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INTRODUCTION

Traumatic Brain Injury (TBI) is a leading cause of morbidity and moribundity in the United States
(Bruns and Hauser, 2003; Corrigan et al., 2010). A number of factors including sex influence TBI
clinical outcome. Both clinical and lab studies show a clear influence of sex on TBI outcome.
However, whether this is mediated by hormones, genes, or both is still under debate (Gupte
et al., 2019; Ma et al., 2019; Mikolić et al., 2020). The majority of research focuses on factors of
endogenous hormone signaling (release and reception) in natal males (Slewa-Younan et al., 2004;
Dubal et al., 2006; Herson et al., 2009; Griesbach et al., 2015; Clevenger et al., 2018; Mollayeva
et al., 2018; Späni et al., 2018; Ma et al., 2019). This excludes natal females and both males
and females taking exogenous hormones for hormone replacement (HRT) or cross sex hormone
therapy (CSHT) as part of a gender confirming therapy (Mollayeva et al., 2018; Späni et al., 2018;Ma
et al., 2019; Giordano et al., 2020; Biegon, 2021). While transgender and gender non-conforming
(TGNC) individuals make up 0.3–0.5% of the global population, they are affected by violence at
higher rates compared to cisgender individuals (Jauk, 2013). Despite these higher rates of violence
and increased risk of TBI, the TGNC population remains understudied in the TBI field (Safer
et al., 2016). This bias extends to healthcare settings where many TGNC individuals face significant
barriers to obtaining high-quality, compassionate medical care at primary care facilities, especially
in emergency rooms, where most TBIs are diagnosed (Sanchez et al., 2009; Porter et al., 2016;
Reisner et al., 2016; Safer et al., 2016; Dickey and Singh, 2017).

Research regarding transgender health has dramatically increased, yet there is still significant
room for improvement as TGNC individuals are at an increased risk for several health issues
(Reisner et al., 2016; Ackerley et al., 2019; Neblett and Hipp, 2019; Yeung et al., 2019; Wiepjes
et al., 2020). A gender inclusive approach in biomedical research is vital to our understanding and
treatment of TBI. The aim of this paper is to call upon lab-based investigators to approach the study
of TBI and also biomedical research in a gender inclusive manner.

SEX, GENDER, AND TBI: BEYOND THE BINARY

TBI has a biphasic response. While the primary insult is often short in duration, the secondary
phase can linger for hours to weeks after the initial injury. Like the primary injury, if untreated,
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this secondary phase can lead to a manifestation of clinical or
behavioral symptoms, including death (Lenzlinger et al., 2001;
Bramlett and Dietrich, 2007; Maas et al., 2008). The majority
of research focuses on both decreasing the chance of injury and
decreasing the secondary effects of that injury (Fitch et al., 1999;
Day et al., 2013; Kim et al., 2015; Ripley et al., 2020; Bourgeois-
Tardif et al., 2021). Severe symptoms include long-term cognitive
or behavioral deficits, while moderate to mild symptoms include
headaches, dizziness, nausea, and short-term amnesia (Prins
et al., 2013). Additionally, if untreated, these long-term effects
of TBI can result in increased risk of neurodegenerative diseases
such as Alzheimer’s disease, chronic traumatic encephalopathy,
and Parkinson’s disease (Lye and Shores, 2000;McKee et al., 2009;
Hutson et al., 2011). Treatment of secondary injuries is complex,
as there are a multitude of neurobiochemical and metabolic
pathways that are activated across multiple time scales and can
differ depending on sex (Prins et al., 2013; Saldanha et al., 2013;
Rahimian et al., 2019; Mikolić et al., 2020).

Hormone production or availability likely contribute to TBI
outcome which results in females largely being reported to
be more resilient than their male counterparts (Mollayeva
et al., 2018; Ma et al., 2019; Rubin and Lipton, 2019).
Furthermore, when comparing prepubescent, premenopausal,
and post-menopausal women, premenopausal, and pubescent
females generally have lower rates of mortality and better
prognoses than older, premenopausal adults (Du et al., 2004; Ley
et al., 2013; Albrecht et al., 2016; Ranganathan et al., 2016; Ma
et al., 2019). These conclusions are supported by studies directly
examining the role of estrogens, progesterone, androgens, and
their metabolites following TBI. The studies have identified these
steroids via activation of their receptors (which can vary by
sex following injury) as being neuroprotective by preventing
the brain from edema, necrosis, apoptosis, and inflammation
(Stein and Hoffman, 2003; Bryant et al., 2006; Dubal et al., 2006;
Spence and Voskuhl, 2012; Acaz-Fonseca et al., 2016; Brotfain
et al., 2016; Duncan and Saldanha, 2020). These effects can occur
acutely after the injury, but can have prolonged effects lasting
weeks after the initial injury (Suzuki et al., 2007). However, the
majority of these studies have focused on endogenous release vs.
exogenous therapy and when comparing humans to lab models,
we can see the opposite result (Hall et al., 2005; Stein, 2015; Gupte
et al., 2019).

How to Study TBI Through a Transgender
Lens?
The process of transitioning is complex and can be heavily
individualized, which partially explains some of the difficulties in
developing a lab-based model. Despite the limited information
regarding the development of human gender identity, there has
been significant progress in using animal models to demonstrate
the neurodevelopment pathways leading to sex differences
in brain and behavior (Joel and McCarthy, 2017; Choleris
et al., 2018; Theisen et al., 2019). From these studies, three
main factors: environment, genes, and hormones, have all
been identified as mechanisms key to understanding human
gender identity.

Environment (social or physical) plays a major role in the
development of human gender including transgender identity by
directly or indirectly (epigenetics) altering gene expression and
behavior (Szyf et al., 2008; Arnold, 2017). However, the role of
the environment is difficult to model in non-human subjects;
and therefore, we will focus primarily on the other two factors
identified (genes and hormones).

Factors Affecting TBI Outcome in TGNC
Populations
Genes

A number of studies have suggested a genetic contribution to
the development of transgender identity (Lippa andHershberger,
1999; Bentz et al., 2007, 2008; Fernández et al., 2015; Smith et al.,
2015; Fisher et al., 2018; Polderman et al., 2018; Foreman et al.,
2019). Specifically, twin studies have found heritability anywhere
between 38–47% in adolescent natal females and 25–43% in
adolescent natal males, while these numbers decrease to 11–
44% and 27–47% in adults (Fisher et al., 2018; Polderman et al.,
2018; Theisen et al., 2019). A number of genes were identified
from these studies, many of which were also previously identified
in studies of sexual differentiation in animal models. These
include COMT, PIK3CA, RYR3, SRD5A2, STS, and SULT2A1,
as well as variants of genes coding aromatase, androgen receptor
(AR), estrogen receptors (ER) α & β, and 17α-hydroxylase
(Fernández et al., 2015, 2018; Smith et al., 2015; Yang et al.,
2017; Fisher et al., 2018; Foreman et al., 2019; Theisen et al.,
2019). In terms of sex differences in TBI, we have also identified
differences in a number of these genes as well, including PIK3C,
SULT2A1, aromatase, AR and ERs, and 17 hydroxylase (Garcia-
Segura et al., 2003; Duncan and Saldanha, 2011, 2013; Saldanha
et al., 2013; Pedersen et al., 2018; Cook et al., 2020; Duncan,
2020). Suggesting that these genes may have variations in their
response following TBI and can serve as first candidates for
examining differences in gene expression. For example, ERα

mediates the estrogenic neuroprotective effects of TBI (Dubal
et al., 2006; Duncan and Saldanha, 2020) and TGNC individuals
have differences in constitutive receptor expression or different
polymorphisms that may affect their ability to activate these
neuroprotective pathways (Fernández et al., 2018). Discerning
how these receptors and genes may change in TGNC individuals
is key to our understanding of their activation following TBI.

Furthermore, the use of the four core genotype mouse model
which uncouples chromosomal (X, Y) effects from gonadal
influence along with the XY∗ mice could be a powerful tool
in determining the chromosomal/genetic contributions during
TBI (Arnold and Chen, 2009; Corre et al., 2016; Arnold, 2020).
Comparison of XX and XY mice with the same type of gonads,
but different sex chromosomes can help in determining the
role of sex linked genes vs. hormone availability. While not
fully a model for TGNC populations, this is a powerful tool
for determining the relative contribution of a sex difference.
Currently, two studies have examined TBI using one of these
models and found that in young animals, hormones and not
chromosomes shaped response; however, this was reversed in
aged populations (Manwani et al., 2015; McCullough et al., 2016).
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More work is on-going to determine the differences in gene
expression following TBI, and if these differences are the same
between cis and transgender individuals. The use of these two
powerful models can help to determine if a sex difference in
TBI aremediated by chromosomes, hormones, or both, especially
when paired with cross hormone therapies.

Hormones

Steroid hormone levels and receptors are markedly different in
natal males and females throughout most of their lifespan and
clearly play a role following TBIs (Arnold, 2017; Gölz et al.,
2019; Giordano et al., 2020). In terms of TGNC individuals,
life-long hormonal therapy is often a key component of their
transition and can be implemented as early as adolescence
(Deutsch et al., 2015; Hembree et al., 2017; Nguyen et al.,
2018; T’Sjoen et al., 2019). One major issue with studying
individuals that are currently transitioning or have transitioned
is identifying the specific medical plan used to transition. A
number of various plans are used (Table 1), for both medical
and personal reasons, and thus modeling can become difficult to
mimic exactly (Feldman and Safer, 2009; Hembree et al., 2009;
The World Professional Association for Transgender Health,
2012; American Psychological Association, 2015; Unger, 2016;
Funabashi et al., 2018; Defreyne and T’Sjoen, 2019; Hamidi
and Davidge-Pitts, 2019). It is important to note that many
of the hormones used for transitioning differ to what are
commonly used in the lab, specifically in terms of long-term
use and “stacking” of multiple drugs. What we currently know
about exogenous hormones and neural damage and recovery
comes from teasing out the various contributions of a transition
plan, but more research is needed to combine all of these
components into a comprehensive model of a transitioning or
transitioned individual.

Trans-masculine

TBI has historically been viewed as a problem that predominantly
affects natal males, as they are both more likely to receive TBIs
and have less of the circulating neuroprotective steroids: estrogen
and progesterone (Späni et al., 2018; Gupte et al., 2019; Rubin
and Lipton, 2019; Mikolić et al., 2020). When comparing age-
matched natal males and females, younger females appear to be
protected against neuronal damage, suggesting that androgens
may not be advantageous following injury (Dubal and Wise,
2002; Gupte et al., 2019). However, this is complicated by
research that shows thatmales with lower testosterone have worse
clinical outcomes than males within normal ranges, suggesting
that while testosterone isn’t detrimental in males, that other
steroids may be more beneficial. This is supported by studies of
natal males given testosterone for myelin repair for relapsing-
remitting Multiple Sclerosis that show a significant increase
in neuroprotection over controls (Kurth et al., 2014). More
research is necessary to further identify the role of testosterone
following TBI.

In trans-masculine procedures, hormone therapy is
sometimes paired with removal of the uterus and ovaries
(hysterectomy and oophorectomy) via gender confirmation
surgery (Coleman et al., 2012; American Psychological
Association, 2015). Ovary removal has profound effects on
both circulating hormone levels and TBI outcome. Cisgender
women undergoing oophorectomy show lower levels of
estrogen than age-matched women experiencing natural
menopause (Korse et al., 2009; Perera et al., 2013; Orozco et al.,
2014). Post-menopausal cisgender women, characterized by
decreased circulating estrogens and progestins, show worse
outcomes than premenopausal females, but better than age-
matched natal males (Niemeier et al., 2013). This suggests
that removing circulating hormones affects TBI severity and

TABLE 1 | Drugs used for gender affirming hormonal treatments in TGNC individuals.

Drug Common drug name(s) Route of

administration

Proposed dosage with

frequency

Blood levels (in

humans)

Trans-masculine

(FtM)

Testosterone Undecanoate

(UK) or Testosterone

Enanthate (US) or

Testosterone cypionate (US)

• Andriol®

• Delatestryl®

• Depo®-Testosterone

• Aveed®

• Androgel®, Androderm®

Oral, Subcutaneous,

Intramuscular,

Transdermal

• Undecanoate: 160–240

mg/day

• Enanthate, cypionate:

20–100 mg/week

• Transdermal:

2.5–10 mg/day

Testosterone:

300–1,000 ng/dL

Progesterone (optional) • Provera® Oral • 12.5 mg/daily

Trans-feminine

(MtF)

Estradiol or Estradiol

valerate or Estradiol

cypionate

• Depo®-Estradiol,

Depofemin®, Estradep®

• Delestrogen®, Progynon

Depot®, Progynova®

Oral, Subcutaneous,

Intramuscular,

Transdermal

• Estradiol: 2–6mg daily

• Estradiol valerate: 2–20

mg/2weeks

• Estradiol transdermal:

0.025–0.2 mg/daily

Estrogen: 100–200

pg/mL

Anti-Androgens: Progesterone

Spironolactone

Histrelin implant

• Provera®

• CaroSpir®,Aldactone®

• Vantas®, Supprelin LA®

Oral, implant • Progesterone: 25–50mg

PO daily

• Spironolactone:

100–300mg PO daily

• Histrelin: 3.75mg monthly

Testosterone: <50

ng/dL

Puberty blockers GnRH analogs/agonists:

Leuprolide acetate Histrelin

• Lupron Depot®

• Vantas®, Supprelin LA®

Subcutaneous,

Intramuscular,

Implanted pellet

• Lupron Depot: 7.5

mg/monthly

• Histrelin: 3.75mg monthly

Peak LH < 4 mIU/mL

after GnRHa

stimulation.
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could potentially make FTM individuals more susceptible
to neurodegeneration. Furthermore, when studying risk of
neural damage, epidemiological evidence clearly shows that
sex and estrogen levels are important factors in long-term
outcome (Rocca, 2017; Bazzigaluppi et al., 2018). Studies
of ovariectomy prior to TBI in rats showed larger areas of
damage compared to intact females and thus worse outcomes
(Bramlett and Dietrich, 2001). Together, these data suggest that
although steroid hormones may be protective, their sudden
withdrawal either before or after injury may be a key factor
contributing to worse outcomes in individuals assigned female
at birth (Wunderle et al., 2014). Put together, these data
suggest that transgender males that elect for gender affirmation
surgeries may be more susceptible to negative outcomes of TBI.
However, more research is needed to understand how this can
be alleviated.

Trans-feminine

If natal females are indeed better protected from TBI, then
individuals undergoing trans-feminine transition may see better
outcomes following hormonal transition as they typically take
exogenous estrogen and progesterone, as well as anti-androgens.
Typically, younger-aged cisgender women appear to be protected
against neuronal damage, compared with cisgender men, but lose
this advantage in their post-menopausal years (Niemeier et al.,
2013; Ranganathan et al., 2016). A typical cycling female shows
monthly variation in both estrogen and progesterone signaling.
By using this natural variation in estrogen and progesterone
response, we have been able to identify the relative contribution
of estrogen and progesterone following TBI. Cisgender women in
the luteal phase of their menstrual cycle, in which progesterone
is highest, had worse outcomes than those in the follicular
phase, in which progesterone is initially low and can therefore
not decrease significantly (Wunderle et al., 2014). However,
exogenous progestin use from oral contraceptives leads to better
outcomes than controls in individuals assigned female at birth
(Wunderle et al., 2014). The potential use of steroids in natal
men following TBI has led to mixed results [see Späni et al.
(Späni et al., 2018) for review]. For estrogens, the negative effects
(cardiovascular disease and breast cancer) associated with short-
term or long-term use overshadow any potential neuroprotective
effects (Späni et al., 2018). Progesterone, however, has been
included as a treatment option in two large Phase III trials
[ProTECT and SYNAPSE (Wright et al., 2007; Stein, 2015)].
Results from these two trials were not conclusive as some saw
no difference in cisgender males, while a small subset saw a
slight improvement in them (Lu et al., 2016; Späni et al., 2018).
Specifically, sex and hormones present at the time of injury were
cited as factors that mediated the effectiveness of estrogens and
progesterone following injury (Stein, 2015; Stein et al., 2016;
Späni et al., 2018).

Individuals undergoing trans-feminine gender affirming
surgeries sometimes remove the testes, a significant source of
testosterone (Coleman et al., 2012; American Psychological

Association, 2015). Paired with antiandrogen hormonal
treatments, this significantly removes the amount of androgens
in circulation. Therefore, one would assume that these
individuals would show better responses to TBI than transgender
men. However, inherent differences in gene expression in
neuroinflammatory pathways or vasculature could lead to
differences in response to TBI.

The bulk of research into hormone use following TBI has
been done in adult or possibly aged populations. However, a
significant number of individuals begin this sort of transition in
early adulthood or adolescence (Smith et al., 2001; Menvielle and
Gomez-Lobo, 2011; Olson, 2016). Currently, there is relatively
little research on the role of cross sex hormone therapies in
younger populations and nothing known about this topic in
TBI research. TBI is the leading cause of death and disability
in children (Ley et al., 2013; Araki et al., 2017), and children
and adolescents diagnosed with a TBI are at higher risk of being
diagnosed with a central endocrinopathy (Ortiz et al., 2020).
These TBI induced differences in endocrine function are varied,
but have been known to increase disturbances in puberty (Auble
et al., 2014). To date, no studies have examined how use of
CSHT could affect these pediatric outcomes and or recovery from
TBI specifically.

DISCUSSION

Although we have placed a great emphasis on the lack of research
in TGNC individuals, sex/gender as a biological variable is
underrepresented in TBI research and requires further analysis.
The increase in the number of individuals undergoing hormonal
or surgical treatment to aid in gender transition calls for a
substantial increase in TBI research in these underserved and
marginalized populations. There is a need for evidence-based
guidelines, common hormone plans, and clinically translatable
diagnostic and prognostic models. Furthermore, expanding our
knowledge of how exogenous hormone use affects TBI could
have profound effects not only on TGNC populations, but also
cisgender males and females. Such work and studies will not only
help to develop better treatment options for those identifying as
TGNC, but will also create a conceptual framework which can be
used to extrapolate to others undergoing hormone replacement
or depletion in the future.
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