2008; Xu et al., 2017).
The second part is 30 HHM profile features generated using hhmake
from the multiple sequence alignment results obtained by DeepMSA
(Zhang et al., 2020). DeepMSA is a state-of-the-art multiple se-
quence alignment method which searches the alignment results in
UniRef90, Uniclust30 and Metaclust (Steinegger and Söding, 2018).
The third part is the output of trRosetta (Yang et al., 2020).
Therefore, both distance and orientation global information can be
captured in OPUS-TASS2.

The output features of OPUS-TASS2 contain one regression
output node to predict solvent accessibility, 3 regression output
nodes to predict CSF3 features (Xu et al., 2018, 2020c), 4 regression
output nodes to predict sin(U), cos(U), sin(W) and cos(W), 11 classifi-
cation output nodes to predict 3- and 8-state secondary structure. 8-
state secondary structure is defined as follows: coil C, high-
curvature S, b-turn T, a-helix H, 310-helix G, p-helix I, b-strand E
and b-bridge B (Hanson et al., 2019; Kabsch and Sander, 1983).
They can be further classified into coil C (C, S and T), helix H (H, G
and I) and strand E (E and B).

The neural network architecture of OPUS-TASS2 is shown in
Supplementary Figure S1. To introduce the results from trRosetta,
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we use a stack of dilated residual-convolutional blocks similar to
trRosetta to perform the feature extraction. Sequentially, we
perform feature selection, using the 64 filter-dimension features at
(n, n) to represent the features of residue n. Then, we concatenate
the 2D inputs with the 1D inputs, which contain the first part and se-
cond part input features of OPUS-TASS2 defined above, and feed
them into the following modules which are basically identical to that
in OPUS-TASS (Xu et al., 2020c).

OPUS-TASS2 adopts ensemble strategy as OPUS-TASS
(Xu et al., 2020c) and SPOT-1D (Hanson et al., 2019), and it con-
sists of nine models. The average is used for 3- and 8-state secondary
structure classification prediction, and the median is used for back-
bone torsion angles and solvent accessibility regression prediction.

2.5 OPUS-Contact
The inputs of OPUS-Contact contain four parts. Following
TripletRes (Li et al., 2019b), the first three parts are the three raw
co-evolutionary features: the covariance matrix (COV), the precision
matrix (PRE) (Li et al., 2019a) and the coupling parameters of the
Potts model by pseudolikelihood maximization (PLM) (Ekeberg
et al., 2013, 2014). The fourth part contains 92 1D features: includ-
ing 76 features from the first part of input features of OPUS-TASS2,
and 1 solvent accessibility, 4 torsion angles [sin(U), cos(U), sin(W)
and cos(W)] and 11 secondary structure (3- and 8-state) predicted by
OPUS-TASS2. We use outer concatenation function as SPOT-1D
(Hanson et al., 2019) to convert 1D features (L, 92) into 2D features
(L, L, 184). Together with the results from trRosetta (Yang et al.,
2020) (L, L, 100) and CCMpred (Seemayer et al., 2014) (L, L, 1),
the final fourth part features have 285 features in total. Here, COV,
PRE, PLM, CCMpred and the results from trRosetta are generated
from the multiple sequence alignment results obtained by DeepMSA
(Zhang et al., 2020).

The outputs of OPUS-Contact are identical to that of trRosetta
(Yang et al., 2020), which include the predicted Cb–Cb distance,
3 dihedrals (x, h12, h21) and 2 angles (u12, u21) between residues
1 and 2. The distance ranges between 2 and 20 Å, and it is segmented
into 36 bins with 0.5 Å interval, plus one bin represents the >20 Å
case. u ranges between 0� and 180�, and it is segmented into 12 bins

with 15� interval, plus one bin represents the non-contact case. x, h
range between -180� and 180�, and they are segmented into 24 bins

with 15� interval, plus one bin represents the non-contact case.
The neural network architecture of OPUS-Contact is shown in

Supplementary Figure S2. We use a stack of dilated residual-

convolutional blocks similar to the 2D feature extraction step in
OPUS-TASS2. The 4 inputs parts (COV, PRE, PLM and Others) go

through 41 blocks separately at first, and then concatenate to go

through the following 21 blocks.
OPUS-Contact also adopts ensemble strategy as trRosetta (Yang

et al., 2020) and it consists of seven models. The average is used for

the final prediction.

2.6 OPUS-Fold2
OPUS-Fold2 is a gradient-based protein folding framework. The
variables of OPUS-Fold2 are the backbone torsion angles (U, W
and X) of all residues. OPUS-Fold2 minimizes the loss function

derived from the outputs of OPUS-Contact by adjusting its

variables.
The initial U, W are predicted by OPUS-TASS2, and X is set to

180�. The loss function of OPUS-Fold2 in this research is defined as

follows:

loss ¼ wdist
1

Nconsdist

X
i2consdist

scorei
dist þwx

1

Nconsx

X
i2consx

scorei
x

þwh
1

Nconsh

X
i2consh

scorei
h þwu

1

Nconsu

X
i2consu

scorei
u

consdist is the collection of distance constraints, in which

P4� dist<20 � 0:05. consx and consh are the collections of x and h
constraints, respectively, in which Pcontact � 0:55. consu is the collec-

tions of u constraints, in which Pcontact � 0:65. wdist, wx, wh and wu

are the weights of each term, which are set to be 20, 8, 8 and 8, re-

spectively. Similar to the folding protocol in trRosetta (Yang et al.,
2020), we convert the distance and orientation distributions to the
energy terms by the following equations:

Fig. 1. Three modules in OPUS-X. OPUS-X consists of three modules: OPUS-TASS2, which predicts protein torsion angles, secondary structure and solvent accessibility;

OPUS-Contact, which measures the distance and orientation information between different residue pairs; and OPUS-Fold2, which uses the backbone torsion angles (U and W)

predicted by OPUS-TASS2 as its initial state, and applies the constraints derived from OPUS-Contact to guide folding. The red structures are the predicted structures during the

folding, the blue structure is its native counterpart
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scorei
dist ¼ �lnPi þ ln

di

dN

� �a

PN

 !

scorei
orient ¼ �lnPi þ lnPN

Following Dfire (Zhou and Zhou, 2002), the a is set to be 1.57.
The reference state for the distance distribution is the probability of
the Nth bin [19.5, 20], and for the orientation distribution is the
probability of the last bin [165�, 180�]. di is the distance for the ith
distance bin. Pi is the probability for the ith bin. Cubic spline curves
are generated to make the energy terms differentiable.

The optimization process of OPUS-Fold2 is based on
TensorFlow2.4 (Abadi et al., 2016), which is a flexible commonly
used tool to deal with the gradient descent tasks. We use Adam
(Kingma and Ba, 2015) optimizer to optimize our loss function with
an initial learning rate of 0.5, 1000 steps are performed.

3 Results

3.1 Performance of OPUS-TASS2
We compare the performance of OPUS-TASS2 with that of
NetSurfP-2.0 (Klausen et al., 2019), SPOT-1D (Hanson et al., 2019)
and our previous work OPUS-TASS (Xu et al., 2020c) on CAMEO-
Hard61 (60), CASP-FM (56) and CASP14 (15). The results
of NetSurfP-2.0 and SPOT-1D are obtained from their official
websites. As shown in Table 1, OPUS-TASS2 achieves the highest
accuracies for 3- and 8-state secondary structure prediction, the low-
est mean absolute errors for torsion angles (U and W) prediction and
the highest Pearson Correlation Coefficient for solvent accessibility
prediction on all three datasets.

The major differences between OPUS-TASS2 and OPUS-TASS
(Xu et al., 2020c) are the two extra input features, which are the
second part 30 HHM profile features and the third part 64 global
information features. To verify the importance of these two extra in-
put features, we add them to the OPUS-TASS original 76 input fea-
tures one by one. The results are shown in Table 2, it suggests that
both of them are beneficial to the final prediction accuracy, especial-
ly the third part which contains the distance and orientation global
information predicted by trRosetta (Yang et al., 2020).

Note: The best result for each test is shown in boldface.
Since global information is crucial for protein 1D features predic-

tion, we would like to find out the best performance OPUS-TASS2
can achieve if the input features for global information are all from
the native structures. In Table 3, we list the performance of OPUS-
TASS2 using the real orientation information (x, h and u), real dis-
tance information and both of them, respectively. The results show
that, after introducing the real values, the performance of OPUS-

TASS2 is significantly improved, which means the accuracy of
OPUS-TASS2 can be increased by the improvement of trRosetta-
style’s outputs. It also indicates that the relation between local and
global structure information has been well captured in OPUS-
TASS2.

3.2 Performance of OPUS-Contact
To evaluate the performance of contact distance information, cur-
rent studies (Hanson et al., 2018; Wang et al., 2017; Yang et al.,
2020) usually used precision of the top L predicted contacts or F1-
score as the metric. However, as shown in Supplementary Figure S3,
in our models, the correlation between theses distance-based metrics
and the TM-score of their corresponding 3D structures modeled by
the folding protocol in trRosetta (Yang et al., 2020) is not
significant.

The outputs of OPUS-Contact contain both distance and orienta-
tion information, instead of evaluating them separately, we directly
use the TM-score to measure the accuracy of the predicted 3D struc-
tures obtained using these outputs information as the constraints in
trRosetta folding protocol. In Table 4, we list the performance of
OPUS-Contact and trRosetta (Yang et al., 2020) on CAMEO-
Hard61 (60), CAMEO (78), CASP13 (26) and CASP14 (15). Both
OPUS-Contact and trRosetta use the same multiple sequence align-
ment results from DeepMSA (Zhang et al., 2020).

3.3 Performance of OPUS-Fold2
We compare the folding performance of OPUS-Fold2 and the
Rosetta (Chaudhury et al., 2010; Rohl et al., 2004) folding protocol
in trRosetta (Yang et al., 2020) on CAMEO-Hard61 (60). As shown
in Figure 2, when using the distance constraints exclusively, OPUS-
Fold2 outperforms trRosetta by a large margin. OPUS-Fold2 also
slightly outperforms trRosetta when using both distance and orienta-
tion constraints. However, the complete folding protocol of
trRosetta includes some other terms that haven’t been included into
OPUS-Fold2 yet. The final result of the complete version of
trRosetta is slightly better than that of OPUS-Fold2.

We list the results of OPUS-Fold2 and the results of the complete
version of trRosetta in Supplementary Figure S4. OPUS-Fold2 exhib-
its a consistent well performance on all four datasets and achieves
comparable performance to trRosetta when using identical inputs
from OPUS-Contact.

We show the optimization process of OPUS-Fold2 in Figure 3.
The total loss become lower and the TM-score become higher along
with the optimization. We also show some intermediate structures
during the optimization process of OPUS-Fold2 in Figure 4. More
and detailed folding trajectories can be found in Supplementary
Figures S5–S7.

4 Discussion

Protein 3D structure prediction is an important and challenging
task. The feasibility of it has been demonstrated by the AlphaFold2
in CASP14 (Jumper et al., 2020). In this paper, we develop an open-
source toolkit for protein 3D structure modeling, named OPUS-X. It
includes a state-of-the-art protein torsion angles, secondary structure
and solvent accessibility predictor, namely OPUS-TASS2; a better
global distance and orientation constraints predictor compared with
the open-source state-of-the-art method trRosetta (Yang et al.,
2020), namely OPUS-Contact; and a gradient-based protein folding
framework that is comparable to the Rosetta (Chaudhury et al.,
2010; Rohl et al., 2004) folding protocol in trRosetta (Yang et al.,
2020), namely OPUS-Fold2.

As shown in Table 1, OPUS-TASS2 outperforms NetSurfP-2.0
(Klausen et al., 2019), SPOT-1D (Hanson et al., 2019) and OPUS-
TASS (Xu et al., 2020c) by a large margin, especially on the most
difficult dataset CASP14 (15). We believe the accurate and detailed
distance and orientation global information plays a dominant role.
Table 2 also indicates the importance of global information. To fur-
ther demonstrate the importance of global information and the po-
tentiality of OPUS-TASS2, we feed the real values of global

Table 1. Performance of different predictors on CAMEO-Hard61

(60), CASP-FM (56) and CASP14 (15)

SS3 SS8 MAE(U) MAE(W) ASA

CAMEO-Hard61 (60)

NetSurfP-2.0 83.78 70.38 20.1 29.99 0.779

SPOT-1D 83.69 70.72 19.55 29.97 0.775

OPUS-TASS 84.15 72.12 19.26 29.47 –

OPUS-TASS2 84.55 72.5 19.07 28.79 0.797

CASP-FM (56)

NetSurfP-2.0 80.68 69.14 19.94 31.43 0.749

SPOT-1D 82.37 71.11 19.39 30.1 0.744

OPUS-TASS 83.4 73.27 18.85 28 –

OPUS-TASS2 85.96 76.28 17.94 25.17 0.804

CASP14 (15)

NetSurfP-2.0 75.39 61.87 22.62 40.54 0.68

SPOT-1D 75.19 61.41 23.19 43.98 0.663

OPUS-TASS 77.3 63.53 21.91 38.93 –

OPUS-TASS2 80.87 68.26 20.53 33.48 0.735

Note: The best result for each test is shown in boldface.
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information from the native structures into OPUS-TASS2 to predict
their 1D features. The results (Table 3) show that, using the real
orientation information (x, h and u), real distance information, and
both of them will significantly improve protein 1D features predic-
tion accuracy. Note that, the improvement of introducing real orien-
tation information is significantly larger than that of introducing
real distance information, indicating the dominant influence of
global orientation information. Combining them will further boost
the final accuracy.

Since the trRosetta-style’s (Yang et al., 2020) outputs contain
both distance and orientation information, and they may need to
achieve a trade-off to deliver better 3D structure prediction, evalu-
ating them separately may not be a good idea. For example, as
shown in Supplementary Figure S3, traditional distance-based
metrics are not significant correlated with the final 3D prediction

accuracy. Therefore, we directly use the final 3D prediction results
to evaluate the trRosetta-style’s outputs. Comparing with the
open-source state-of-the-art method trRosetta, OPUS-Contact
achieves better 3D structure prediction accuracy on CAMEO-
Hard61 (60), CAMEO (78), CASP13 (26) and CASP14 (15)
(Table 4).

Table 2. Importance of different parts in OPUS-TASS2 input features

First 76-days Second 30-days Third 64-days SS3 SS8 MAE(/) MAE(w) ASA

CAMEO61 (60)

� 83.55 71.06 19.59 29.52 0.786

� � 83.45 71.39 19.6 29.51 0.782

� � � 83.68 71.58 19.17 29.24 0.788

CASP-FM (56)

� 84.02 74.22 18.58 26.91 0.77

� � 84.14 74.27 18.72 26.65 0.767

� � � 85.85 75.63 18.35 25.47 0.795

CASP14-FM (15)

� 76.02 62.41 21.79 38.65 0.68

� � 77.3 64.15 21.92 36.91 0.705

� � � 80.37 67.1 20.73 33.59 0.733

Note: The best result for each test is shown in boldface.

Table 3. Performance of OPUS-TASS2 based on the real values of

different global information

SS3 SS8 MAE(/) MAE(w) ASA

CAMEO61 (60)

OPUS-TASS2 84.55 72.5 19.07 28.79 0.797

w/real orient 89.29 81.37 15.9 17.39 0.877

w/real dist 87.08 76.42 17.91 24.14 0.835

w/real all 90.85 83.35 15.32 15.97 0.888

CASP-FM (56)

OPUS-TASS2 85.96 76.28 17.94 25.17 0.804

w/real orient 89.46 82.81 15.2 16.25 0.885

w/real dist 88.04 79.33 16.87 21.47 0.85

w/real all 90.85 84.42 14.68 15.35 0.9

CASP14-FM (15)

OPUS-TASS2 80.87 68.26 20.53 33.48 0.735

w/real orient 87.51 78.01 16.5 17.83 0.874

w/real dist 84.9 72.45 18.92 26.82 0.805

w/real all 90.04 81 15.41 16.45 0.889

Note: The best result for each test is shown in boldface.

Table 4. TM-score of OPUS-Contact and trRosetta on different

datasets

CAMEO-Hard61

(60)

CAMEO

(78)

CASP13

(26)

CASP14

(15)

trRosetta 0.600 0.668 0.659 0.427

OPUS-Contact 0.616 0.684 0.671 0.469

Note: The best result for each test is shown in boldface.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

dist ori dist+ori complete

trRosetta OPUS-Fold2

Fig. 2. Performance of OPUS-Fold2 and the Rosetta folding protocol in trRosetta

based on the outputs from OPUS-Contact on CAMEO-Hard61 (60). dist denotes

the prediction obtained by distance-guided folding exclusively, ori denotes the pre-

diction obtained by orientation-guided (x, h and u) folding exclusively, distþori

denotes the prediction obtained using both of them, and complete denotes the pre-

diction obtained using trRosetta’s original complete energy terms [including the

ramachandran, the omega, the van der Waals (vdw) and the centroid backbone

hydrogen bonding (cen_hb) terms]. The y-axis represents the TM-score

Fig. 3. OPUS-Fold2 optimization process of target 2020-01-18_00000081_1.pdb

(with 444 residues in length) in CAMEO-Hard61 (60). The blue line is the total loss

and the orange line is the TM-score. In the first 100 epochs, the loss rapidly

decreases from -67 to -130, and the TM-score rapidly increases from 0.247 to

0.792. The loss continually decreases in the following epochs and stabilizes around -

140, and the TM-score stabilizes around 0.87
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We also compare the performance of OPUS-Contact with that of
some other methods on CASP13 (26) and CASP14 (15). The results of
their methods are downloaded from the CASP website. On CASP13
(26), both OPUS-Contact (TM-score¼ 0.671) and trRosetta (TM-
score¼ 0.659) are better than the best method at the time A7D (TM-
score¼ 0.644) (Senior et al., 2020). On CASP14 (15), both OPUS-
Contact (TM-score¼ 0.469) and trRosetta (TM-score¼0.427) are
lower than the best human group method AlphaFold2 (TM-score-
¼0.850) and the best server group method Zhang-Server (TM-score-
¼0.540) (Yang and Zhang, 2015). We believe the reason may lies in
the insufficient multiple sequence alignment searching step since the
alignment results of 5 out of 15 targets have less than 5 sequences in
this work. Nevertheless, comparing with the other methods, OPUS-
Contact provides a better open-source protein structure prediction tool
that can be run on the user’s own server for the community.

OPUS-Fold2 is a gradient-based protein folding method. It is
written in Python and TensorFlow2.4, easily to be modified at
source-code level, which is especially useful for the folding energy
term developers. Figure 2 shows the contributions of distance and
orientation constraints. Same as the Rosetta (Chaudhury et al.,
2010; Rohl et al., 2004) folding protocol in trRosetta (Yang et al.,
2020), the folding results guided by orientation constraints are
significantly better than that guided by distance constraints. After
combining them together, the accuracy is further improved. On
CAMEO-Hard61 (60), OPUS-Fold2 outperforms trRosetta when
using distance constraints exclusively, orientation constraints exclu-
sively and both of them jointly as the energy function. However,
after introducing some other terms such as the ramachandran, the
omega, the van der Waals and the centroid backbone hydrogen

bonding into the trRosetta’s energy function, the folding perform-
ance of trRosetta is slightly better than that of OPUS-Fold2 on
CAMEO-Hard61 (60), CAMEO (78), CASP13 (26) and CASP14
(15) (Supplementary Fig. S4). One of our future goals is to add
these terms into OPUS-Fold2. Figures 3 and 4 and Supplementary
Figures S5–S7 show some insights of the OPUS-Fold2 optimization
step. Along with the optimization, the total loss descends logically,
indicating the effectiveness of OPUS-Fold2.
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