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Abstract: Image encryption is an excellent method for the protection of image content. Most au-
thors used the permutation-substitution model to encrypt/decrypt the image. Chaos-based image
encryption methods are used in this model to shuffle the rows/columns and change the pixel values.
In parallel, authors proposed permutation using non-chaotic methods and have displayed good
results in comparison to chaos-based methods. In the current article, a new image encryption al-
gorithm is designed using combination of Newton-Raphson’s method (non-chaotic) and general
Bischi-Naimzadah duopoly system as a hyperchaotic two-dimensional map. The plain image is
first shuffled by using Newton-Raphson’s method. Next, a secret matrix with the same size of
the plain image is created using general Bischi-Naimzadah duopoly system. Finally, the XOR be-
tween the secret matrix and the shuffled image is calculated and then the cipher image is obtained.
Several security experiments are executed to measure the efficiency of the proposed algorithm,
such as key space analysis, correlation coefficients analysis, histogram analysis, entropy analysis,
differential attacks analysis, key sensitivity analysis, robustness analysis, chosen plaintext attack
analysis, computational analysis, and NIST statistical Tests. Compared to many recent algorithms,
the proposed algorithm has good security efficiency.

Keywords: Newton-Raphson’s method; chaos; image encryption/decryption; security analysis

1. Introduction

Digital images play a critical role in the world today. Digital images make up 70%
of the transmitted data via the Internet [1]. They often contain sensitive and valuable
information which requires protection against unauthorised access in various applications
such as military images, medical images and Satellite images. Therefore, researchers have
been designing methods to protect digital images from piracy while they are transferred
from one place to another such as encryption algorithms via chaos [2–6], DNA coding [7],
and wavelets [8]. Also S-boxes play an excellent role in confirming the resistance of block
ciphers against cryptanalysis [9]. In Reference [10], the authors presented an efficient
algorithm based on a class of Mordell elliptic curves to generate S-boxes. One of the most
stable and powerful public key cryptosystems has been proven to be the Elliptic Curve
Cryptography, which is popular for its high performance. But improving protection by
increasing the duration of the key is inefficient [11,12].

Among the many ways of image cryptography, the image cryptography based on
chaotic map will selected over the past two decades. This is because the chaotic mappings
have necessary proprieties such as high sensitivity to the initial conditions and the parame-
ters, nonlinearity, non-periodicity, and pseudorandomness [13–17]. Numerous researchers
have presented image cryptography algorithms via chaotic maps. Some of these algo-
rithms have limited key space, weak keys, vulnerability to chosen plaintext/ciphertext
attacks [18–20]. Almost all the authors used the permutation-substitution (confusion-
diffusion) model to encrypt/decrypt the image. There are different permutation methods,
from performing a shuffling to rows/columns to performing more complicated iterative
processes. For example, in Reference [3], the authors proposed rows/columns shuffling
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algorithm using the logistic map to get permutation. Karawia in Reference [6] suggested
an image encryption algorithm using Fisher-Yates shuffling to obtain permutation while
Shakiba in Reference [21] performed cyclic shifts to the rows/columns via Chebyshev map-
ping to achieve permutation. Xiao et al. in Reference [22] used switch control mechanism
to perform permutation for rows and columns of plain image. For substitution, majority
of the authors applied the XOR processes [3–6,21,23], or addition modular 256 during the
substitution stage of encryption [24]. There are many maps (chaotic and hyperchaotic)
utilized to design encryption algorithms, for example, 1D chaotic map in Reference [25],
2D generalized Arnold map in Reference [26], 3D Cat chaotic map in Reference [27,28],
and 4D chaotic map in Reference [29].

Many of the known chaotic image encryption algorithms are resistanceless for cho-
sen plaintext attacks(CPA). These image encryption algorithms are broken by Li et al.,
algorithm [30], such as References [25,31,32]. To avoid this, the image encryption algorithm
must be dependent on the plain image and randomized [21,33]. Based on the dimension
of the chaotic map, most of 1D-chaotic maps have simple forms and simple chaotic orbits
and can be guessed. So image encryption based on 1D chaotic maps are low secure [19,34].
On the contrary, the hyperchaotic maps have more complicated form and complicated
chaotic performance which make expectation of their chaotic orbits is difficult [35].

In the current article, we design an image encryption algorithm that uses Newton-
Raphson’s method, to shuffle the rows/columns of the plain image, and the general
Bischi-Naimzadah duopoly system, to diffuse the pixels of the shuffled image. The general
Bischi-Naimzada is selected to solve three essential problems: (i) the randomness of the
chaotic sequences, (ii) the space of the secret key, and (iii) improving the security compared
with the algorithms in literature. The chaotic sequence generated from it is extremely
random. Also, it has eight parameters and two initial values and thus increasing the secret
key space for the image encryption algorithm. In this algorithm, the key mixing proportion
factor K is utilized to generate the secret key [36]. So, the proposed algorithm depends on
the plain image and it can provide CPA-security. For more details about chaos based image
encryption techniques, see Reference [37].

The main contributions of the current article are: (i) using a 2D chaotic map (the general
Bischi-Naimzadah duopoly system) with a large positive Lyapunov exponent, wide and
uniform distribution, (ii) Performing rows/columns shuffle for the plain image using
pseudo-random sequence generation based on Newton-Raphson’s method, (iii) performing
pixel diffusion to the shuffled image, and (iv) offering CPA-security for our algorithm.

This article is prepared as follows. In Section 2, the general Bischi-Naimzadah duopoly
system is presented. The proposed algorithm is introduced in Section 3. In Section 4,
security experimental results and comparative analyses are given. Finally, conclusions are
mentioned in Section 5.

2. General Bischi-Naimzadah Duopoly System (GBNDS)

The image encryption needs a sequences of random numbers to generate a good
secret image. The current paper takes advantage of the effectiveness of the general Bischi-
Naimzadah duopoly system to generate pseudorandom numbers. The general Bischi-
Naimzada game is a market vying between two companies based on sales constraints
with the aim of maximising profits. The general Bischi-Naimzadah duopoly system is
mathematically defined as [38]:

q1(t + 1) = q1(t) + ν1q1(t)[(1− µ1)(a− 2bq1(t)− bq2(t))− c1]
q2(t + 1) = q2(t) + ν2q2(t)[(1− µ2)(a− 2bq2(t)− bq1(t))− c2],

(1)

where
qi: the output of company i = 1, 2,
a > 0: constant price,
b > 0: the market price slope,
ci: the marginal cost, i = 1, 2,
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µi > 0: associated with the sales constraint, i = 1, 2,
νi > 0: the adjustment speed of company i = 1, 2.

The chaotic behavior of system (1) is observed by the values of the parameters:
a = 11.25, b = 0.5, c1 = 0.20, c2 = 0.30, µ1 = 0.002, µ2 = 0.60, ν1 = 0.20, ν2 = 0.70 and
initial values q10 = 0.10, q20 = 0.20. Figure 1a displays the bifurcation diagram of system
(1) regarding the parameter µ1. Lyapunov exponent of system (1) regarding the parameter
µ1 is shown in Figure 1b. Figure 2 displays phase diagram of system (1). It presents four
unconnected chaotic areas. Whereas the phase diagram of system (1) at µ1 = 0.97 is given
in Figure 3 and it presents a chaotic attractor. The main advantages of the proposed coding
scheme compared to other systems in the literature is that the chaotic coding sequence
extracted from the GBNDS is extremely random. This is because this it contains many
chaotic regions for different values of the parameters. The proposed system also shows a
great positive feature, which is the emergence of a very wide range of chaos and complex
dynamics with the parameter µ1 in which the system (1) shows very complex chaotic
behavior [38]. Moreover, incorporating the effects of sales constraints into the form has
the advantage of increasing the number of parameters in the form and thus expanding
the secret key space for the cryptography process. Also, a stable coexistence of multiple
chaotic attractions is observed in this case [38].

Figure 1. (left) Bifurcation diagram of system (1) regarding µ1, (right) Lyapunov exponent of system
(1) regarding µ1.

Figure 2. Phase diagram of system (1) for a = 11.25, b = 0.5, c1 = 0.20, c2 = 0.30, µ1 = 0.002,
µ2 = 0.60, ν1 = 0.20, ν2 = 0.70, q10 = 0.10, and q20 = 0.20.
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Figure 3. Phase diagram of system (1) for a = 11.25, b = 0.5, c1 = 0.20, c2 = 0.30, µ1 = 0.97,
µ2 = 0.60, ν1 = 0.20, ν2 = 0.70, q10 = 0.10, and q20 = 0.20.

3. The Proposed Algorithm

The proposed method applies confusion-diffusion model to encrypt the plain image.
Sequences are generated by the points, calculated by Newton-Raphson’s method, on a
polynomial function. Based on these sequences, the rows/columns of the plain image
are shuffled (confusion phase). By applying XOR between the shuffled image and the
generated values of the chaotic system (1), the diffusion stage modifies the pixel val-
ues. In the current section, the key generation, rows/columns Shuffling, and an image
encryption/decryption algorithms are presented.

3.1. The Key Generation

Suppose that O = (oij), i = 1, 2, ..., M, and j = 1, 2, ..., N, is the plain image. The se-
cret key is generated by using the key mixing proportion factor K as follows [36]:

Ks =
1

256
mod

 [ sM
2 ]

∑
i=[ (s−1)M

2 ]+1

N

∑
j=1

oij, 256

, s = 1, 2, (2)

and, the key values ζs is changed via the following formula:

ζs ←
(ζs + Ks)

2
, s = 1, 2, (3)

where [x] denoted to the nearest integer and ζs denoted to qs0, s = 1, 2.
The key space of the proposed algorithm consists of the polynomial function with

degree k and limits of [α, β] for the Newton-Raphson’s method, two initial values and
eight parameters for GBNDS. Then, for the confusion phase, select two values, α, β,
and one polynomial function based on Newton-Raphson’s method, and for diffusion phase,
two initial values, q10, q20, and eight parameters a, b, c1, c2, µ1, µ2, ν1, ν2 for the System (1).

3.2. Rows/Columns Shuffling (Confusion Phase)

In this section, we design a technique for generating a random permutation of the
integers {1, 2, . . . , n}. Then, we shuffle the rows/columns of the plain image via the random
permutation sequences.

Suppose a polynomial function of degree s, p(x) = ∑s
i=1 aixi, where as 6= 0 and s > 1,

is defined on the interval [α, β]. Take x0 = (α + β)/2 and Newton-Raphson’s method
generates the sequence {xi}∞

i=0 by the following formula:

xi = xi−1 −
p(xi−1)

p′(xi−1)
, p′(xi−1) 6= 0 ∀ i = 1, 2, 3, . . . (4)



Entropy 2021, 23, 57 5 of 17

Suppose, the Newton-Raphson’s method generates the points {x1, x2, x3, . . . , xn}.
To get more randomness, instead of p(xi), the sequence is defined as the fraction part of
p(xi). This sequence depends on the polynomial p(x) and the interval [α, β].

The standard NIST SP800-22 test is used to assess the efficiency of the pseudorandom
number generator(PRNG) of Newton-Raphson’s method, and Table 1 gives the test results.
In Table 1, the random number generator has passed all the tests. So, it has a good randomness.

Table 1. NIST statistical test for PRNG-Newton-Raphson’s method.

Statistical Test PRNG Result

Frequency monobit test 100/100 PASS
Block frequency test 99/100 PASS
Rank test 99/100 PASS
Runs test 97/100 PASS
Longest runs test 99/100 PASS
Cumulative sums test 100/100 PASS
Discrete Fourier transform 100/100 PASS
Random excursion test 56/58 PASS
Random excursion variant test 57/58 PASS
Universal test 96/100 PASS
Approximate entropy 97/100 PASS
Linear complexity test 99/100 PASS
Serial 99/100 PASS
Non Overlapping templates test 97/100 PASS
Overlapping templates test 100/100 PASS

Algorithm 1 is proposed to generate a random permutation of the integers {1, 2, . . . , n}
based on Newton-Raphson’s method as follows:

Algorithm 1 Random-Permutation algorithm
Input: Size of random numbers, n, the polynomial p(x), α, and β.
Output: S, the random permutation of the integers {1, 2, . . . , n}.
Step 1: Set S = 1, x0 = (α + β)/2, x = p(x0)− f ix(p(x0))
Step 2: For i = 2 to n, compute

S = [S i]
k = ceil(i ∗ x)
S([k i]) = S([i k])
x1 = x0 − p(x0)/p′(x0)
x = p(x1)− f ix(p(x1))
x0 = x1

End For
Step 3: S

Suppose the size of the plain image is M × N. Algorithm 2 is designed to shuffle
the plain image based on the random permutation sequences of Algorithm 1. It may be
processed as in Algorithm 2.

3.3. Diffusion Phase

The system (1) is utilized to generate a chaotic sequence of size M× N. Then, reshape
it to be of size 1× MN, Q = {q1, q2, . . . , qMN}. The sequence Q is modified using the
following formula:

qi = mod(ceil(qi × 1014), 256), i = 1, 2, . . . , MN. (5)
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Algorithm 2 Row/Columns shuffling algorithm
Input: The plain image, O, the polynomial p(x), α1, α2, β1, and β2.
Output: H, the shuffled image.
Step 1: Set [M, N] = size(O)
Step 2: Use Algorithm 1, with polynomial p(x), and interval [α1, β1], to generate a random

permutation of size M for shuffling the rows, say SRows.
Step 3: Use Algorithm 1, with polynomial p(x), and interval [α2, β2], to generate a random

permutation of size N for shuffling the columns, say SColumns.
Step 4: For i = 1 to M, compute

For j = 1 to N, compute
H(i, j) = O(SRows(i), SColumns(j))

End For j
End For i

Step 5: H, the shuffled image.

Moreover, the shuffled image H is reshaped to be of size 1×MN, H = {h1, h2, . . . , hMN}.
Finally, XOR is applied between each pixel in H and corresponding chaotic value of X,
D = XOR(H, X) (diffusion phase). The algorithm of diffusion phase may be processed
as follows:

Algorithm 3 Diffusion algorithm
Input: The shuffled image, H, q10, q20, a, b, c1, c2, µ1, µ2, ν1, and ν2.
Output: D, the diffusion vector.
Step 1: Reshape H, H = {h1, h2, ..., hMN}.
Step 2: Covert H to binary, Hb.
Step 3: Set q1(0) = q10, q2(0) = q20.
Step 4: Perform initial iterations,

For t = 0 to 999
q1(t + 1) = q1(t) + ν1q1(t)[(1− µ1)(a− 2bq1(t)− bq2(t))− c1]
q2(t + 1) = q2(t) + ν2q2(t)[(1− µ2)(a− 2bq2(t)− bq1(t))− c2]

End For
Step 5: Set q1(0) = q1(1000), q2(0) = q2(1000).
Step 6: For t = 0 to MN − 1

q1(t + 1) = q1(t) + ν1q1(t)[(1− µ1)(a− 1(t)− bq2(t))− c1]
q2(t + 1) = q2(t) + ν2q2(t)[(1− µ2)(a− 2bq2(t)− bq1(t))− c2]
q(t + 1) = (q1(t + 1) + q2(t + 1))/2

End For
Step 7: Preprocess the values of Q = {q(1), q(2), ..., q(MN)} as follows:

q(t) = mod(ceil(q(t) ∗ 1014), 256), t = 1, 2, ..., MN.
Step 8: Covert Q to binary, Qb.
Step 9: Perform XOR between Hb and Qb, say D = XOR(Hb, Qb).

3.4. The Encryption/Decryption Algorithm

The encrypted image is produced from Algorithm 3 by reshape diffusion vector D to
be of size M× N, say E. The whole image encryption algorithm may be processed as in
the Algorithm 4.

The Algorithm 4 (Image Encryption based on General Bischi-Naimzadah Duopoly
System) will be referred to as IEGBNDS algorithm. Indeed, IEGBNDS algorithm can be
applied to encrypt the color images. We can decompose color images into three grayscale
images of red, green and blue colors (R, G, B components). After that we can encrypt
them into their corresponding cipher images by applying the proposed algorithm. Then by
re-joining the three cipher images of the R, G, B components, the color cipher image can
be obtained.



Entropy 2021, 23, 57 7 of 17

Algorithm 4 Image encryption algorithm
Input: The plain image, O, the polynomial p(x), α, β, q10, q20, a, b, c1, c2, µ1, µ2, ν1, and ν2.
Output: E, the encrypted image.
Step 1: Read the plain image, O.
Step 2: Generate the secret key by using the key mixing proportion factor.
Step 3: Call Algorithm 2 to get the shuffled image H.
Step 4: Call Algorithm 3 to get the diffusion vector D.
Step 5: Covert D to decimal, say Dd.
Step 6: Change the dimension of Dd to M× N, say E.
Step 7: E is the encrypted image.

The decryption algorithm is the inverse steps of IEGBNDS algorithm. Figure 4 displays
the block diagram of IEGBNDS algorithm.

Figure 4. Block diagram of the proposed algorithm.

4. Experimental Results

The IEGBNDS algorithm has been applied to several 512 × 512 pixel gray-scale
images and very promising results have been accomplished. All codes are accomplished
on a Windows 10 Laptop with Intel(R) Core(TM) i7 2.40 GHz, CPU with 12 GB RAM using
MATLAB R2016b.

4.1. Key Space Analysis

The key space must be large enough to hold out against brute-force attack. It must
be above the value 2100 [39]. The key space of the IEGBNDS algorithm consists of the
polynomial function with degree k and limits of [α, β] for the Newton-Raphson’s method,
two initial values and eight parameters for GBNDS. If the accuracy 10−14 has been used
then it will be equal to 1014(k+1) + 10168(>> 2100). Table 2 gives the key space of the
IEGBNDS algorithm compared to some recent algorithms in literature.

Table 2. Key space of the IEGBNDS algorithm compared to some recent algorithms in literature.

Algorithm IEGBNDS Algorithm [5] [23] [40]

Key space (1014(k+1) + 10168) > 2605 10140 ≈ 2466 >104 × 2208 2256



Entropy 2021, 23, 57 8 of 17

4.2. Histogram Analysis

In a good encryption algorithms, the distribution of the pixel intensity values within
a cipher image should be as similar to the uniform distribution as possible. Figures 5 and 6
show that the histograms of the cipher image is very similar to the uniform distribution.
As the χ2 statistical test is used to measure the nearness of produced histograms to the
uniform histogram. The statistical χ2-value is evaluated by [6]:

χ2 =
256

∑
i=1

(Ei − ei)
2

ei
, (6)

where the length of all possible values in an image is 256, Ei is the observed event frequen-
cies of i− 1 and ei is the expected event frequencies of i− 1, i = 1, 2, ..., 256. By evaluating
the χ2-value with the level of significance α = 0.05, we got χ0.05(255) = 293.25. So, Both dis-
tributions are nearly equal if χ2(255) < 293.25. Table 3 shows that all tested images are
smaller than 293.25. Therefore, the cipher images histograms are close to the uniform distri-
butions. In other words, an attacker cannot retrieve any valuable information from them.

0

500

1000

1500

2000

2500

3000

0 50 100 150 200 250

0

500

1000

1500

2000

2500

0 50 100 150 200 250

(a) Lena (b) Histogram of (a) (c) Cipher image of (a) (d) Histogram of (c)

0

500

1000

1500

2000

2500

0 50 100 150 200 250

0

500

1000

1500

2000

2500

0 50 100 150 200 250

(e) Barbara (f) Histogram of (e) (g) Cipher image of (e) (h) Histogram of (g)

0

500

1000

1500

2000

2500

3000

3500

4000

0 50 100 150 200 250

0

500

1000

1500

2000

2500

0 50 100 150 200 250

(i) Cameraman (j) Histogram of (i) (k) Cipher image of (i) (l) Histogram of (k)

0

500

1000

1500

2000

2500

3000

0 50 100 150 200 250

0

500

1000

1500

2000

2500

0 50 100 150 200 250

(m) Mandrill (n) Histogram of (m) (o) Cipher image of (m) (p) Histogram of (o)

Figure 5. Plain images, cipher images and their corresponding histograms.
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Figure 6. Plain images, cipher images and their corresponding histograms.

Table 3. χ2-values of the histograms of the cipher images at a = 11.25, b = 0.5, c1 = 0.20, c2 = 0.30,
µ1 = 0.002, µ2 = 0.60, ν1 = 0.20, ν2 = 0.70, q10 = 0.10, and q20 = 0.20.

Image χ2-Value

Lena 286.52
Barbara 256.74

Cameraman 252.88
Mandrill 275.24
Airplane 279.64

Boat 260.23
Peppers 288.74

Moon_surface 249.12

Histogram Statistics

The variance and standard deviation are dispersion metrics applied in graphic his-
tograms to help the effects of visual inspection. They calculate how often the elements of a
dataset differ across the average with respect to each other. The same average value (mean)
can be in two datasets, but the differences may be dramatically different. If the histogram
has the lower variance then it has the more uniform of the graphic histogram, which is
calculated by the following formula:

V =
1

256

256

∑
i=1

(θi − θ̄)2, (7)



Entropy 2021, 23, 57 10 of 17

where

θ̄ =
M× N

256
, (8)

θi is the frequency for each pixel’s value from 0− 255 of the histogram, i = 1, 2, . . . , 256,
θ̄ is the histogram mean.

The standard deviation helps us to know the arithmetic average of the dataset’s
variations relative to the mean. It is calculated as follows:

S =
√

V, (9)

where V is the histogram variance.
Table 4 presents the histogram statistics for the plain and cipher images of the tested

images for the IEGBNDS algorithm and the encryption algorithm in Reference [41].

Table 4. Histogram statistics for the IEGBNDS algorithm and the encryption algorithm in Refer-
ence [41].

Image
Plain Image Cipher Image

IEGBNDS [41]

V S V S V S

lena (256× 256) 38451 196.1 396 19.9 414 20.3
lena (512× 512) 633397 795.9 3171 56.3 3340 57.8

4.3. Entropy Analysis

Information entropy [7] is utilized to detect the randomness of the cipher image. It is
computed as follows:

H =
255

∑
i=0

Pilog2(
1
Pi
), (10)

where Pi is the probability associated with gray level i. The largest value of the entropy
reflects the randomness of the encrypted image. The maximum value of the entropy in our
case is 8. Table 5 gives the information entropy for the plain and cipher images of the tested
images. All values of entropy based on our algorithm are close to 8. In addition, the IEGB-
NDS algorithm gives average better than most averages of the listed recent algorithms.
Based on the results of entropy, the IEGBNDS algorithm has reasonable protection.

Table 5. Information entropy analysis of the IEGBNDS algorithm compared to some recent algo-
rithms in literature.

Image
Information Entropy

Plain Image Encrypted Image

Lena 7.4475 7.9992
Barbara 7.6338 7.9993
Cameraman 7.0518 7.9993
Mandrill 7.2933 7.9992
Airplane 6.6823 7.9992
Boat 7.2151 7.9993
Peppers 7.4849 7.9992
Moon_surface 6.6974 7.9993
Average 7.1883 7.99925
[5] (Average) – 7.99867
[23] (Average) – 7.90252
[40] (Average) 7.266297 7.999224
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4.4. Correlation Coefficients Analysis

In the plain image, adjacent pixels have strong relationships. So, reducing these
relationships is required to hold out against statistical attacks. The correlation coefficient
between two adjacent pixels, θ and φ, is defined as [6]:

rθφ =
Cov(θ, φ)√
(D(θ)D(φ))

, (11)

where

Cov(θ, φ) =
1
N

N

∑
m=1

(θm − E(θ))(φm − E(φ)), (12)

E(θ) =
1
N

N

∑
m=1

θm, (13)

and

D(θ) =
1
N

N

∑
m=1

(θm − E(θ))2, (14)

where θ and φ are selected randomly. 3000 pairs of adjacent pixels are chosen randomly
from the plain and cipher images. Figure 7 displays the pixel intensity value’s distribution
of 3000 pairs for the Barbara image and its encrypted image in the three directions, diagonal,
horizontal, and vertical. The correlation coefficients of the three directions for the IEGB-
NDS algorithm compared to some recent encryption algorithms based on the average of
the correlation coefficients are given in Table 6. Table 6 shows that the IEGBNDS algorithm
outperforms all of them at least in one direction. Also all values of rθφ for the cipher images
are close to zero. So, it can protect the image information.

Table 6. Correlation coefficient of the cipher images based on the IEGBNDS algorithm compared to
some recent encryption algorithms in literature.

Image
Correlation Coefficient

Horizontal Vertical Diagonal

Lena 0.0011 −0.0026 −0.0015
Barbara −0.0006 −0.0015 −0.0010
Cameraman −0.0035 −0.0029 −0.0015
Mandrill −0.0002 −0.0005 −0.0026
Airplane 0.0029 −0.0020 −0.0049
Boat −0.0034 −0.0019 0.0010
Peppers −0.0035 0.0032 0.0017
Moon_surface −0.0013 0.0000 0.0011
Average 0.002063 0.001825 0.001913
[5] (Average) 0.007067 0.007867 0.014567
[23] (Average) 0.001544 0.001772 0.002678
[40] (Average) 0.003134 0.006602 0.004525
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(a) (b)

(c) (d)

(e) (f)

Figure 7. Distribution of adjacent pixels in the plain image (a,c,e) and the cipher image (b,d,f) for
Barbara image in the three directions, diagonal, horizontal, and vertical.

4.5. Differential Attack Analysis

The protection against differential attacks is required for any image encryption al-
gorithm. There are two main measurements, (1) NPCR (Number of Pixel Change Rate),
and (2) UACI (Unified Average Changing Intensity). These measurements evaluated the
amount of differences between two images, and can be defined as [5]:

NPCR =
∑m,n D(m, n)

M× N
× 100%, (15)

UACI =
1

M× N

[
∑
m,n

|O(m, n)− E(m, n)|
255

]
× 100%, (16)

where

D(m, n) =

{
0 if O(m, n) = E(m, n),

1 otherwise.
(17)

A single pixel of the plain image is selected randomly and it modified to 255− v,
where v is the original intensity value of pixel. The same key is utilized to encrypt the
modified image and the plain image. Then, NPCR, and UACI are calculated using the two
cipher images. Table 7 shows NPCR and UACI for the tested images and compared them
to some recent algorithms in literature. The IEGBNDS algorithm offers a good level of
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security. Based on the averages of NPCR and UACI, the IEGBNDS algorithm outperforms
all of them at least in one of the two measures. So, the IEGBNDS algorithm can be useful
against differential attacks.

Table 7. NPCR and UACI of the tested images using the IEGBNDS algorithm and the recent algorithms.

Image NPCR (%) UACI%

Ideal value [23] 99.6094 33.4635
Lena 99.6326 33.4584
Barbara 99.6082 33.5339
Cameraman 99.6044 33.5797
Mandrill 99.6204 33.4392
Airplane 99.5907 33.4608
Boat 99.6086 33.4599
Peppers 99.6033 33.4868
Moon_surface 99.5998 33.4590
Average 99.6085 33.48471
[5] (Average) 99.6067 33.4267
[23] (Average) 99.6083 33.4521
[40] (Average) 99.6060 33.4646

4.6. Key Sensitivity Analysis

The sensitivity to the secret key is one of the important features of an excellent
encryption algorithm. During the restoring plain image (decryption process), small changes
in one of the initial values or parameter are made and we will observe the restoring image
via the modified secret key. Table 8 shows the restoring images using the true secret key
and the modified secret keys. The plain image cannot be restored by any of modified
secret keys. Therefore, the IEGBNDS algorithm is highly sensitive to any changes of the
secret key.

Table 8. The result of key sensitivity analysis.

Cipher Decrypted with Decrypted with Decrypted with
image true key wrong key q1(1)× 10−14 wrong key q2(1)× 10−14

Decrypted with Decrypted with Decrypted with Decrypted with
wrong key a× 10−14 wrong key b× 10−14 wrong key µ1 × 10−14 wrong key ν1 × 10−14
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4.7. Robustness Analysis

In real life, noise or data loss is occurred and the IEGBNDS algorithm is tested against
these problems. Salt&Pepper noise with different densities are added to the cipher image
of lena with size 512× 512. Table 9 shows the decrypted images of the noisy encrypted
images. Moreover, the decryption image of the encryption image with some data loss is
shown in Table 9. Based on the result of Table 9, The IEGBNDS algorithm can be robust
against the noise and data loss attacks.

Table 9. Robustness analysis of the IEGBNDS algorithm for lena image with size 512× 512.

Encrypted with Decryption of Encrypted with Decryption of
salt&pepper(0.01) previous image salt&pepper(0.05) previous image

Encrypted with Decryption of Encrypted with Decryption of
salt&pepper(0.1) previous image corp of 200× 200 previous image

4.8. Chosen Plaintext Attack Analysis

The IEGBNDS algorithm is sensitive to the key generation, Ks, in Equation (2) and dif-
ferent sequences will be generated by small changes in the plain image. So, the IEGBNDS
algorithm can hold out against the plaintext attacks. Now, we will examine the IEGBNDS
algorithm against the chosen plaintext attack. Suppose the attacker has the encrypted
image and the running of the IEGBNDS algorithm for a short time. The algorithm of Ref-
erence [42] will be used to examine our algorithm against chosen plaintext attack. In this
algorithm, the following notations will be used:

P: plain image,
E: encrypted image of P,
D: designed image, where dmn = 0, m = 1, 2, . . . , M, n = 1, 2, . . . , N,
ED: encrypted image of D,
DE: decrypted image of E.

The XOR operations between the pixels of E and ED are performed to obtain the plain
image P. Based on the result of Figure 8, the decrypted image is totally unlike the plain
image. Therefore, the IEGBNDS algorithm can resist chosen plaintext attack.
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(a) (b) (c) (d)

Figure 8. Analysis of chosen plaintext attack: (a) Encrypted image E, (b) designed image D, (c) en-
crypted image of D, (d) Decrypted image DE.

4.9. Computational Analysis

The average times of encryption and decryption algorithm for one hundred time are
34.11 ms and 30.57 ms (Tested image of size 512× 512), respectively. On the other hand,
for the tested image of size M× N, the encryption algorithm needs 5 MN + M + N + 2000
operations. The complexity time for the decryption algorithm is equal to the complexity
time of the encryption algorithm. Table 10 shows that the running time of the IEGBNDS
algorithm is effective compared to some recent image encryption algorithms such as in
Reference [40] by Shakiba and Reference [23] by Cao et al.

Table 10. Running time of the encryption for the IEGBNDS algorithm and the recent algorithms.

Algorithm Image Size Running Time (ms)

IEGBNDS 512× 512 34.11
[40] 512× 512 976± 24.6
[23] 256× 256 32.43

4.10. NIST Statistical Tests

NIST were established to test the randomness of generating cipher images created by
encryption algorithms [43]. For the IEGBNDS algorithm, it is used to check the randomness
of a sequence that consists of 100 cipher images of length 512× 512× 8 = 2,097,152 bits.
They were generated by using different random secret keys. Table 11 presents the results
for 15 tests and all of them passed these tests.

Table 11. NIST statistical test for 100 cipher images by the IEGBNDS algorithm.

Statistical Test IEGBNDS Algorithm Result

Frequency monobit test 100/100 PASS
Block frequency test 99/100 PASS
Rank test 99/100 PASS
Runs test 99/100 PASS
Longest runs test 100/100 PASS
Cumulative sums test 99/100 PASS
Discrete Fourier transform 98/100 PASS
Random excursion test 56/58 PASS
Random excursion variant test 57/58 PASS
Universal test 99/100 PASS
Approximate entropy 98/100 PASS
Linear complexity test 100/100 PASS
Serial 100/100 PASS
Non Overlapping templates test 99/100 PASS
Overlapping templates test 100/100 PASS
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5. Conclusions

In this article, the IEGBNDS algorithm via Newton-Raphson’s method and general
Bischi-Naimzadah duopoly system (GBNDS) has been suggested. Newton-Raphson’s
method has been used for shuffling the rows/columns of the plain image. GBNDS has
been used to producing chaotic sequences to diffusion phase of image encryption algorithm.
The extracted chaotic sequences from the GBNDS is extremely random based on the NIST
statistical tests. Many security experiments are applied to evaluate the efficiency of our
algorithm. The IEGBNDS algorithm has a large key space (1014(k+1) + 10168(>>2100),
the histograms of the generated cipher images are close to the uniform distributions, all en-
tropy values for the cipher images based on IEGBNDS algorithm are close to 8, all correla-
tion coefficient values for the cipher images are close to zero. The IEGBNDS algorithm
outperforms some recent algorithms at least in one of the two measures, highly sensitive to
small changes of the secret key, can be robust against the noise and data loss attacks, and can
hold out against the plaintext attacks. In comparison to several recent algorithms, the
IEGBNDS algorithm has a small running time. NIST statistical tests for 100 cipher images
by the IEGBNDS algorithm are performed and all tests are passed. Finally, quantum im-
age encryption algorithm based on GBNDS will be designed in the future to increase the
security of the current algorithm.
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