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A Neuransistor with Excitatory and Inhibitory Neuronal
Behaviors for Liquid State Machine

Woon Hyung Cheong, Geunyoung Kim, Younghyun Lee, Eun Young Kim, Jae Bum Jeon,
Do Hoon Kim, and Kyung Min Kim*

A liquid state machine (LSM) is a spiking neural network model inspired by
biological neural network dynamics designed to process time-varying inputs.
In the LSM, maintaining a proper excitatory/inhibitory (E/I) balance among
neurons is essential for ensuring network stability and generating rich
temporal dynamics for accurate data processing. In this study, a
“neuransistor” is proposed that implements the E/I neurons in a single
device, allowing for the hardware implementation of the LSM. The device
features a three-terminal transistor structure embodying TiO2−x/Al2O3

bi-layer, providing a two-dimensional electron electron gas (2DEG) channel at
their interface. This device demonstrates hybrid excitatory and inhibitory
dynamics with respect to the applied gate bias polarity, originating from the
charge trapping/detrapping between the 2DEG and TiO2−x layers.
Additionally, the three-terminal configuration allows masking capabilities by
selecting terminal biases, realizing a reservoir behavior with superior
reliability and durability. Its use in an LSM reservoir for time-series data
prediction tasks using the Henon dataset and a chaotic equation solver for the
Lorenz attractor is demonstrated. This benchmarking indicates that the LSM
exhibits enhanced performance and efficiency compared to the conventional
echo state network, underscoring its potential for advanced applications in
reservoir computing.
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1. Introduction

Biological neurons communicate by ex-
changing various neurotransmitters via
synapses. These neurotransmitters con-
tribute to the formation of the membrane
potential in the neuron, facilitating the
transmission of action potentials.[1–3] De-
pending on their role in action poten-
tial generation, the neurotransmitters can
be classified as excitatory neurotransmit-
ters (e.g., glutamate) or inhibitory neu-
rotransmitters (e.g., gamma-aminobutyric
acid). The proportion of excitatory or in-
hibitory neurotransmitters flowing to the
post-synaptic neuron determines whether
the net gain of the post-synaptic potential
is positive or negative.[4] When the mem-
brane potential is positive (or depolarized),
it is called excitatory post-synaptic potential
(EPSP), and when it is negative (or hyperpo-
larized), it is called inhibitory post-synaptic
potential (IPSP).[5–7] The membrane poten-
tial decays over time, which is called re-
polarization, making the neuron system
function as a temporal signal encoder.[8–10]

The neural system maintains appropri-
ate ratios of the excitatory and inhibitory

signals, known as the E/I balance. A representative example of
E/I balance is the phenomenon where hyperpolarization follows
depolarization during an action potential when a neuron fires.
This occurs due to the feedback mechanism of EPSPs and IP-
SPs, which helps prevent continuous neuronal firing. Even be-
fore a neuron fires, EPSPs and IPSPs work together to regulate
the neuron’s membrane potential (see Figure S1 in the Support-
ing Information for the biological mechanism of E/I balance).
This prevents excessive signal transmission or over-inhibition
that can lead to neurological disorders like epilepsy and ensures
stable neural activity and efficient information processing, as il-
lustrated in Figure 1a.[11–14]

One of the neuromorphic computing technologies that best
mimics these characteristics of the brain is the liquid state ma-
chine (LSM). LSM is a type of reservoir computing (RC), specifi-
cally designed to process spiking inputs, making it particularly
strong in temporal pattern recognition. The most notable fea-
ture of LSM is that, like the brain, it utilizes the dynamic balance
and regulation between excitatory and inhibitory neurons, as de-
picted in Figure 1b.[15,16] Therefore, LSM is considered the most
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Figure 1. The neuransistor exhibiting hybrid excitatory and inhibitory neural dynamics and its application in the brain-like LSM. a) The brain nerve system
includes a neural network with excitatory and inhibitory neurons, producing excitation (depolarization) and inhibition (hyperpolarization) signals, leading
to E/I balancing. b) The LSM with excitatory and inhibitory nodes for analog input processing and output generation. c) A hardware form of the LSM
with the neuransistor. Each neuransistor encodes the input in various forms, and their weighted summation produces the encoded output.

accurate model for replicating biological neuronal activities
among known RC models.[17] While the advantages of LSM are
clear, implementing its required bi-directional polarization be-
havior (the ability to polarize in both directions, known as depo-
larization and hyperpolarization, respectively) and repolarization
behavior (i.e., the relaxation of the facilitated potential) within a
single device necessitates a complex circuit design, and no effec-
tive solution has yet been proposed.
Memristors or memtransistors can realize such compli-

cated neuromorphic functionalities directly with simple de-
vice architectures. so brain emulation using them has al-
ready been extensively investigated for long-term synaptic
plasticity,[18–20] short-term synaptic plasticity,[21,22] their hy-
brid synaptic characteristics,[23–25] and neuronal behaviors.[26–28]

Long-term synaptic plasticity enables stable memory retention,
making it suitable for vector-matrix multiplication accelerators
through array integration. Short-term synaptic plasticity is essen-
tial for mimicking biological learning rules such as spike-timing-
dependent plasticity.[29] Notably, hybrid synaptic devices that ex-
hibit both long- and short-term plasticity hold promise for imple-
menting flexible learning and adaptive mechanisms within neu-
ral networks. Furthermore, memristor-based artificial neurons
have been developed to emulate leaky integrate-and-fire charac-
teristics, allowing for efficient neural signal processing.[26] Re-
search has also explored the replication of complex sensory neu-
ral responses using simple electronic devices.[30] These advance-
ments suggest that memristors can play a crucial role beyond
memory applications, contributing to neuromorphic computing
and the precise emulation of biological neural networks. They op-
erate through various mechanisms, making them realize various
plasticity characteristics of synapses or neurons. However, de-

spite the wide variety of known mechanisms, identifying mech-
anisms capable of producing the bi-directional polarization and
repolarization behaviors—i.e., maintaining a stable intermediate
state and exhibiting both EPSP and IPSP dynamics in a single
device—remains challenging.
Moreover, encoding the inputs into diverse outputs is crucial

in RC, as it generates richer temporal dynamics, thereby improv-
ing the accuracy and efficiency of learning and predicting com-
plex time-series data. To achieve this, masking methods are com-
monly applied to the reservoir.[31–33] However, previous masking
methods typically require preprocessing of input signals, mak-
ing them complex. Therefore, new methods that can implement
masking without the need for preprocessing input signals need
to be explored.
In this study, we propose a neuronal memtransistor device,

which we have named a “neuransistor,” capable of exhibiting
bi-directional polarization and repolarization dynamics while of-
fering masked reservoir characteristics through bias configura-
tion regulation. The neuransistor features a three-terminal (top
gate (G) and bottom source and drain (S/D)) structure with an
Al2O3/TiO2−x bilayered gate oxide embodying a two-dimensional
electron gas (2DEG) channel at their interface. The neuransis-
tor exhibits bi-directional neuronal dynamics by applying a gate
bias (VG), in which the VG polarity and amplitude can determine
the polarization direction and amplitude of the plasticity. The dy-
namic states can be read through the S/D current (ISD), mak-
ing it plausibly applicable to the LSM. We present the mech-
anism behind this unique behavior, attributed to charge trap-
ping/detrapping dynamics between the 2DEG and TiO2−x layers,
distinct from any existing mechanisms. The neuransistor can
precisely encode the time-series inputs in both EPSP and IPSP
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Figure 2. The structure and electrical characteristics of the neuransistor. a) The neurnasistor’s structure including a cross-sectional structure (left
bottom), a top-view optical microscopy image (right top), and an equivalent circuit diagram (right bottom). b) A cross-sectional TEM image and the
FFT diffraction patterns of the amorphous Al2O3 and TiO2−x layers. c) Hybrid EPSP and IPSP characteristics of the GSD after VG,pgm application. d)
Programmed GSD0 as a function of the VG,pgm pulse number (Npulse) for the VG,pgm ranging from −8 to +8 V for 1 ms. e) Linear relationship between
the applied VG,pgm and the saturated GSD0 when Npulse = 30. f) Multi-level endurance characteristics of the GSD0 under VG,pgm = ± 2 V, ± 5 V, and ± 8 V
for 5 ms. GSD0 was read at VS,read = +1 V for 40 ms. A 100 ms interval was applied between the programming cycles. g) Cumulative probability of the
GSD0 of the endurance results in f. h) Device-to-device uniformity of the pristine state and programmed state by ± 8 V VG,pgm conditions using 8 devices
with 100 cycles each.

manners, making it applicable to the reservoirs of the LSM, as il-
lustrated in Figure 1c. Furthermore, the neuransistor can encode
the time-series inputs into multiple forms by applying an addi-
tional bias to the source terminal, generating the masked polar-
ized output signals. This neuransistor device is highly stable and
compatible with the CMOSprocess, demonstrating its strong fea-
sibility as the reservoir hardware of the LSM applications.

2. Results and Discussion

2.1. Device Structure and Electrical Characteristics of the
Neuransistor

Figure 2a illustrates the neuransistor device structure, compris-
ing a Pt electrode as a source and drain, an Al2O3/TiO2−x bilayer,

and a Ti top-gate electrode. The left-bottom inset shows a cross-
sectional schematic of the device. A more detailed device fabrica-
tion process can be found in the Experimental section. The right-
top inset shows a top-view optical microscope image of the de-
vice and a contact pad configuration, where the dashed square
in the middle indicates the device area. The channel length and
width between the source and drain are 20 and 15 μm, respec-
tively, and the gap between the gate and source (or drain) is
2.5 μm. In the device, the 2DEG layer and the source/drain are
not directly connected but are separated by the TiO2−x layer, un-
like the typical 2DEG-based transistors. Therefore, the equiva-
lent circuit between the source and drain terminals can be a se-
rial connection of the source, TiO2−x layer, 2DEG, TiO2−x layer,
and drain, as shown in the right-bottom inset. While the conduc-
tivity of the 2DEG layer is high, the TiO2−x dielectric layers are
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insulating, resulting in an overall lower ISD level than that of the
typical 2DEG-based transistors.[34] Here, the conductivity of the
TiO2−x layer could be either increased or decreased from the ini-
tial state, making the device exhibit intriguing bi-directional plas-
ticity behaviors.
Figure 2b shows a cross-sectional transmission electron mi-

croscopy (TEM) image of the device with its fast Fourier trans-
form (FFT) diffraction patterns, confirming that amorphous
TiO2−x and Al2O3 layers were uniformly deposited (see Figure
S2 in the Supporting Information for energy-dispersive spec-
troscopy (EDS) results of Al, Si, and Ti elements). For further
analysis, we also conducted TEM imaging of the edge structures
of the gate and drain electrodes of the device (see Figure S3 in
the Supporting Information for the cross-sectional TEM images
of the electrode edge structures). The results confirmed that the
fabricated electrode structures exhibit a tapered profile in both
the gate and drain (or source) regions. Previous studies sug-
gested that during the Al2O3 atomic layer deposition (ALD) on
TiO2−x, the Al precursor (trimethylaluminum, TMA) acted as a
strong reducing agent, creating a high concentration of oxygen
vacancies (VO) on the TiO2−x surface.

[34,35] The VO acts as n-type
dopants, donating free electrons to the Ti 3d band and increasing
the fermi level (EF) of the TiO2−x layer, resulting in a conduc-
tive 2DEG layer formation.[36,37] By fitting the resistance values
to the various channel lengths of the fabricated device, the sheet
resistance of the 2DEG channel layer was determined to be 5.9
MΩ/sq, which is consistent with the previously reported value[35]
(see Figure S4 in the Supporting Information for the sheet resis-
tance fitting result).
The bi-directional short-term plasticity behaviors are shown

in Figure 2c. It shows the change of reading conductance be-
tween the source and drain (GSD) over time (t) after program-
ming with various conditions through the gate. The applied pro-
gramming pulse (VG,pgm) ranged from −8 to +8 V with a width
of 10 ms, while the source and drain were grounded. After pro-
gramming, the programmed state was then read by applying a
read pulse to the source (VS,read, +1 V for 100 ms) while the drain
was grounded. The interval between VG,pgm and VS,read was 2 ms.
The inset shows the pulse scheme. The reading results showed
that the initialGSD at t = 0 (GSD0) was initially either excited (blue
lines) or inhibited (red lines) depending on the polarity of VG,pgm,
with GSD0 being controlled by the VG,pgm amplitude. Over time,
theGSD gradually converged to the pristine state, following a typ-
ical exponential decay function, GSD (t) = GSD0 exp(−𝜆t), where
𝜆 is a decay rate constant. The black line is the reference output
when VG,pgm was 0.
Additionally, the device exhibited bi-directional integration

characteristics. Figure 2d shows the GSD0 as a function of the
number (Npulse) ofVG,pgm pulses for theVG,pgm ranging from−8 V
to+8 V for 1ms. Here, we plottedGSD0 to accurately compare the
time-varying values in a non-time domain. The conductance was
read using a VS,read of +1 V for 10 ms. All pulse intervals were
2 ms. The results indicated that theGSD0 gradually increased and
then saturated as the Npulse increased. The VG,pgm amplitude ver-
sus the saturated GSD0 (at Npulse = 30) plot demonstrated high
linearity, as shown in Figure 2e, suggesting that the device can
encode input data with high precision suitable for the reservoir
application. For additional comparison, we investigated the im-
pact of gate electrode overlap with the source or drain electrode

on the device characteristics (see Figure S5 in the Supporting In-
formation for the gate overlap effect). When evaluating themem-
ory margin of this modified device, we observed nearly identical
characteristics to those of the original neuransistor device, indi-
cating that gate overlap does not significantly affect the device’s
performance. This behavior can be attributed to the fact that the
2DEG layer functions as a floating gate, ensuring that a sufficient
electric field is established between the source/drain electrodes
and the 2DEG layer, regardless of the gate overlap.
Figure 2f shows the device’s multi-level endurance character-

istics of the GSD0 for 10
6 cycles under various VG,pgm conditions,

showing the uniformity and stability of the devices. After each
programming and reading cycle, a subsequent cycle was pro-
cessed after a 100 ms interval to ensure complete relaxation to
the pristine state (see Figure S6 in the Supporting Information
for the detailed pulse scheme and the obtained endurance sample
for 106 cycles atVG,pgm =+8 V). At this point, thememorymargin
of the current device is less than one order ofmagnitude, which is
relatively small compared to conventional memristors andmem-
transistors. However, while stable multi-bit operation is crucial
for non-volatile synaptic devices, the significance ofmemorymar-
gin is relatively lower for dynamic reservoir devices. This is be-
cause the primary function of reservoir computing (RC) systems
is signal transformation, where transient signal processing plays
a more critical role than long-term data retention. In this context,
we found that dynamic memristors and memtransistors used as
RC hardware exhibit excellent performance as RC hardware even
with a low memory margin of approximately one order of mag-
nitude, similar to the current device.[32,38,39] Figure 2g summa-
rizes the variation in the GSD0, confirming high uniformity. The
device-to-device variation is also highly uniform. Figure 2h shows
the GSD0 uniformity among 8 different devices over 100 cycles at
VG,pgm of +8 V and −8 V (see Figure S7 in the Supporting In-
formation for the raw endurance data of all devices). We antici-
pate that this high uniformity is related to the non-filament type
mechanism, which does not require the electroforming process,
as reported in other studies.[40–43]

2.2. Operation Mechanism of the Neuransistor

To identify the mechanism, it is first necessary to locate where
the conductance change occurs in the device. Figure 3a depicts
the cross-sectional structure of the device, magnifying the edges
of the gate (G) and source/drain (S/D) regions. While the gate re-
gion is similar to the classical gate structure of the 2DEG-based
transistor, in the S/D region, the 2DEG layer covers the S/D, act-
ing as a floating electrode. As a result, the 2DEG/TiO2−x/Pt stack
dominates the overall conduction of the device (see Figures S8
and S9 in the Supporting Information for the electric field simu-
lation results using COMSOL). Additionally, to verify the operat-
ing mechanism between the 2DEG layer and the TiO2−x layer,
we compared the memory margin of the device with a longer
2DEG channel length, where the proportion of the 2DEG layer
is higher (see Figure S10 in the Supporting Information for the
memory margin result with a 100 μm channel length). The re-
sults showed no significant difference in memory margin. This
finding supports that the memory effect in the neuransistor de-
vice is primarily determined by the operating mechanism of the
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Figure 3. The operation mechanism of the neuransistor. a) A schematic cross-section and the energy band diagrams at the gate side (indicated by the
blue arrow) and the drain (or source) side (red arrow). The bandgap of the dielectric layers was assumed to be 6.6 eV for Al2O3 and 3.2 eV for the
TiO2−x layer. b, c) Operation model of the neuransistor. At the drain side, the traps of the TiO2−x layer are partially filled at the pristine state due to the
EF alignment. Then, by the excitatory operation with positive VG,pgm, the traps are detrapped, leading to a higher conductance state (b). Conversely,
under inhibitory operation with negative VG,pgm, more traps are filled, resulting in a lower conductance state (c). d) ISD-VSD curves measured at different
temperatures ranging from 40 °C to 60 °C. e) ln I versus ln V plot of d. f) Arrhenius fitting plots (ln J versus 1/T) for the voltages ranging from +2 V
(black) to +5 V (cyan). The average slopes indicate that the activation energy (Ea) is 0.305 eV. g,h) The read currents (VS,read = +1 V) with after positive
input pulse (VG,pgm = +4 V, 10 ms) (g) and after negative input pulse (VG,pgm = −4 V, 10 ms) h) as a function of time at various temperatures ranging
from 40 °C to 60 °C. i) Arrhenius fitting plots (ln(1/𝜏) versus 1/kT) for the excitatory and inhibitory states. The Ea are 0.267 eV and 0.302 eV, respectively,
which is consistent with the Ea obtained in f.

TiO2−x layer rather than by resistance changes in the 2DEG layer.
Consequently, the structure in Figure 3a can be approximated to
a Ti(G)/Al2O3/2DEG/TiO2−x/Pt(S/D) structure when program-
ming (blue box) and a Pt(S)/TiO2−x /2DEG/TiO2−x/Pt(D) struc-
ture when reading (red box) (see Figure S11 in the Support-
ing Information) for the equivalent stacks in programming and
reading). In this structure, the conductivity of the TiO2−x layer
can be increased or decreased depending on the VG,pgm polar-

ity, which can be explained by the charge trapping/detrapping
model between 2DEG and TiO2−x.

[44,45] During this process,
unintended charge trapping and detrapping may occur in the
region beneath the gate electrode, and the formation of fixed
charges could lead to degradation of the device’s operational
characteristics.[43] However, as observed in Figure 2f, the device
exhibited no noticeable performance degradation over multiple
switching cycles. This suggests that potential unintended charge
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trapping during operation has aminimal impact on the switching
characteristics.
Figure 3b,c show the electronic band structure of the

2DEG/TiO2−x/Pt stack in excitatory programming under posi-
tive VG,pgm and inhibitory programming under negative VG,pgm,
respectively. At the pristine state (panel i), the TiO2−x embodies
VO, providing the trap sites.

[46,47] The energy level of some trap
sites near the 2DEG interface can be lower than the Fermi energy
(EF), thus those traps are filled initially. When a positive VG,pgm is
applied (panel ii, Figure 3b), the trapped electrons in the pris-
tine state are released into the 2DEG layer, emptying the traps
and inducing an additional internal positive potential (panel iii,
Figure 3b). This lowers the effective thickness of hopping con-
duction (from d0 to dLRS) and leads the TiO2−x layer to a low re-
sistance state (LRS). This LRS cannot be monitored through the
gate-to-drain current due to the high resistance of the Al2O3 layer.
Therefore, this device cannot operate in a two-terminal manner.
However, the LRS can be identified through monitoring the ISD.
When a negativeVG,pgm is applied (panel ii, Figure 3c),more traps
in the TiO2−x layer are filled, increasing the hopping thickness
(from d0 to dHRS) and leading the TiO2−x layer to a high resis-
tance state (HRS). Both the LRS and HRS are energetically un-
stable states, so they returned to their pristine state over time (re-
polarization), resulting in the bi-directional short-term plasticity
characteristics.
This switching mechanism, associated with charge trap-

ping/detrapping, is supported by the temperature-dependent
conduction behavior. Figure 3d shows the temperature-
dependent current–voltage (I–V) curves between the source
and drain, ranging from 40 °C to 60 °C, under a +5 V of VS,read.
Figure 3e shows a log–log plot of Figure 3d, and Figure 3f
shows the Arrhenius fitting results, giving an activation energy
(Ea) of 0.305 eV. This value aligns well with the trap energy
levels in TiO2

[48–50] and the Ea obtained from impedance
measurements.[51] Therefore, such behavior with the Ea sug-
gests the conduction mechanism is associated with trap-assisted
hopping conduction through the TiO2−x layer.

[41,52]

Additionally, the temperature-dependent relaxation character-
istics confirm the mechanism. Figure 3g,h shows the relaxation
characteristics after excitatory (VG,pgm = +8 V) and inhibitory
(VG,pgm =−8 V) pulses were applied at various temperatures. The
relaxation characteristics were fitted with an exponential relax-
ation equation, and the time constants (𝜏) were obtained for each
curve. Figure 3i shows an Arrhenius plot (ln(1/𝜏) vs 1/kT), con-
firming the relaxation Ea values of 0.267 eV for excitation and
0.302 eV for inhibition, which are very similar to the trap level of
the TiO2−x bulk region extracted in Figure 3f. These results fur-
ther support that the switchingmechanism of the neuransistor is
due to charge trapping and detrapping in the serially connected
TiO2−x dielectric layers.

2.3. Neuransistor-Based Physical Liquid State Reservoir
Computing

In reservoir computing, masks allow the reservoir to generate
richer temporal dynamics from time-series input data.[32,53,54]

These encoded signals are then input to a neural network for
training and inference. Various methods have been proposed

for applying masks on the reservoirs, which involve preprocess-
ing the input signals with complex mask filtering, making them
inefficient.[55,56] In this regard, utilizing a three-terminal struc-
ture offers an efficient way to implement the mask. While pro-
gramming is conducted through two terminals, the third termi-
nal may interfere with the programming process. However, this
interference can be leveraged by designating the third terminal
as the masking terminal.[57]

In the neuransistor, such mask functions can be implemented
in two ways. The first method is to use EPSP or IPSP itself as a
mask, which we call an E/I mask. This E/I mask can be applied
as follows:When time-series data is received, the signal converter
(SC) converts them into input voltage signals. At this stage, the
SCmay incorporate both a non-inverting amplifier and an invert-
ing amplifier, generating EPSP and IPSP input signals, respec-
tively. These signals are then selectively routed to the gate termi-
nal of the neuransistor as voltage inputs (VG,E/I) through a multi-
plexer. Second, when the gate is biased to VG,E/I and the drain is
grounded, the source bias affects the gate-to-source potential. It
can, therefore, influence the programming of the memristor at
the source side. While this does not change the overall E/I mode,
it allows for additional excitation or inhibition of the source-side
memristor depending on the additional source bias polarity and
amplitude. Therefore, it is termed the regulation (RG) mask, and
the source bias is defined as VS,RG. VS,RG is used to enhance the
discriminability of input signals and is randomly selected in 1 V
increments within the ±3 V range. This random selection oc-
curs at each time step, ensuring that the system does not rely
on a fixed bias pattern. In software simulations, different VS,RG
do not significantly impact performance, but in hardware exper-
iments, the voltage range was carefully set to ensure stable de-
vice operation. Additionally, the E/I mask and RG mask are ap-
plied together. Unlike conventional binarymaskingmethods, the
RG mask adjusts the input signal’s amplitude, enabling an ana-
log masking process. This allows input patterns to be mapped
to a broader range of states within the reservoir, improving the
model’s learning and prediction performance. Figure 4a shows
the overall process for themasked output signal generation in the
neuransistor for the encoding process. At the masked program-
ming process (①), combining the VG,E/I and VS,RG can program
the neuransistor diversely. The input signal influences changes
in the neuransistor’s GSD, and various states are formed through
hardware-based masking. Subsequently, during the reading pro-
cess (②), the read voltage (𝑉read) is applied, generating an out-
put current. The resulting state vector is then compared with the
target data through the readout process, reflecting the dynamic
properties of the neuransistor. The conductance changes in the
neuransistor serve as a keymechanism for learning temporal pat-
terns in the LSM, and model optimization is achieved through
linear regression. Combining these twomasks can offermultiple
masking options, providing sufficient memory capacity to oper-
ate physical LSM hardware. Unlike conventional software-based
random masking methods, this approach implements masking
directly at the hardware level by adjusting the gate voltage polar-
ity and modulating the source voltage, reducing computational
overhead and enabling a more hardware-friendly architecture.
Figure 4b shows the GSD for various masking options when

VG,pgm = +4 V (blue lines) and −4 V (red lines), while VS,RG is
from−3 V to+3 V. Figure 4c magnifiesGSD and the conductance
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Figure 4. Masking method and reservoir characteristics in the neuransistor for LSM. a) Schematic diagram of the encoding process, including a block
diagram for input normalization, masked programming (①) and read process (②) for the output generation. During the masked programming process,
the E/I masked input signal (VG,E/I) after the normalization process is applied to the gate, while the RGmask signal (VS,RG) is applied to the source. VS,RG
is randomly selected in 1 V increments within the ±3 V range. This random selection occurs at each time step, ensuring that the system does not rely
on a fixed bias pattern. With the masked programming process, GSD of the neuransistor device changes. Subsequently, the programmed state is read by
reading the ISD by applying Vread to the source. The output results are utilized in the readout process for the linear regression. b) GSD for various VS,RG
ranging from −3 V to +3 V for VG,E/I = +4 V (blue lines) and VG,E/I = −4 V (red lines). c) Magnified ΔGSD for various VS,RG ranging from −3 V to +3 V
for VG,E/I = +4 V. d) Linear relationship between ΔGSD as a function of the VS,RG in the E/I modes. e) Paired-pulse facilitation (PPF) characteristics in
the E/I modes. (VG,pgm = +8 V or = −8 V). f,g) Reservoir behaviors converting 4-bit temporal input to analog output (GSD0) for various VS,RG conditions
in the E/I modes.

changes (ΔGSD) of EPSP spanning from 4 to 6 ms. This result
clearly confirms that each signal is well distinguished, and the
six RG masks provide sufficient encoding resolution. Figure 4d
plots the averaged ΔGSD of Figure 4c, showing the linear rela-
tionship betweenΔGSD andVS,RG in both EPSP and IPSPmodes.
This linear relationship highlights the high controllability of the
proposed masking method.
Additionally, for reservoir computing, the device must be able

to encode time-series inputs effectively. For this, optimization of
the input pulse duration (td, i.e., pulse on time) and the inter-
pulse interval (tv, i.e., pulse off time) is necessary. Figure 4e shows
the paired-pulse facilitation (PPF) characteristics in EPSP (VG,pgm
= +8 V) and IPSP (VG,pgm = −8 V) modes as a function of the tv
ranging from 5 ms to 100 ms with a fixed td of 5 ms. The re-
sults exhibit ideal PPF characteristics fitted well with exponen-
tial curves, showing promise for nonlinearly converting tempo-

ral information. Figure 4f,g presents the results of encoding 4-
bit EPSP and IPSP temporal inputs, with various RG mask con-
ditions for each. The td and tv were 1 ms and 4 ms, respec-
tively, which are optimized conditions to achieve optimal encod-
ing (see Figure S12 in the Supporting Information for the addi-
tional results with various tv). In summary, the neuransistor can
encode the 4-bit temporal input into distinguishable analog out-
puts under the masking conditions, making it suitable for LSM
applications.

2.4. Neuransistor-Based LSM Simulation and Evaluation

The neurons in LSM can operate in both EPSP and IPSP modes,
continuously changing over time.[13,15,58,59] This feature distin-
guishes LSMs from other RC systems, making them ideal for
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neuromorphic computing. The neuransistor can be utilized to
realize such EPSP and IPSP hybrid reservoir behaviors in LSM.
Figure 5a schematically shows the reservoir constructed on a 1×N
neuransistor array. Here, all neuransistor devices are essentially
identical (black symbol), but each device operates differently due
to the application of specificmasking signals (VG,E/I andVS,RG). In
this system, continuous input signals are first processed through
a hardware-based masking stage, where they are transformed
into N masked inputs for each device (Mask #1 ∼ Mask #N).
Each neuransistor undergoes a time multiplexing process, gen-
eratingML different reservoir states for a single input, whereML
stands for the masking length. Here, the combination of mask-
ing signals (i.e., mask set) at a given time step defines the identity
of the reservoir. For example, at a time step of T1, the mask set
is defined as {(VG,E/I

(T1, 1), VS,RG
(T1, 1)), (VG,E/I

(T1, 2), VS,RG
(T1, 2)), …

(VG,E/I
(T1, N),VS,RG

(T1, N))} whereVG,E/I is E/Imasked input signals
and VS,RG is the RG signal (VS,RG ∈{−3 V, −2 V, −1 V, 0 V, +1 V,
+2 V, +3 V}). By applying the different mask sets, each neuran-
sistor produces different outputs depending on the appliedmask,
which are combined to form the reservoir output. This masking
process is repeatedML times for TML. In other words, a single in-
put undergoes hardware-basedmasking, resulting inML distinct
output states. In this process, individual neurons in the liquid
state reservoir (i.e., neuransistor array) exhibit different reservoir
states (Reservoir #1, #2, …, #N). Also, while the mask set is ap-
plied during TML, the E/I mask is randomly selected. As a result,
the E/I ratio (Ratio R1%, R2%, …, RN%) during TML appears ran-
dom at the individual neuron level due to the limited number of
ML. However, throughout the entire training process, the overall
E/I ratio across N neurons (thus, a total number of masks is N ×
ML) ultimately converges to 50%due to the law of large numbers.
This random but overall balanced E/I ratio ensures high network
diversity andmaintains E/I balance. Next, the output signals gen-
erated by the N neurons undergo a readout process. These se-
quences repeat in alignment with the input signal’s time steps,
allowing each neuron to exhibit richer temporal dynamics.
Reflecting the reservoir characteristics of the neuransistor ar-

ray, we evaluated the applicability of our device in LSM through
simulations. To highlight the advantages of the EPSP and IPSP
hybrid neuransistor in the LSM, we compared it with a conven-
tional echo state network (ESN) that utilizes only EPSP or IPSP
neurons. Figure 5b,c compares the prediction results of the reser-
voir system of ESN (red) and LSM (blue) with the prediction tar-
get (black) of the Henon dataset in a two-dimensional represen-
tation. Training and prediction were conducted for 1000 time-
series data points each, with settingML= 2 andN= 6. The result
was evident that the prediction results for the LSM were more
closely aligned with the target compared to the ESN. To quan-
titatively assess prediction accuracy, we calculated the normal-
ized root mean square error (NRMSE) values, which are ≈0.1020
for ESN and ≈0.0097 for LSM, indicating an error difference
of more than tenfold. Figure 5d summarizes the NRMSE as a
function ofML under identical reservoir dimensions (RD; RD =
ML ×N). The performance superiority of the LSM was consis-
tently observed, and its exceptional characteristics, particularly
with compactML, further highlight its advantages in the context
of lightweight neuromorphic computing (see Figures S13 and
S14 in the Supporting Information for the time step representa-
tion results andmodel-related parameters for theHenon dataset).

This performance comparison was conducted using a relatively
shallow network withRD= 12. Generally, in reservoir computing
models such as ESN, increasing the RD can potentially improve
prediction performance. However, in resource-constrained envi-
ronments such as edge computing, LSM offers a significant ad-
vantage in energy efficiency by achieving high performance even
with a smaller reservoir size.
Subsequently, we compared the prediction capabilities for

complex tasks by examining periodic and chaotic solutions us-
ing the Lorenz attractor to assess the LSM’s nonlinear map-
ping capability.[60–62] This simulation evaluates sensitivity to ini-
tial conditions, model robustness, and noise handling capabil-
ity, which are crucial for verifying whether RC models can effec-
tively address various challenges encountered in real-world envi-
ronments. Figure 5e shows the predicted state trajectory and the
ground truth target (black) in 3-dimensions for the ESN (top) and
LSM (bottom), respectively. Each emulation involved training the
dataset for the initial 10 000 time steps, followed by prediction
over 10 000 time steps. The RD was set toML = 2 and N = 6. In
the analysis of the Lorenz attractor predictions, we compared the
absolute error values for each axis during prediction for 10 000
test time steps in Figure 5f. The LSM (blue) shows much lower
prediction error results compared to the ESN (red).
Figure 5g compares the NRMSE as a function of the N with

a fixedML (ML = 2). Overall, the LSM exhibited lower error val-
ues compared to the ESN in all cases. Consistent with previous
results, this suggests that the LSM using the neuransistor posi-
tively impacts time-series prediction, especially in more compact
environments. Additionally, Figure 5h compares the NRMSE val-
ues as a function of the training time steps (from 1 000 to 50 000)
at ML = 2 and N = 6. The results indicate that the LSM can be
trained approximately three times faster than the ESN, highlight-
ing the superior efficiency of the LSM over the ESN.

3. Conclusion

In this study, we proposed the neuransistor, a device capable
of implementing the hybrid characteristics of EPSP and IPSP
in brain neurons. Additionally, we demonstrated its applicabil-
ity to the LSM. The operating mechanism of the neuransis-
tor is explained by charge trapping and detrapping between the
2DEG layer formed at the Al2O3/TiO2−x interface and the TiO2−x
layer. The device features a three-terminal structure, which fa-
cilitates a simplified mask implementation essential for its use
as a reservoir. The neuransistor effectively mimics the excitatory
and inhibitory behaviors of biological neurons by adjusting bi-
directional conductivity through external voltage control. This ca-
pability enables the hardware implementation of the E/I balance
in neural circuits and contributes to the stability of the LSM net-
work.
The LSM proposed in this study has not directly processed

event-driven data, as reported in previous studies; however, it
dynamically regulates excitatory and inhibitory responses us-
ing neuransistors and facilitates learning based on neuron
interactions.[63] The PPF and 4-bit temporal input processing
methods are related to spike-based approaches and hold sig-
nificant potential for future expansion into event-driven data
processing. Through simulations of time-series data prediction
tasks, we verified that the neuransistor can serve as an excellent

Adv. Mater. 2025, 37, 2419122 2419122 (8 of 11) © 2025 The Author(s). Advanced Materials published by Wiley-VCH GmbH

http://www.advancedsciencenews.com
http://www.advmat.de


www.advancedsciencenews.com www.advmat.de

Figure 5. The neuransistor-based LSM simulation. a) Configuration of the reservoir using a 1×N neuransistor array with ML time-multiplexed input
signals. Each ML time step is associated with a distinct E/I and RG mask combination, influencing the conductance modulation of the neuransistor
array. The E/I ratio at each time step is determined by the E/I mask combination in the reservoir system. b,c) Prediction comparison between the ESN
(b) and the LSM (c) using the Henon dataset target. d) NRMSE values for the ESN (red) and LSM (blue) across variousML values. e) Predicted 3D state
trajectories for the ESN (red, top) and LSM (blue, bottom) using the Lorenz attractor. f) Prediction error values for each axis over time steps for the ESN
(red) and LSM (blue). The x-axis represents the prediction time in Lyapunov time units (TL), where TL = 1.12 seconds, corresponding to approximately
112 time steps in our simulation. g) NRMSE values across various N (ML = 2, 10 two-dimensional electron000 time steps). h) NRMSE values under
varying time step conditions (ML = 2, N = 6).
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reservoir in the LSM, highlighting its potential for more efficient
and biologically inspired neuromorphic computing applications.

4. Experimental Section
Device Fabrication: A Pt electrode (40 nm) on a Ti adhesion layer

(5 nm) was deposited by e-beam evaporation on a SiO2/Si substrate
for the source and drain. The source and drain patterns were formed
via the lift-off process. Next, the TiO2−x layer (≈10 nm) was deposited
by plasma-enhanced atomic layer deposition (PEALD) at 225 °C using
tetrakis(dimethylamido)titanium (TDMATi) and O2 plasma as the Ti pre-
cursor and reactant, respectively. Then, the Al2O3 layer (≈6 nm) was de-
posited by thermal atomic layer deposition (ALD) at 250 °C using trimethy-
laluminum (TMA) andH2O as the Al precursor and oxygen source, respec-
tively. Finally, for the top gate, the Ti (40 nm) electrode, followed by the Pt
encapsulation layer (20 nm) was deposited by e-beam evaporation. The
gate was also patterned via the lift-off process.

Electrical Measurements: The electrical characterization was per-
formed using Keithley 4200A-SCS and a hot chuck controller (MST-1000H)
was used for ambient temperature control. The pulse measurements were
conducted using Keithley 4200A-SCS. During the measurement, pulse
measurement units were connected to the source and gate of the neu-
ransistor while the drain was grounded.

Material Imaging: The cross-section of the device and FFT results were
obtained using a field emission transmission electron microscope (FE-
TEM) (Titan cubed G2 60–300).

Reservoir Computing Emulation: To implement the neuransistor’s
characteristics in software-based emulation, its short-term characteristics
were modeled by exponential, nonlinear curve fitting as follows.

GP,t = GP,t−1 exp
(
− T
𝜏P

)
+ Gsat

(
1 − exp

(
− T
𝜏P

))
(1)

represents potentiation by VG,pgm, and

GR,t = GR,t−1 exp
(
− T
𝜏R

)
+ G0

(
1 − exp

(
− T
𝜏R

))
(2)

represents relaxation. Equations (1) and (2) describe the change in con-
ductance from time t − 1 to time t for both GP,t and GR,t, based on a
unit time T, where 𝜏P and 𝜏R denote the time constants for potentiation
and relaxation, respectively. The unit time T includes the interval between
VG,pgm and subsequent pulses, considering the operational scheme of the
neuransistor. Consequently, the term Gsat in potentiation represents the
saturation conductance in Figure 2e as a function proportional to themag-
nitude of the input pulse voltage (see Figure S14, Supporting Information,
for the detailed fitting results of computing emulation).
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