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Abstract

Background: Inferring gene regulatory networks (GRNs) from gene expression data
remains a challenge in system biology. In past decade, numerous methods have been
developed for the inference of GRNs. It remains a challenge due to the fact that the data
is noisy and high dimensional, and there exists a large number of potential interactions.

Results: We present a novel method, namely priori-fused boosting network inference
method (PFBNet), to infer GRNs from time-series expression data by using the non-linear
model of Boosting and the prior information (e.g., the knockout data) fusion scheme.
Specifically, PFBNet first calculates the confidences of the regulation relationships using
the boosting-based model, where the information about the accumulation impact of
the gene expressions at previous time points is taken into account. Then, a newly
defined strategy is applied to fuse the information from the prior data by elevating the
confidences of the regulation relationships from the corresponding regulators.

Conclusions: The experiments on the benchmark datasets from DREAM challenge as
well as the E.coli datasets show that PFBNet achieves significantly better performance
than other state-of-the-art methods (Jump3, GEINE3-lag, HiDi, iRafNet and BiXGBoost).

Keywords: Gene regulatory network inference, Time-series expression data, Boosting,
Prior information fusion

Background
In system biology, comprehending the intricate gene regulatory network (GRN) is of
significant important, since it provides insights to understand the cell physiology, devel-
opment and pathogenesis [1, 2]. With the advent of high-throughput experimental
techniques such as RNA-Seq and DNA microarrays, inferring the GRN from such data
at genomic scale is feasible. However, it is still a challenge due to the high-dimensional
and noisy characteristics of the data, and the regulatory network may be obscured by
the indirect connections. Another problem is that the samples of the data are often
relatively few compared to the number of genes (i.e., the n � p problem [3]). So
far, various methods have been developed for inferring GRNs from expression data,
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including Bayesian Networks-based methods [4–9], information theory-based methods
[6, 10–15], Ordinary Differential Equation (ODE) based methods [16–19], ensemble
framework based methods [20–25], etc. Here we briefly review some algorithms that
are related to our work. Among these approaches, the algorithms that under the ensem-
ble framework have emerged as the strong players, such as GENIE [22], TIGRESS [21],
BiXGBoost [25], etc. The key idea of the ensemble framework is to decompose the GRN
inference problem into p feature selection subproblems (p is the number of genes in the
data) and solve each subproblem with the corresponding regression model. As the regres-
sion model is selected, the confidences of the regulation relationships that from each
candidate regulator (i.e., transcription factors (TFs)) to the corresponding target gene
could be calculated as the feature weight. Finally, outputs from each subproblem are fused
to reconstruct the GRN. Several algorithms (e.g., TIGRESS) chose the linear model to
address the problem, however, they may not perform well if the data presents a higher-
order structure. On the other hand, the algorithms that utilizing the nonlinear model can
easily be computationally intractable as the number of the candidate regulators increase
remarkably. Although these algorithms are successful, they inferred the GRN only used a
single type of data (i.e., the gene expression), whereas other types of data (e.g., expression
from the knockout) may provide non-redundant information about the directionality of
regulatory relationships [23]. To this end, it is important to incorporate the prior infor-
mation (e.g., the information from the knockout data) in GRN inference, which may lead
the GRN to be more reliable and interpretable.
Compared with the steady-state expression data, time-series expression data are

more helpful to identify the regulation relationships that reflect the temporal dynam-
ics [26]. In this regard, many algorithms have been developed to address these data
[10, 15, 16, 23, 25, 27, 28], representative algorithms including GENIE-lag [27], Jump3
[28], BiXGBoost [25], etc. For most of the available algorithms, one common practice
to tackle the time-series data is building the model under the assumption that the tar-
get gene expression at current time point is simply affected by the expressions of the
regulators at previous time point. Clearly, the information of the candidate regulators at
earlier time points would be ignored for these methods, which may affect the accuracy of
the inferred GRN. The recent method BiXGBoost considers the candidate regulators at
many time points that would affect the target gene, and selects the time point with most
impact, where it showed promising performance compared with the traditional methods.
However, impact of the regulation is more likely to be the accumulation of previous time
points rather than the maximal one. Moreover, as mentioned before, another limitation
for these algorithms is that they have no mechanism for integrating the prior information
from other types of data.
Recently, iRafNet [23] was introduced, which integrated different types of data via cal-

culating the corresponding weights under the Random Forest (RF) framework. It utilized
the prior information in data pre-processing stage and outperformed the original RF-
based method as well as the community learning algorithm on benchmark datasets. Yue
Deng et al. [16] proposed an Ordinary Differential Equation (ODE) based method named
HiDi, which formulated the prior knowledge as a constrained optimization problem. It fil-
tered out impossible regulatory relationships by exploring the prior information with the
outlier detection techniques. HiDi showed superior performance over other algorithms
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on DREAM4 challenge. However, one limitation of ODE based method is that the linear-
ity assumption is made on the gene regulations, which may not be quite consistent with
the real regulations.
To overcome these limitations, here, we propose PFBNet, a new approach to infer the

GRN from time-series expression data. The schematic diagram of our algorithm is shown
in Fig. 1. Specifically, PFBNet fuses the information of candidate regulators at previous
time points base on the non-linear model of boosting; then, the prior information is fused
into the model via recalculating the weights of the corresponding regulation relation-
ships. To demonstrate the performance of our method, we apply it on the widely used
benchmark datasets from DREAM [29] challenge as well as the E.coli datasets [30] for
comparing various GRN inference algorithms. The results show that our algorithm out-
performs other state-of-the-art algorithms (i.e., Jump3, GEINE3-lag, HiDi, iRafNet and
BiXGBoost).

Results
Datasets

We evaluate the performance of our algorithm PFBNet on the benchmark datasets from
DREAM4 in-silico size 100 challenge [29] as well as the E.coli datasets [30]. The dataset
from DREAM4 in-silico size 100 challenge contains five networks with 100 genes, where
time-series expression data and knockout data are provided for each of them. Specifically,
the time-series expression data involves 10 samples with 21 time points; the knock-
out data includes the gene expression with knocking out each one of the 100 genes.
The E.coli datasets provide the time-series expression data corresponding to different

Fig. 1 The schematic diagram of PFBNet. PFBNet recurrently selects one gene as the target gene, and
construct the feature selection subproblem that the information from previous time points is fused; then, the
non-linear model of boosting is applied to solve the subproblem; subsequently, the prior information is fused
into the model and the GRN is inferred according to the global ranking of the confidences of the regulation
relationships
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environmental conditions. The datasets under three environmental conditions (i.e., cold,
heat and oxidative stress) are chosen as our experimental datasets. The gold standard of
the datasets comes from the DREAM5 challenge [31] and the experimental verification
of RegulonDB [32]. We preprocessed the E.coli datasets in the light of [25], and retained
163 transcription factors (TFs) as well as 1484 target genes for evaluation. The details of
the datasets are summarized in Table 1.

Evaluation metrics

To evaluate the performance of our algorithm, two widely used evaluation metrics,
AUROC (the area under the receiver operating characteristic curve) and AUPR (the
area under the precision-recall curve) are considered. Specifically, we computed TP (the
number of true positives), TN (the number of true negatives), FP (the number of false
positives) and FN (the number of false negatives). Then, TPR(TPR = TP/(TP+FN)) and
FPR(FPR = FP/(FP+TN)) can be calculated, which are the horizontal and vertical coor-
dinates of the receiver operating characteristic curve respectively. Based on this, AUROC
can be obtained. Similarly, AUPR can be calculated according to the corresponding
Precision (TP/(TP + FP)) and Recall (TP/(TP + FN)).

Parameters setting of PFBNet

The boosting model XGBoost is applied in our algorithm, where the python package of
XGBoost provides various parameters for implementation. We choose the decision tree
as the base learner since it is non-linear. Similar with other algorithms (e.g., BiXGBoost),
these parameters were confirmed in practice.We found that most of these parameters
were not sensitive to the performance of the algorithm. The parameters max_depth and
min_child_weight are related to the structure of each tree in the model and they are both
set to 4. The parameter subsample, which controls the ratio of the training samples in
each tree, is set to 0.7. The parameter colsample_bytree controls the ratio of features (can-
didate regulators) in each tree, and is set to 0.9 here. The learning rate eta is set to 0.0008.
The number of trees is set to 1000, where it is the same default as most ’tree-based’ meth-
ods (e.g., iRafNet and BiXGBoost). More details of parameters selection are available on
Supplementary data (see Additional Fig S1-S6).
Two newly defined parameters (i.e., k and δ) are set to 2 and 0.45 respectively in this

study. Specifically, k is the number of previous time points for all regulators that the
related information is considered to fused in ourmodel (Table S1) and δ is the decay factor
that reduced the influence of the candidate regulators from the earlier time point on the
target gene (see Eq. 5). Figure 2 shows the effects of these parameters on the performance

Table 1 The details of the datasets

Network #Genes #Candidate regulators #samples #Time points #edges

DREAM4 in-silico size 100 Network 1 100 100 10 21 176

DREAM4 in-silico size 100 Network 2 100 100 10 21 249

DREAM4 in-silico size 100 Network 3 100 100 10 21 195

DREAM4 in-silico size 100 Network 4 100 100 10 21 211

DREAM4 in-silico size 100 Network 5 100 100 10 21 193

E.coli cold Networks 1484 163 3 8 3080

E.coli heat Networks 1484 163 3 8 3080

E.coli oxi Networks 1484 163 3 11 3080
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Fig. 2 Effects of parameters k and δ for PFBNet on DREAM4 in-silico size 100 challenge networks. The
AUPR_AVG and AUROC_AVG are the average AUPR and AUROC scores respectively for the five networks

of our PFBNet algorithm in terms of AUPR and AUROC. We found that the averaged
AUPR first increased and then decreased along with the increasing of δ as k > 1. And the
averaged AUROC kept increasing with the δ as k = 2.

Performance evaluation on simulation datasets

The DREAM4 in-silico size 100 challenge networks with time-series data were used to
asses PFBNet algorithm, and several state-of-the-art GRN inference algorithms including
GENIE-lag [27], Jump3 [28], BiXGBoost [25], iRafNet [23], HiDi [16] and the winner of
the DREAM challenge were chosen for comparison.
GENIE-lag, Jump3 and iRafNet are all random forest (RF) [33] based algorithms,

while Jump3 integrates the natural interpretability of differential model from time-series
expression data. BiXGBoost fuses the information of the candidate regulators at the time
point with most impact and integrates XGBoost model to reconstruct the GRN. iRafNet
and HiDi both utilize the prior information to improve the accuracy of GRN inference.
The parameters of all these algorithms were set to default values for a fair comparison.
The averaged AUPR and AUROC were chosen as the criteria in the experiments.
Since GENIE-lag, Jump3 and BiXGBoost have no mechanism for integrating the infor-

mation from prior data, for a fair comparison, the PFBNet was implemented without
fusing the prior information. Table 2 shows the comparative results of these algorithms
on the datasets from DREAM4 in-silico size 100 challenge. As it is shown that, PFB-
Net achieves best performance compared with other methods in terms of both AUPR
and AUROC for all the five networks. Specifically, for each network, PFBNet shows 31%
to57% improvements (Network1: 32%, Network2: 38%, Network3: 31%, Network4: 48%
and Network5: 57%) than the second-best algorithm in terms of AUPR. Meanwhile,
PFBNet achieves 3.1%, 5.2%, 3.8%, 5.8% and 4.1% improvements than the second-best
algorithm in terms of AUROC for the five networks respectively. Clearly, the improve-
ment of PFBNet in terms of AUPR ismuchmore impressive than that in terms of AUROC.
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Table 2 Comparison of different methods on the DREAM4 in-silico size 100 challenge networks
(without utilizing the information from prior data)

Method GENIE-lag Jump3 BiXGBoost PFBNet

Data used TS TS TS TS

Metrics AUPR AUROC AUPR AUROC AUPR AUROC AUPR AUROC

Network_1 0.183 0.791 0.270 0.772 0.235 0.806 0.360 0.831

Network_2 0.109 0.708 0.110 0.665 0.152 0.730 0.210 0.768

Network_3 0.224 0.765 0.200 0.741 0.261 0.765 0.343 0.794

Network_4 0.163 0.745 0.180 0.699 0.204 0.735 0.302 0.788

Network_5 0.148 0.796 0.174 0.735 0.214 0.769 0.337 0.829

The highest averaged AUPR and AUROC values are marked in bold for each network. TS, time-series expression data

And it should be noted that, since most of GRNs are sparse, the AUPR is more meaningful
than AUROC[28].
We also compared PFBNet with iRafNet, HiDi and the winner [34] of the DREAM chal-

lenge on the datasets, where all these algorithms adopted different strategies to utilize
the prior information from other types of data (e.g., the knockout data). The results are
shown in Table 3. As it is shown that, the performance of PFBNet is superior to other
three algorithms in terms of both AUPR andAUROC for all the five networks. Specifically,
PFBNet achieves 1.4%, 8.5%, 13.3%, 6.7% and 50.3% improvements than the second-best
algorithm in terms of AUPR for the five networks respectively. In addition, the aver-
aged AUROC of PFBNet is 2.1%, 2.5%, 6.1%, 3.5% and 7.8% higher than the second-best
algorithm for the five networks respectively. Similar with the results in Table 2, PFBNet
achieves better performance in terms of AUPR than that in terms of AUROC. Moreover,
the results in Table 3 are much better than that in Table 2, which indicates the importance
of fusing the prior information for the GRN inference to some extent.

Performance evaluation on the E.coli datasets

To further evaluate the performance of our PFBNet algorithm, we also implemented PFB-
Net and other three algorithms, i.e., GENIE-lag, Jump3 and BiXGBoost on the E.coli
datasets (see the “Datasets” section). It should be noted that, iRafNet andHiDi are ignored
as the E.coli datasets only provide the time-series data. In addition, our PFBNet were
implemented with the parameters that determined on the DREAM4 challenge datasets.
Similarly, averaged AUPR and AUROC were chosen as the criteria in the experiments,
and the parameters were set to default values for all algorithms. The comparison results
of these algorithms are shown in Table 4, in which we find that the performance of our

Table 3 Comparison of different methods on the DREAM4 in-silico size 100 challenge networks

Method iRafNet HiDi Winner PFBNet

Data used TS, KO TS, KO KO TS, KO

Metrics AUPR AUROC AUPR AUROC AUPR AUROC AUPR AUROC

Network_1 0.552 0.901 0.63 0.916 0.536 0.914 0.639 0.935

Network_2 0.337 0.799 0.448 0.868 0.377 0.801 0.486 0.89

Network_3 0.414 0.835 0.413 0.797 0.39 0.833 0.469 0.886

Network_4 0.421 0.847 0.491 0.852 0.349 0.842 0.524 0.881

Network_5 0.298 0.792 0.251 0.803 0.213 0.759 0.448 0.866

The highest averaged AUPR and AUROC values are marked in bold for each network. TS, time-series expression data; KO,
knockout data
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Table 4 Comparison of different methods on the E.coli datasets (without utilizing the information
from prior data)

Method GEINE-lag Jump3 BiXGBoost PFBNet

Data used TS TS TS TS

Metrics AUPR AUROC AUPR AUROC AUPR AUROC AUPR AUROC

Cold 0.011 0.465 0.014 0.535 0.021 0.665 0.028 0.673

Heat 0.012 0.48 0.013 0.513 0.02 0.651 0.044 0.68

Oxidative-stress 0.011 0.458 0.021 0.558 0.018 0.624 0.032 0.671

The highest averaged AUPR and AUROC values are marked in bold for each network

PFBNet algorithm is also superior to GENIE-lag, Jump3 and BiXGBoost. Especially for
the performance in terms of AUPR, PFBNet achieves 33.3%, 120% and 52.4% improve-
ments than the second-best algorithm for Cold, Heat and Oxidative-stress environments
respectively. Meanwhile, PFBNet also achieves the best performance in terms of AUROC,
where the average AUROC of PFBNet is 1.2%, 4.5% and 7.5% higher than the second-best
algorithm for the three environments respectively. These results suggest that our PFBNet
algorithm is also suitable to reconstruct large-scale GRNs from real time-series data.

Analysis of PFBNet computational complexity

The computational complexity of PFBNet algorithm mainly contains two parts. In the
phase of recurrently solving the feature selection subproblems, the GRN inference prob-
lem is firstly decomposed into p subproblems, where p is the number of genes. For each
subproblem, the non-linear model of boosting is applied, and the computational com-
plexity for it is O

(
KDnp′ + np′ log p′ + knp′), where n is the number of samples, p′ ≤ p is

the number of the candidate regulators, K is the total number of trees, and D is the max
depth of the tree. The last term of the computational complexity is that of calculating the
expression values of the candidate regulators from k previous time points. In the phase of
fusing the information from prior data, the complexity of the algorithm is O(np′).
In addition, the CPU runtime is another important index for evaluating the GRN infer-

ence methods. As PFBNet is an ensemble method based on the boosting, here, we focus
on comparing the results with that of BiXGBoost, which also adopts the boosting strat-
egy. The comparison results of BiXGBoost and PFBNet on the three different datasets
(DREAM4 InSilico_Size10, DREAM4 InSilico_Size100, and E.coli) are shown in Table 5.
These measurements were obtained by using python, an 1.4 GHz Quad-Core Intel Core
i5, 8.0GB of RAM memory and a 64-bit Mac operating system. PFBNet takes 2 min 34
s and 51 min to infer DREAM4 InSilico_Size100 and E.coli respectively, which is faster
than BiXGBoost’s 6 min 16 s and 3 h 20 min.

Conclusions
In this study, we develop a novel method, namely PFBNet, to improve the accuracy of
GRN inference from time-series expression data by fusing the information of candidate

Table 5 Comparisons of the runtime on different datasets

Method DREAM4 InSilico_Size100 E.coli

BiXGBoost 6min 16s 3h 20min

PFBNet 2min34s 51min
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regulators at previous time points as well as the prior information. Specifically, the can-
didate regulators of k time points are taken to construct the regression model, while the
decay factor is introduced to calculate the accumulation impact of the candidate regula-
tors of k time points. Then, the non-linearmodel of boosting is applied to solve the feature
selection subproblem. In this way, the information of candidate regulators at previous
time points is fused in our model, where it is typically ignored by the existing algorithms.
Thus, PFBNet would improve the accuracy of the inferred GRN to some extent.Moreover,
different with other algorithms (e.g., iRafNet and HiDi) that integrate the prior informa-
tion in the data preprocessing stage, the prior information is allow to fused into our model
by using the statistic technology. The results on the benchmark datasets from DREAM4
challenge and the real E.coli datasets show that our PFBNet algorithm outperforms sig-
nificantly other state-of-the-art algorithms, i.e., GENIE-lag, Jump3, BiXGBoost, iRafNet
and HiDi.
In the current implementation of our method, for each candidate regulator, the expres-

sion data with the gene knocked out should be provided. However, in real application, only
a small part of genes is generally knocked-out due to the high cost [23]. Thus, extend our
method to fuse the prior information from the expression data with the limited number
of genes knocked out would be another interesting way to explore.

Methods
The ensemble framework

A GRN can be represented as a directed graph G = (V ,E), with a set of directed edges
E corresponding to regulation relationships and a set of nodes V corresponding to genes.
Each directed edge eij ∈ E represents the regulation from gene i (i.e., the regulator) to gene
j (i.e., the target gene). Inferring GRN is to build theG from a gene expressionmatrixM =
[
X1, · · · ,Xp

]
with p genes and N samples, where the vector Xi denotes the expression

values of gene i at different samples. Asmentioned above, one common practice is to solve
the problem under the ensemble framework, where p subproblems can be formulated as:

Xi = f
(
X−
i

) + εi, i ∈ (1, 2, · · · , p) (1)

where X−
i represents the expression values of candidate regulators (e.g., all genes without

gene i) of target gene i, f denotes the selected function (e.g., least angle regression and
random forest) that modeling the impact of candidate regulators on the target gene, and εi
is the random noise. Based on f, the confidences of the regulation relationships from each
candidate regulator to the target gene could be calculated as the importance of the feature
variable. Finally, all regulation relationships from p subproblems are ranked according to
their confidences, and the top ones are used for constructing the GRN. For time-series
data, the subproblem can be formulated as:

Xi
t = ft

(
X−i
t′

)
+ εit′ , i ∈ (1, 2, · · · , p) (2)

where Xi
t is the expression value of gene i at t time point, X−i

t′ is the expression values of
candidate regulators of gene i at t′ time point, εit′ indicates the random noise at time t′.

Fuse the information from previous time points

In this study, the accumulated impact of the candidate regulators from k(k=2) previ-
ous time points on the target gene at t time point is considered; thus, we formulate the
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subproblem as:

Xi
t = ft

(
U−i
k

)
+ εit−1, i ∈ (1, 2, · · · , p) (3)

whereU−i
k denotes a vector collecting the accumulative expression values of the candidate

regulators at previous k time points, and is defined as:

U−i
k = fa

(
X−i
t−1, · · · ,X−i

t−k , δ
)

(4)

where fa denotes the accumulation function, 0 ≤ δ ≤ 1 is the decay factor as we assume
that the impact would be larger if the time point is closer to t. In this study, fa is simply
defined as:

fa (Z1, · · · ,Zk , δ) =
k∑

j=1
Zj ∗ δj−1 (5)

It should be noted that, for most of the available algorithms (e.g., GENIE-lag [27]), the t′

of Eq. (2) is defined to be t − 1, where it holds the assumption that the expression value
of the target gene at t time point is only affected by the expression values of the candidate
regulators at the previous time point. And the subproblem is defined as:

Xi
t = ft

(
X−i
t−1

)
+ εit−1, i ∈ (1, 2, · · · , p) (6)

Note that if k = 1 or δ = 0, Eq. (3) would be the same as Eq. (6). Therefore, Eq. (6) can be
viewed as a special case of our method. The recent method BiXGBoost [25] also considers
the impact of candidate regulators from k time points, however, it needs to calculate the
subproblem for k times to select the time point with most impact. Moreover, the final
impact of the candidate regulation is more likely to be the accumulation of previous time
points rather than the maximal one.

Non-linear model of boosting

To solve subproblem defined in Eq. (3), a common method for ensemble learning, i.e.,
boosting is applied here, where it solves the problem via integrating a set of weak learners,
and the sum of the all weak learners is viewed as the final prediction. There are vari-
ous boosting methods, including Gradient Boosting [3], AdaBoost [35], etc. In this study,
we introduce a recently developed method, i.e., XGBoost [36] to solve the subproblem
and evaluate the importance of the variables. The objective function of XGBoost can be
formulated as:

min
θ

L(t)(θ) =
n∑

i=1

[
l
(
yi, ŷ(t−1)

i

)
+ gift (Xi; θ) + 1

2
hif 2t (Xi; θ)

]
+ �

(
ft (Xi; θ)

)
(7)

where ŷl(t) is the prediction value of the target variable of sample i at the t-th itera-
tion, yi is the value of the target variable of sample i, Xi denotes a vector collecting all
values of the feature variables of sample i, ft is the weak learner integrated at the t-th
iteration, l is the loss function, θ denotes the parameters, gi = ∂̂y(t−1)

l
l
(
yi, ŷ(t−1)

i

)
and

hi = ∂2
ŷ(t−1)
l

l
(
yi, ŷ(t−1)

i

)
are the first and second order gradient, and � is the regularized

term as following:

�
(
ft (Xi; θ)

) = γT + 1
2
λ‖w‖2 (8)
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where T is the number of leaves in the tree, γ and λ are the parameters that control
the shrinkage, w is the leaf weights. The regularization term can smooth the final learnt
weights and such that the over-fitting problem would be avoided. The non-linear decision
tree is chosen as the base learner, and we apply the numberNi of a feature variableGi (i.e.,
candidate regulator) selected to split the target variables among all trees as the importance
of Gi on the target gene j. That is to say, the confidence of the regulation relationship
from gene i to gene j (i.e., the weight wij) is evaluated to be Ni. The splitting criterion
and other details can be referred to [36]. In addition, since each subproblem is solved
via the boosting method independently, thus it cannot simply use the confidences of the
regulation relationships evaluated from each subproblem for globally ranking. To this end,
we employ a L2-norm based normalization to solve this problem. And the weights wij for
each subproblem are normalized as:

w̃ij = wij√∑p
i=1 w

2
ij

, i �= j (9)

where p is the number of candidate regulators for gene j in each subproblem.

Fuse the information from prior data

Since other types of data (e.g., the gene expressions from knockout experiments) often
provide more information about the directionality of regulatory relationships, it is impor-
tant to integrate these data for inferring the more reliable and accurate GRN. Some
representative algorithms, (e.g., HiDi and iRafNet) typically integrate the prior informa-
tion supported by other types of data in process of data preprocessing. Here, we present a
way that fuse the prior information into our model (Other types of data could be defined
in the similar way).
Without loss of generality, we denote xKOij the expression of gene j after knockout the

gene i, and the prior information IKOij is defined as:

IKOij =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∣∣
∣xKOij − xKOij

∣∣
∣

σKO
ij

, i �= j, pr=1

1 , pr=0

(10)

where pr is the control parameter that determines whether or not to fuse the prior data
information (i.e., 1: fuse; 0: not fuse) and xKOij is the averaged expression of gene j for all
knockout experiments, and σKO

ij is the standard deviation of the expression values of gene
j for all knockout experiments.The value of IKOij reflects the significant levels of changes
of xKOij among all knockout experiments(see Table S2). The larger the value, the more
significant it is. Meanwhile, we hold the assumption that if the IKOij is large, the confidence
of the regulation relationship that from gene i to gene j would be high. To this end, we
apply IKOij to update the global confidences of all regulation relationships wij as:

ŵij = wij ∗ IKOij , i �= j (11)

wherewij denotes the confidence of the regulation relationship from gene i to gene j, and it
is calculated through the feature importance evaluation of the boosting method. It should
be noted that other types of data (e.g., the knock down data) may also be integrated in the
similar way. Additionally, we also use a statistical technique to further update the weights
wij, where it is based on the hypothesis that if a candidate regulator i regulates multiple
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target genes, it would be an important regulator and the confidences of all regulation
relationships about this gene should be elevated. In the light of this, we formulate the
update of the weights wij for each candidate regulator i as:

wij = σ 2
i ∗ wij, j = 1, 2, ..., p, j �= i (12)

where σ 2
i denotes the variance of all wij for candidate regulator i. Note that the GRN

is often sparse, thus the values of most wij for candidate regulator i would be small.
Therefore, if the value of σ 2

i is relatively large, it would mean that the confidences of sev-
eral regulation relationships about candidate regulator i are large, such that candidate
regulator i is likely to regulate those corresponding target genes.
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