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Abstract: The effect of the ZrO2 crystal form on surface-enhanced Raman scattering (SERS) activity
was studied. The ratio of the tetragonal (T) and monoclinic (M) phases of ZrO2 nanoparticles
(ZrO2 NPs) was controlled by regulating the ratio of two types of additives in the hydrothermal
synthesis method. The SERS intensity of 4-mercaptobenzoic acid (4–MBA) was gradually enhanced
by changing the M and T phase ratio in ZrO2 NPs. The degree of charge transfer (CT) in the enhanced
4–MBA molecule was greater than 0.5, indicating that CT was the main contributor to SERS. The
intensity of SERS was strongest when the ratio of the T crystal phase in ZrO2 was 99.7%, and the
enhancement factor reached 2.21 × 104. More importantly, the proposed study indicated that the T
and M phases of the ZrO2 NPs affected the SERS enhancement. This study provides a new approach
for developing high-quality SERS substrates and improving the transmission efficiency of molecular
sensors.

Keywords: SERS; ZrO2; M phase; T phase; charge transfer

1. Introduction

After the phenomenon of surface-enhanced Raman scattering (SERS) was first reported
in the mid-1970s, it attracted the attention of many scholars. Researchers have published
many articles related to SERS [1,2]. As a fairly new spectral detection technology, SERS
has been widely used in the fields of chemistry, physics, biology, and medicine because
of its high sensitivity, nondestructive detection, molecular fingerprint information, rapid
and simple operation, etc. [3–5]. Single molecule SERS was studied by the Kneipp [6]
and Nie [7] research groups in 1997, in which the enhancement factor (EF) reached up to
1014. Nowadays, electromagnetic mechanism (EM) and chemical mechanism (CM) are
widely used to explain the enhancement mechanisms of SERS [8–10]. Recently, with the
evolution of SERS research, SERS substrates have changed from the original precious metals
(Au, Ag and Cu) [11–13] and the expensive metals (Pt and Pd) [14,15] to semiconductor
materials (ZnO, CuO, TiO2) [16–18]. Semiconductor materials have good optics, electrics,
biocompatibility, high stability, and low cost compared to the metal substrates. Therefore,
they have greater research potential and application prospects [19].

A key problem in SERS research is the selection of suitable substrates and the optimiza-
tion of the preparation process. Many studies have reported that zirconium dioxide (ZrO2)
has excellent properties, such as high temperature, corrosion, and oxidation resistance,
thermal and chemical stability, which ensures it is widely used in the production of artificial
teeth, high temperature materials, electronics and bio ceramics [20–22]. Specifically, nano-
sized ZrO2 has three types of crystal structure: monoclinic (M), tetragonal (T) and cubic
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(C) [23,24], in addition to being an N-type semiconductor. Moreover, nano-ZrO2 exhibits
surface and interface, quantum size, and macroscopic quantum tunneling effects [25]. Due
to the small particle size, large specific surface area and incomplete coordination of atoms
on the surface, there is an increase in the quantity of active sites on the nano-ZrO2 sur-
face [26]. The electrons and holes, which are produced by nano-ZrO2 crystal particles under
illumination, have strong reduction and oxidation ability as well as high photoelectric
conversion efficiency [27]. The application scope of semiconductor materials is expanding
with the development of the semiconductor technique. The use of semiconductor materials
as SERS substrates is prevalent; however, to date, only two studies describing the use
of ZrO2 as a SERS substrate have been reported. The crystalline form of nano-ZrO2 is
mainly the M phase [24,28] and the EF can reach 103. Nano-ZrO2 is very suitable as a SERS
substrate due to its superior characteristics, and using nano-ZrO2 expands the range of
semiconductor nanomaterials as SERS substrates. Meanwhile, it also leads to new appli-
cations of nano-ZrO2, which lay a foundation for the further research of the high-quality
material in the application of nano sensor devices. More suitable preparation techniques of
nano-ZrO2 are developed by improving the preparation process. The internal relationship
between the SERS properties of a substrate and its structure is a contentious issue in SERS
research.

In this work, nano-ZrO2 was prepared by hydrothermal synthesis and the SERS of
4-mercaptobenzoic acid (4–MBA) adsorbed on ZrO2 nanoparticles (NPs) was determined.
The different crystal forms of ZrO2 NPs can be prepared by adding different types of
additives in the hydrothermal synthesis. More interestingly, the proportion of the different
crystal forms of ZrO2 NPs can be controlled by regulating the proportion of two types of
additives. We found that there is an interdependence between the crystal form of ZrO2
NPs and the intensity of the SERS signal.

2. Materials and Methods
2.1. Chemicals

Zirconium chloride octahydrate (ZrOCl2·8H2O), 1,2-dichloroethane, and diethanolam-
ine were purchased from Shanghai McLean Biochemistry Co., LTD. (Shanghai, China).
Ammonia water (25%) and 4–MBA were purchased from Tianjin Furui Fine Chemical
Co., LTD (Tianjin, China) and Sigma-Aldrich International Limited (Shanghai, China).
Deionized water was used throughout the experiments. All reagents used were analytical
grade and were used as supplied for sample preparation.

2.2. Preparation of ZrO2 NPs

ZrO2 NPs were prepared using the hydrothermal synthesis method according to
the literature [29]. ZrOCl2·8H2O (3.9710 g) was added to 12 mL of deionized water and
dissolved completely with stirring. Then, ammonia solution (10%) was added to the
solution until the pH was approximately 7, and a white precipitate was produced. The
precipitate was filtered repeatedly and washed with deionized water. The precipitate was
transformed into a homogeneous suspension in deionized water, and the pH was adjusted
to 9 with the addition of ammonia solution (5 wt %). The concentration of zirconium ions
was then adjusted to 0.6 mol/L. Diethanolamine and 1,2-dichloroethane were utilized
as a mixed additive to form the different crystal structures of ZrO2 NPs. The mixing
ratios were 1:0, 4:1, 3:1, 2:1, 1:1, 1:2, 1:3, 1:4 and 0:1, respectively. One of the nine ratios
of mixed additives was added to each sample of the suspension. The volume ratio of the
additives to the suspension was 1:30. The volume of the suspension was adjusted to 16 mL
using deionized water. The reaction solution was then stirred for 40 min and placed in a
high-pressure hydrothermal reaction vessel. Nine groups of reactors were heated at 180 ◦C
for 72 h. After the reaction, the synthesized ZrO2 was filtered, washed several times, and
dried at room temperature.
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2.3. Adsorption of Probe Molecules for SERS Measurement

ZrO2 (30 mg) with different T phase ratios was dispersed in 15 mL 4–MBA (1 × 10−3 mol/L)
ethanol solution. The configured ZrO2 suspension was magnetically stirred for 8 h at room
temperature. After centrifugation, ethanol and deionized water were used to wash the
residue trice, and the surface modification of ZrO2 NPs was obtained.

2.4. Instrumentation

The crystal structure of all the samples was determined using Rikagu Smartlab X-ray
diffraction patterns (Tokyo, Japan), with a scanning angle range of 10◦–75◦, and a scanning
speed of 3◦/min. SERS spectra were recorded by a Horiba HR Evolution Raman spectrom-
eter (Paris, France) under 532 nm (or 2.33 eV) excitation. All Raman spectra were calibrated
using Si plates. The penetration depth and diameter of the laser spot was approximately
10 and 1.3 µm, respectively. Scanning electron microscopy (SEM) was employed to study
the size distribution of ZrO2 NPs using a JEOL-7610P (Tokyo, Japan). Ultraviolet-visible
(UV-Vis) diffuse reflectance spectra (DRS) of the ZrO2 samples were recorded on a Cary
5000 UV-Vis spectrophotometer (Santa Clara, CA, USA) equipped with an integrating
sphere using BaSO4 as a reference.

3. Results and Discussion
3.1. Characterization of ZrO2 NPs

Previous reports [29,30] describe the preparation of ZrO2 NPs with different crystal
forms using different additives during hydrothermal synthesis. Diethanolamine with its
strong chelating ability encourages the formation of T–ZrO2 crystals, whereas alkyl halide
1,2-dichloroethane encourages the formation of M–ZrO2 crystals. Figure 1 shows the XRD
diagram of ZrO2 NPs prepared by a hydrothermal method using diethanolamine and
1,2-dichloroethane as a mixed additive, and the mixing ratios are 1:0; 4:1; 3:1; 2:1; 1:1; 1:2,
1:3, 1:4, and 0:1, respectively. As shown in Figure 1, there are obvious differences in the
crystal form of nano-ZrO2 prepared with pure diethanolamine or 1,2-dichloroethane as
dispersant. The XRD diffraction curve when using diethanolamine as an additive is shown
in Figure 1a, the characteristic Bragg reflections for the T phase: T (101), T (200), T (202) and
T (131) (PDF card: 50–1089) are respectively at approximately 2θ = 30.45◦, 35.30◦, 50.26◦

and 60.2◦. This indicates that the phase of ZrO2 is basically pure T phase [31]. However, the
XRD diffraction curve when using 1,2-dichloroethane as an additive is shown in Figure 1i,
the characteristic Bragg reflections for the M phase: M (111) and M (−111) (PDF card:
37-1484) are at approximately 2θ = 28.37◦ and 31.50◦, respectively. This indicates that the
ZrO2 crystal phase is basically pure M. Figure 1b–h are the XRD of ZrO2 NPs prepared
using the diethanolamine and 1,2-dichloroethane mixture, in the mixing ratios stipulated
above. We concluded that the intensity of the Bragg reflection of the T phase characteristic
in the diffraction line (Figure 1b–h) decreases gradually, whereas the Bragg reflection of
the M phase characteristic increases gradually with the decrease diethanolamine and the
increase 1,2-dichloroethane. The particle size of ZrO2 NPs was calculated using the Scherrer
formula: D = kλ/(β cos θ) [32] and is approximately 15.5–16.7 nm. The particle size of the
ZrO2 NPs was confirmed using the SEM image (Figure S1 and Table S1) and was consistent
with the results from the XRD.
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Figure 1. XRD patterns of ZrO2 NPs prepared with different ratios of diethanolamine and 1,2-
dichloroethane as mixed additives. (a–i) correspond to the mixing ratio of 1:0, 4:1, 3:1, 2:1, 1:1, 1:2,
1:3, 1:4, and 0:1, respectively.

It is necessary to calculate the T phase content in the sample ZrO2. To determine the
correlation between the mixing ratio of diethanolamine and 1,2-dichloroethane additives,
and the crystal form of the synthesized ZrO2 NPs. The T phase and M phase of ZrO2 can
be identified by the most characteristic Bragg reflection of the XRD diffraction lines of all
the samples: M (−111), T (101) and M (111). There were two M peaks (−111) and (111), and
one T peak (101) in the sample. The T phase content in ZrO2 was calculated by the relative
intensities. First, the strength of the integral of the three Bragg reflections: M (−111), T
(101), and M (111) of the samples were extracted. Then we calculated the ratio of the T
phase using the empirical expressions of Garvie and Nicholson [33,34]. The Formulas (1)
and (2) are as follows:

Xt =
It(101)

[It(101) + Im(−111) + Im(111)]
(1)

νt =
1.311Xt

(1 + 0.311Xt)
(2)

where νt is the volume fraction of the T phase, Xt is the integrated intensity ratio; Im (111)
and Im (−111) are the (111) and (−111) intensities of the M phase of ZrO2, and It (101) is
the (101) intensity of the T phase of ZrO2, respectively.

The T phase content of the ZrO2 crystal in Figure 1a–i were calculated by Formulas (1)
and (2). The ratio of the T phase in the ZrO2 nanoparticles are 99.7%, 81.3%, 70.6%, 63.5%,
41.1%, 29.8%, 19.4%, 11.3%, and 2.5% corresponding to Figure 1a–i, respectively. The results
show that ZrO2 with different crystal forms can be synthesized by different types of organic
additives in the process of hydrothermal synthesis. The T phase content of ZrO2 NPs can
be easily controlled by adjusting the ratio of diethanolamine to 1,2-dichloroethane. The
content of the T phase of ZrO2 NPs gradually decreased, with decreasing diethanolamine
and increasing 1,2-dichloroethane (Figure 1).

3.2. Raman Spectra of ZrO2 NPs

The Raman spectra of the synthesized ZrO2 NPs are shown in Figure 2. In general,
Raman spectra of molecules appear due to the vibrational characteristics of different crystal
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phases of ZrO2. The Raman shifts at less than 800 cm−1 were assigned to the ZrO2 NPs.
There were a few distinct vibrational bands located at 145, 266, 313, 458 and 646 cm−1

which correspond to the vibrational modes of the T phase of ZrO2 (Figure 2a). For the T
phase of ZrO2, 6 modes (1A1g + 3Eg + 2B1g) are Raman active [35]; the E representations
are two dimensional whereas the other modes are one dimensional. This suggests that the
ZrO2 is essentially pure T phase when diethanolamine is used as an additive. However,
there were a few distinct vibrational bands located at 177, 188, 328, 338, 378, 475, and
612 cm−1 which correspond to the vibrational modes of the M phase of ZrO2 (Figure 2i).
For the M phase of ZrO2, 18 modes (9Ag + 9Bg) are Raman active [36]. This indicates
that the ZrO2 is essentially pure M phase when 1,2-dichloroethane is used as an additive.
The curves (b–h) are the Raman spectra of ZrO2 NPs prepared using diethanolamine
and 1,2-dichloroethane as additives, in the stipulated ratios. As shown in Figure 2b–h,
the vibrational mode intensity of the T phase of ZrO2 gradually decreases, whereas the
vibration mode of M phase of ZrO2 gradually increases, with decreasing diethanolamine
and increasing 1,2-dichloroethane. This indicates that the results of the Raman and XRD
analyses are consistent.
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Figure 2. Raman spectra of ZrO2 NPs prepared with different ratios of diethanolamine and 1,2-
dichloroethane as mixed additives. (a–i) correspond to the mixing ratio: 1:0, 4:1, 3:1, 2:1, 1:1, 1:2, 1:3,
1:4, and 0:1, respectively.

According to a previous report [37], the proportion of specific crystal forms of molecules
can be estimated by using the characteristic bands of different crystal phases in the Raman
spectra of molecules. As is illustrated in Figure 2 (curves a and i), the T and M phases
of ZrO2 can be identified by the most representative Raman displacement located at the
following positions: T (145, 266, and 646 cm−1) and M (177, 188, and 612 cm−1). The T
phase content in ZrO2 was calculated by the relative intensities of the T bands located at
145, 266, and 646 cm−1, and the M bands located at 177, 188 and 612 cm−1. The ratios of the
T phase of ZrO2 were calculated using the empirical expressions of Clarke and Adar [38].
The formula is as follows (3):

νt =
0.97[It(145) + It(266) + It(646)]

0.97[It(145 + It(266) + It(646)] + [Im(177) + Im(188) + Im(612)]
(3)

where m and t represent the M and T phases, νt is the ratio of the T phase of ZrO2, Im is the
intensity of the M phase of ZrO2, and It is the intensity of the T phase of ZrO2, respectively.
The ratio of the T phase in ZrO2 NPs is: 99.6%, 82.0%, 70.1%, 63.4%, 41.5%, 29.7%, 19.0%,
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11.5%, and 2.6% corresponding to a–i in Figure 2, respectively. These calculation results are
in good agreement with those calculated using the characteristic diffraction peaks of XRD.

3.3. UV-Vis DRS Spectra of ZrO2 NPs

The optical properties of ZrO2 NPs were studied by the UV-Vis DRS technique.
Figure 3 shows the absorbance spectra of ZrO2 at different crystal ratios. The UV-Vis
absorption spectrum of the semiconductor can determine its band gap energy and surface
defect state [39]. The strong absorption band of nine samples at less than 250 nm is due to
the band-band energy transition of ZrO2 NPs. The trailing absorption bands at 250–430 nm
are assigned to the surface defect state of ZrO2. The optical band gap and incident pho-
ton energy correspond to the transformed Kubelka–Munk function [40]. The calculated
value of the band gap energy (Eg(eV))and the photo-absorption thresholds (λg(nm)) can
be achieved from the Figure S2 and Table S2 of the Supplementary Information. Thus,
the Eg with λg of ZrO2 which corresponds to the curves of a–i are 2.96 (419), 3.16 (392),
3.41 (364), 3.66 (339), 3.81 (325), 3.95 (314), 4.22 (294), 4.41 (281), and 4.68 eV (265 nm),
respectively [41]. It is noteworthy that with the increase of the T phase ratio in ZrO2, the λg
of band-band Transition for ZrO2 are red shifted, and the intensity of the tail absorption
band at 250–430 nm is gradually enhanced. The greater the red shift of the optical absorp-
tion threshold, the higher the threshold, the smaller its band gap energy. The greater the
strength of the trailing absorption bands indicates the stronger the surface defect strength.
When the ratio of the T crystal phase in ZrO2 is the greatest, the absorbance bands assigned
to the ZrO2 have the largest red shift and the strongest strength of the trailing absorption
band, thus indicating that it has the best abundant surface properties. The smaller the band
gap energy and the better abundant surface defect state of the semiconductor, the more
favorable the electron transfer.
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3.4. Crystal Form-Dependence of SERS

Generally, ZrO2 have M, T, and C crystal forms, and the different crystal forms have
different grain boundary structures. However, the structure of the grain boundary will
affect the electrical and optical properties of ZrO2. To examine the effect of the crystal form
of ZrO2 on the SERS, Figure 4A shows the SERS spectra of 4–MBA adsorbed on ZrO2 NPs
with different T phase proportions. Notably, as the T phase ratio increases and the M phase
ratio decreases, the SERS signal of 4–MBA adsorbed on the ZrO2 NPs gradually increases.
When the ratio of the T phase in ZrO2 NPs is close to that of the pure T phase, the SERS
signal is at maximum. When the ratio of the M phase in ZrO2 NPs is close to that of the
pure M phase, the SERS intensity decreases significantly. The strongest Raman intensity
was obtained from the pure T phase, which is approximately four times that of the pure M
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phase (Figure 4B). Thus, the interdependency between the form of the crystalline phase in
ZrO2 NPs and the SERS enhancement effect can be confirmed. The T phase of ZrO2 favors
CT in the SERS enhancement more than the M phase. This is because of the effect of the
grain boundary structure of the different crystalline phases on the electrical and optical
properties of ZrO2. In addition, the T crystalline phase of ZrO2 has more abundant surface
states, which is more conducive to the occurrence of CT.
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3.5. Evaluation of EF

To evaluate the SERS activity of ZrO2 NPs, EF was employed to reflect the enhance-
ment ability. To accurately calculate the values of EF, the Raman spectra of 4–MBA adsorbed
on ZrO2 NPs, and of the solid 4–MBA powders were obtained as shown in Figure 5. The
calculation method adopts Formula (4) [42]:

EF =
ISurf
IBulk

× NBulk
NSurf

(4)

where Isurf and IBulk represent the SERS intensity of 4–MBA adsorbed on the ZrO2 NPs and
4–MBA solid powders at 1594 cm−1 (assigned to the characteristic vibration of the ν(C–C)
aromatic ring), respectively. NSurf and NBulk represent the number of molecules adsorbed
on ZrO2 NPs and 4–MBA solid powders, respectively.

The value of Isurf/IBulk is equal to the Raman intensity ratio of the 4–MBA@ZrO2 to
the bulk 4–MBA in Figure 5, and the calculated result is 1.8. NBulk (the number of bulk
4–MBA detected in the 1.3 µm laser spot) was estimated to be 7.61 × 1010 based on 532 nm
laser excitation, the focusing penetration depth of the laser (~10 µm), and the density of
the 4–MBA (1.5 g·cm−3) [43]. If the ZrO2 NPs are assumed to be uniformly distributed
in a single layer, and the boundary density of 4–MBA adsorbed on the NPs surface is
0.5 nmol/cm2, the calculated NSurf is 6.146 × 106 [43]. The results of the above calculation
are substituted into Formula (4), and the value of EF is 2.21 × 104.
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3.6. Degree of Charge Transfer

CT is also the major contribution to SERS in addition to surface plasmon resonance
(SPR) and molecular transition [44]. In accordance with previous reports, we employed the
degree of CT ($CT(k)) to measure the CT contribution to SERS. The concept of $CT(k) can
be defined by the following Formula (5) [45]:

$CT(k) =
Ik(CT)− Ik(SPR)
Ik(CT) + I0(SPR)

(5)

where k refers to a specific band in the Raman spectrum. In this equation, Ik(CT) and
Ik(SPR) are the intensities of the k band in the presence of CT and EM contribution,
respectively, whereas I0(SPR) is the intensity of the fully symmetric vibrational mode,
selected in the spectral region with only SPR contribution. k can be a fully symmetric or
non-fully symmetric line. For a fully symmetric line, Ik(SPR) = I0(SPR), but in the latter,
Ik(SPR) is usually quite small [46,47], and we can think of it as being negligible, that is, Ik

(SPR) = 0. It can be seen from Formula (5) that when $CT = 0, there is no CT contribution,
and when $CT = 1, the intensity of SERS mainly comes from the CT effect. When $CT = 1/2,
the contribution of CT and EM is equal. As shown from Figure 6A, because the peak at
1144 cm−1 is an independent b2 vibrational mode, it is selected as the research object of
CT contribution, that is, Ik (CT). The frequency band at 1181 cm−1 is an independent a1
vibrational mode, which is selected as I0 (SPR). After selecting the contribution peaks of the
corresponding objects, the relationship of $CT and the ZrO2 NPs with different T phases
were shown in Figure 6B. The $CT value indicates that when the ratio of diethanolamine
to 1,2-dichloroethane is 1:0, and the purity of T zirconia is 99.7%, the CT degree is the
strongest. With a decrease in purity, the CT degree gradually decreases, and all of them are
greater than 0.5, indicating that CT is the main contributor to SERS intensity.
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3.7. SERS Mechanisms of ZrO2 NPs

The enhancement mechanism of SERS has always been a core contentious issue in the
research of SERS substrate development. The study of the SERS enhancement mechanism
provides theoretical guidance for the development of high-quality SERS substrates. There
are two widely accepted SERS mechanisms to expound the SERS influence. One is EM and
the other is CM. The EM effect is due to the local electric field generated by the collective
oscillation of the plasma on the metal surface [48,49]. The CM effect is because the CT
process between the substrate and the molecule can induce CM. The CT processes typically
occur between metal or semiconductor substrates, and the probe molecules. As the SPR
is some distance away from the visible region, the SERS effect of most semiconductor
materials is due to the CT between semiconductor materials and molecules. As shown
in 4–MBA@ZrO2 of Figure 5, the Raman spectra of 4–MBA on ZrO2 are similar to those
of 4–MBA on other semiconductor materials reported in the literature. Two stronger
Raman bands at 1075 and 1594 cm−1 are attributed to the ν12 (a1) and ν8a (a1) modes of
the respiratory vibration in the aromatic ring, respectively. The other two weaker Raman
bands at 1144 and 1181 cm−1 are assigned to the ν15 (b2) and ν9 (a1) [50,51] modes of the
bending deformation vibration, respectively.

In contrast, it can be seen from the comparison of the UV absorption spectra of ZrO2
and 4–MBA@ZrO2 (Figure 7), that after 4–MBA adsorption, the intensity of the band energy
transition absorption band of ZrO2, at less than 250 nm, has increased, and the red shift
is significant. At 250–430 nm, the increase in the tail band intensity was greater and the
degree of the red shift was larger than that at 250 nm. These changes indicate a CT process
between the 4–MBA and the ZrO2 NPs [52]. The obvious changes in the tail band intensity
and the degree of the red shift of the bands at 250–430 nm indicated that the surface state
energy level, caused by surface defects, plays an important role in the CT process. The
degree of surface defects directly affects the CT process and eventually leads to the SERS
effect. Similar results were found in the Cu2O–4–MBA system [53].
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The CT process in the SERS system of a semiconductor-molecule depends on the
vibration coupling between the semiconductor and molecular energy levels. The direction
of CT relies on the energy levels of the valence (VB) and conduction bands (CB) of the
semiconductor, relative to the highest occupied molecular orbitals (HOMO), and the lowest
unoccupied molecular orbitals (LUMO) of the adsorbed molecules. The HOMO and
LUMO of the adsorption molecule 4–MBA were −8.48 and −3.85 eV, based on previous
literature [54,55]. The VB of ZrO2 is located at −7.6 eV [56]. As the band gap energy of
ZrO2 is 2.96 eV, the calculated CB of ZrO2 is located at −4.64 eV, (Figure 8). As ZrO2 with a
large amount of oxygen vacancies enriching the surface states, there are transition energy
levels (surface energy levels) between the VB and CB of ZrO2. A possible CT transfer
pattern is shown in Figure 8; incident light of 532 nm (2.33 eV) excites electrons from the
VB of the ZrO2 through the surface state (Ess) energy level to the CB of ZrO2, then transits
to the LUMO of the 4–MBA, and finally radiates out the Raman photons. The surface
defects can be explained by using the UV-Vis DRS spectra. It can be seen from the curve
i–a in the Figure 3 that with the increase of the T phase ratio in ZrO2, the intensity of the
tail absorption band at 250–430 nm is gradually enhanced, indicating that the degree of
surface defect state gradually increases. The rich surface defect state is more beneficial
to the SERS effect during CT transfer. With the increase of the T crystal form ratio, more
surface defects are produced, which lead to the stronger SERS effect. The experimental
results are consistent with the above enhancement mechanism, which indicates that the
SERS effect of the ZrO2 substrate can be improved by adjusting the ratio of the T crystalline
phase in the ZrO2.
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4. Conclusions

ZrO2 NPs with different ratios of the crystalline phase were synthesized by hydrother-
mal synthesis and adjusting the ratio of two additives. The additive, diethanolamine,
encourages the formation of T–ZrO2 crystals, whereas 1,2-dichloroethane encourages the
formation of M–ZrO2 crystals. The ratio of the T and M phases of ZrO2 NPs can be easily
controlled. When the probe molecules of 4–MBA are adsorbed onto the ZrO2, the SERS
intensity of 4–MBA is gradually enhanced with the increasing proportion of the T phase
of ZrO2 NPs. The strongest SERS intensity of 4–MBA can be obtained by using the pure
T phase. The value of EF reached 2.21 × 104. The UV-Vis DRS spectra have shown the
interrelation between the band gap energy, surface defect state and the proportion of T
phase in ZrO2 NPs. As the proportion of T phase in ZrO2 NPs increases, the band gap
energy decreases but the degree of surface defects increases gradually. The smaller band
gap energy and the richer surface defect states are conducive to CT transfer between ZrO2
NPs and 4–MBA, consequently showing much stronger SERS signal. This is the main
reason that the SERS effect of the T–ZrO2 substrate is stronger than that of the M–ZrO2
substrate. The schematic diagram of CT shows the direction of CT and further indicates
that the crystal form of ZrO2 NPs is an important factor affecting the CT. The SERS effect
of semiconductor substrates was examined from the perspective of the crystal form of
semiconductor nanomaterials in an unprecedented attempt. This study illustrates a new
way to develop better quality semiconductor substrates and highlights a new method to
improve the charge transport rate for the construction of high sensitivity molecular sensors.
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