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Abstract

Every neuron is part of a network, exerting its function by transforming multiple spatiotempo-

ral synaptic input patterns into a single spiking output. This function is specified by the partic-

ular shape and passive electrical properties of the neuronal membrane, and the composition

and spatial distribution of ion channels across its processes. For a variety of physiological or

pathological reasons, the intrinsic input/output function may change during a neuron’s life-

time. This process results in high variability in the peak specific conductance of ion channels

in individual neurons. The mechanisms responsible for this variability are not well under-

stood, although there are clear indications from experiments and modeling that degeneracy

and correlation among multiple channels may be involved. Here, we studied this issue in bio-

physical models of hippocampal CA1 pyramidal neurons and interneurons. Using a unified

data-driven simulation workflow and starting from a set of experimental recordings and mor-

phological reconstructions obtained from rats, we built and analyzed several ensembles of

morphologically and biophysically accurate single cell models with intrinsic electrophysiolog-

ical properties consistent with experimental findings. The results suggest that the set of con-

ductances expressed in any given hippocampal neuron may be considered as belonging to

two groups: one subset is responsible for the major characteristics of the firing behavior in

each population and the other is responsible for a robust degeneracy. Analysis of the model

neurons suggests several experimentally testable predictions related to the combination

and relative proportion of the different conductances that should be expressed on the mem-

brane of different types of neurons for them to fulfill their role in the hippocampus circuitry.
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Author summary

The peak conductance of many ion channel types measured in any given animal is highly

variable across neurons, both within and between neuronal populations. The current view

is that this occurs because a neuron needs to adapt its intrinsic electrophysiological prop-

erties either to maintain the same operative range in the presence of abnormal inputs or

to compensate for the effects of pathological conditions. Limited experimental and model-

ing evidence suggests this might be implemented via the correlation and/or degeneracy in

the function of multiple types of conductances. To study this mechanism in hippocampal

CA1 neurons and interneurons, we systematically generated a set of morphologically and

biophysically accurate models. We then analyzed the ensembles of peak conductance

obtained for each model neuron. The results suggest that the set of conductances

expressed in the various neuron types may be divided into two groups: one group is

responsible for the major characteristics of the firing behavior in each population and the

other is more involved with degeneracy. These models provide experimentally testable

predictions on the combination and relative proportion of the different conductance

types that should be present in hippocampal CA1 pyramidal cells and interneurons.

Introduction

Any given neuron in the brain is part of a network, in which it exerts its action by transforming

the input it receives into an output. This function is specified by the particular shape and pas-

sive electrical properties of the neuronal membrane, the composition and spatial distribution

of ion channels across its processes, and the functional properties of the synaptic inputs them-

selves. During development and during the entire lifetime of a neuron, its input/output func-

tion is adapted to realize ongoing refinement of the function of the neuron and circuit, or

maintain functional robustness in the face of constant protein turnover or an evolving patho-

logical condition. Such adaptability of individual neurons can be achieved through a myriad of

dynamic mechanisms, including structural, intrinsic, and synaptic plasticity. A direct experi-

mental evidence for these mechanisms is the high variability observed for the current gener-

ated by specific types of ion channels measured across individual neurons, from either a

homogeneous population or different cell populations (e.g. [1]). The mechanisms responsible

for this variability are not well understood, although there are clear experimental and model-

ing indications that correlation and degeneracy among a variety of conductances can be

involved [2,3]. The phenomenon of degeneracy allows the possibility, for a complex biological

system, to perform the same function using structurally different elements [4]. In the context

considered in this paper, it refers to the robust and tunable adjustment of a neuron’s firing

properties [5]. For example, a neuron can be tuned to perform a given function by expressing

in the membrane a specific set of conductances with a specific dendritic distribution (Migliore

(2003)); degeneracy can result in this tuning being robust, by implementing the same function

with many different configurations of the same set of conductances. This property has been

systematically studied in crab stomatogastric ganglion neurons [2, 6] and in Globus Pallidus

neurons of the rat [7]. In the present study, we investigate this issue for neurons of the hippo-

campal CA1 region. These neurons are important because they have a critical position as the

main output stage of the hippocampal circuitry [8]. The hippocampal CA1 pyramidal neurons,

in particular, exhibit a peculiar ensemble and distribution of conductances (reviewed in [9]),

subject to significant changes following activity-dependent biochemical processes, such as acti-

vation of protein kinase A and C, or Ca/calmodulin dependent kinase II [10, 11, 12],
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pathological conditions (e.g. [13, 14]), or traumatic brain injuries [15, 16]. There must then be

an extremely robust compensatory mechanism in these neurons, or in the network, which

maintains or re-establishes the physiological activity within an operation range, in spite of

a potentially large change in its intrinsic properties or synaptic input. Here we study the

mechanisms of robustness of intrinsic properties by using a unified data-driven workflow and

open source analysis and simulation tools. From a set of experimental recordings and morpho-

logical reconstructions, we implemented many morphologically and biophysically accurate

models for CA1 pyramidal neurons and interneurons, with intrinsic electrophysiological prop-

erties constrained by and consistent with the experimental findings. The results indicate that a

few currents need to be expressed at a relatively stable level, whereas others can be expressed

within a much wider range. The analysis of the model neurons suggests many specific experi-

mentally testable predictions on the combination and relative proportion of the different ionic

conductances, and their relationship to robustness of intrinsic properties.

Results

Experimental data used for modeling

To implement a set of data-driven neuron models, we start from a set of morphological recon-

structions of neurons and somatic voltage traces obtained from in vitro slice preparations of

rat hippocampal tissue to use as constraints (see Methods). In Fig 1 we show several examples

of the 34 morphologies used in this work (19 pyramidal cells and 15 interneurons), superim-

posed on a rat hippocampal slice stained for parvalbumin for illustrative purposes.

A total number of 1456 experimentally obtained somatic voltage traces for a range of stimu-

lation protocols were used in the optimization pipeline to constrain the models (see Methods).

Collections of traces for individual neurons were manually assigned to four electrical types (e-

type), according to the firing pattern exhibited during increasing somatic current injections

[18], and using the classification proposed in the Petilla convention [19]. The 832 traces from

pyramidal neurons, with an increasing inter-spike-interval (ISI), were all classified as continu-

ous accommodating cells (cAC). For interneurons, 240 traces were classified as cAC, 160 traces

as bursting accommodating cells (bAC), and 224 traces, whose firing rate is constant, as con-

tinuous non-accommodating cells (cNAC). Typical examples illustrating the physiological

variability observed for these e-types are shown in Fig 2. A more quantitative analysis and

comparison of their features will be presented elsewhere (Bologna et al., manuscript in

preparation). Different pyramidal neurons (Fig 2, pyr cAC) exhibited significantly different

responses to the same input. For example, a near-threshold 0.4 nA somatic current injection

may or may not generate a few action potentials, whereas a 0.8nA input can result in a 2-fold

range for the number of elicited action potentials (APs) (Fig 2, pyr cAC, blue traces). Interneu-

rons classified as cAC also exhibited a large inter-cell variability, with different cells responding

to the same stimulus with a wide range of spike patterns, such as tonic firing (Fig 2, int cAC
plots, cell 970428A1), stuttering (cell 970509HP2), and depolarization block (cell 980205FHP).

The other two interneuron e-types, bAC and cNAC, also exhibited a large variability among

different cells (Fig 2, bottom plots). This variability can be the result of different morphologies

and/or a different density and distribution of the conductances expressed on the membrane of

the different neurons. In the following sections, we will explore in more detail this issue by

implementing and analyzing cellular level models that are able to reproduce these results.

Model optimization

For each e-type (see S1–S4 Tables and Methods), a set of electrophysiological features were

extracted from all voltage traces belonging to that e-type. All the pyramidal cell morphologies
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were used to implement cAC models, whereas interneuron morphologies were used to obtain

cAC, cNAC, and bAC models following the known firing behavior of each type of morphology

(see legend of Fig 1 and S5 Table). Features and morphologies were then used to obtain a set

of optimized models for each e-type, using a heuristic parameter optimization process that

employed multi-objective genetic algorithms. Each optimization run (see Methods for details)

returned a number of viable “individuals”, each one with a specific ensemble of peak ion chan-

nel conductance and passive properties consistent with the chosen “objectives” (i.e. a set of

Fig 1. The 3D reconstructions of CA1 cells in rat hippocampus used in this study. (Top) Pyramidal cells; dendrites are shown in black, axons in red; cell identifier,

from left: 990803, oh140807_A0_idJ, oh140807_A0_idH, oh140807_A0_idG, oh140807_A0_idF, 050921AM2, oh140807_A0_idC, oh140807_A0_idB,

oh140807_A0_idA; (Bottom) Interneurons, from left to right: basket cell (dendrites in black, axon in pink [Cell number 990111HP2]); bistratified cell (dendrites in

black, axon in blue [Cell number 980513B]); axo-axonic cell (dendrites in black, axon in purple [Cell number 970911C]); OLM cell (dendrites in black, axon in dark

blue [Cell number 011017HP2]); Ivy cell (dendrites in black; axon in light pink [Cell number 010710HP2]); perforant path associated cell (dendrites in black, axon in

red [Cell number 011127HP1]); Schaffer collateral-associated cell (dendrites in black, axon in green [Cell number 990827IN5HP3]). Reconstructions by Joanne Falck

and Sigrun Lange. SO Stratum Oriens, SP Stratum Pyramidale, SR Stratum Radiatum, SLM Stratum Lacunosum-Moleculare. 3D reconstructions of the PPA, OLM,

axo-axonic cells and of other examples of different types of cells are available in S1 Fig of Mercer and Thomson [17].

https://doi.org/10.1371/journal.pcbi.1006423.g001
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Fig 2. Experimental voltage traces used for the optimization pipeline. (Top) Typical somatic traces obtained during a step current stimulation

protocol (-0.4, 0.4 and 0.8 nA for 400 ms) from intracellular recordings performed using sharp electrodes on CA1 pyramidal cells (left) and

interneurons (right) classified as continuous accommodating cells (cAC); (bottom) typical traces from interneurons classified as bursting

accommodating, bAC, (left) and continuous non-accommodating, cNAC, (right) cells [18].

https://doi.org/10.1371/journal.pcbi.1006423.g002
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experimental features). As a cost function for the optimization process we used a score defined

by the total error associated with each individual, calculated as the sum of the absolute devia-

tions of model features from the experimental mean, in units of the experimental standard

deviation (sd) obtained for the value of each objective. A score = 0 would correspond to an

individual with all parameters equal to the average value of the corresponding experimental

electrophysiological feature. The total error thus gave an idea of how good the individual was

in representing the neuron’s overall expected behavior under a series of 400 ms long somatic

current injection steps. The final choice to accept an individual as a plausible representation of

a given e-type was based on the error obtained for each objective. An individual with a sd<2

for all objectives was considered acceptable.

Typical optimization results for pyramidal and interneuron cAC e-types are shown in Fig 3.

Traces obtained for different somatic current injections from three individuals (Fig 3, traces

on top left graph of each panel), showed that the optimization process was able to take into

account the experimental variability. Different individuals exhibited significantly different

responses to the same stimulus, as in the experiments. The evolution of the total score as a

function of the number of generations in the optimization process (bottom graph in each

panel), showed that the optimization converged nearly monotonically in relatively few itera-

tions, having reached a relatively stable minimum within approximately 60 generations. The

list of objective scores for the best individual in each case (Fig 3 right graph in each panel)

showed that for most features (n = 60 for pyramidal cells and n = 47 for cAC interneurons, see

S1–S4 Tables) the associated error was below 2 sd. Similar results were obtained for the optimi-

zations of bAC and cNAC interneurons (see individual optimization files at https://collab.

humanbrainproject.eu/#/collab/18565). Taken together, these results show that the overall

optimization process is a robust way to obtain a number of biophysically accurate neuron

models of hippocampal CA1 pyramidal cells and interneurons, which are able to reproduce

many of the properties observed experimentally in different types of neurons.

A more direct comparison between experimental and modeling traces for the different e-

types is shown in Fig 4A, revealing a very good qualitative agreement between the modeling

results and experimental traces. The optimization enabled the production of models that cor-

rectly reproduced many characteristics of the firing patterns, such as the strong accommoda-

tion observed in cAC interneurons (Fig 4A, cAC int @0.4nA), the high firing frequency of bAC
interneurons at the beginning of a current injection (Fig 4A, bAC @0.6nA), and the progres-

sive reduction in the AP amplitude during the first part of stronger stimuli (Fig 4A, bAC
@1nA). The pyramidal cell models also exhibited a typical property often observed experimen-

tally in this type of cells, i.e. the decrease in the peak amplitude of an AP backpropagating into

the apical dendrites [20]. This effect has been shown to depend on the high density of A-type

potassium channel in the apical dendrites [21], but not all CA1 pyramidal neurons exhibit this

effect [22, 23]. It is important to note that this feature was not used to constrain the optimiza-

tion but, interestingly, the optimized models were able to reproduce it, as shown in Fig 4B, for

a few cases using morphologies from both young adult (cells 050921AM2, and 990803) and

P14-23 animals. The dichotomy in AP backpropagation observed in the experiments [22] was

also reproduced by the model neurons, with the AP amplitude either strongly decreasing

beyond ~150 μm from the soma or limited to ~50% of the maximum, with very few cases in

between. Taken together, this comparison between experiments and models at the individual

trace level, suggests that the optimization process was able to correctly capture and explain

both intra- and inter-cell variability in firing behavior in terms of different combinations of

active and passive membrane properties.

An indication of how the optimized models may capture the variety of experimental input/

output properties can be drawn from Fig 5, where the number of spikes for each e-type was
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Fig 3. Model optimization. Typical optimization results for cAC pyramidal cells (top) and interneurons (bottom). The

top left graph of each panel shows a few examples of model traces from three individuals during a current injection of

-0.4, 0.4, and 0.8 nA (black, red, and blue traces, respectively). The right graph of each panel reports the objective scores

for the best individual. The bottom left graph in each panel shows a typical evolution of the total score during an

optimization run.

https://doi.org/10.1371/journal.pcbi.1006423.g003
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Fig 4. Optimization results. (A) Comparison between typical experimental and model traces for each e-types under

different somatic current injection. (B) Peak amplitude of an AP backpropagating in the main apical dendritic trunk of

different pyramidal cell models, as a function of the distance from the soma. Each trace refers to a different

morphology, as indicated. Abbreviations: cAC, continuous accommodating cells; cAC, bursting accommodating cells;

cNAC, continuous non-accommodating cells.

https://doi.org/10.1371/journal.pcbi.1006423.g004
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plotted against the somatic current injection, for experimental (blue lines) and modeling traces

(red lines). In all cases, experimental traces exhibited a rather large inter-cell variability in the

number of spikes elicited by any given input current. It is quite common to see up to a ~5-fold

difference in the number of spikes elicited in different cells under the same current injection.

In most cases, the models were in quantitative agreement with the average number of spikes

generated as a function of the input current (Fig 5, insets, Mann Whitney Rank Sum test

p>0.05 in all cases except for 1nA injection in pyramidal neurons).

Degeneracy within a population

With the set of data-driven neuron models obtained for each e-type, we can now analyze how

different combinations of peak conductances can result in models able to reproduce equally

well the firing properties observed experimentally under different current injection steps. The

Fig 5. Input/Output properties. Number of spikes as a function of the input current from experiments (blue traces) and models (red traces) for the various e-

types. The insets show the corresponding average values. Abbreviations as in Fig 4.

https://doi.org/10.1371/journal.pcbi.1006423.g005
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optimization process generates many of these models (termed “individuals”) because of ion

channel degeneracy [5]. As discussed in the Introduction, this phenomenon is thought to allow

a neuron to adjust its firing properties in a robust and tunable manner.

To obtain further insight into on how degeneracy is achieved in hippocampal CA1 neu-

rons, we analyzed all the individuals obtained from the optimization runs. For each optimi-

zation run, the 10 best individuals were considered based on their total score (see Methods).

Note that these individuals were obtained from the same morphology with different channel

densities. In Fig 6, the value of the optimized parameters, normalized to the maximum value

chosen for each conductance, were plotted for each optimization run (10 individuals for

each run, opt id). For clarity, in each graph the values obtained for any given parameter were

placed on the Y-axis according to the corresponding average value calculated from all opti-

mizations. In this way, the bottom rows in each graph correspond to parameters with an

average low value whereas top rows correspond to parameters with higher values. Further-

more, parameters that were relatively stable across all optimizations (i.e. with a sd<0.2) for

any given e-type are highlighted using a red label in the y axis. For pyramidal cells (Fig 6, pyr
cAC) the most stable parameters were some of the passive properties, Ih, KM, Calcium, and

Ca-dependent K currents. Interestingly, we noted that whereas passive properties were con-

sistently optimized with a stable value across the optimizations for all e-types (Fig 6, see top

Fig 6. Degeneracy in CA1 pyramidal neurons. Optimized values for all parameters, obtained for the 10 best individuals from each optimization. The X-axis

represents the individual optimizations (each composed by 10 individuals), the Y-axis is the parameter’s name. The pixel colors represent the value of the

parameter, normalized to the maximum value obtained from all optimizations of a given e-type. The color scale is shown on the right. Abbreviations as in Fig 4. In

all cases the total error was in the range of 29–42 sd.

https://doi.org/10.1371/journal.pcbi.1006423.g006
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rows in all graphs), conductances were shown to be somewhat different depending on e-

types. For example, for interneurons, Ih, somatic KM and dendritic KDR were the most stable

for all e-types, whereas dendritic KA was stable for cAC and Cagk for cNAC. These results

suggested that each e-type has specific active properties that may be particularly important

to obtain the appropriate firing pattern in response to a given input. While these properties

need to be well constrained for each e-type, degeneracy can be achieved by combining the

other conductances in a relatively large number of ways. The functional consequences of this

situation will be discussed below.

To explore whether a cell’s morphology can also be related to degeneracy, we fixed the peak

conductance values to those found for the best overall individual (obtained for morphology

oh140521_B0_Rat_idA) and calculated the total error by using different morphologies. The

results are shown in Fig 7A. We found that the total error using the same set of conductances

on different morphologies was within the range obtained for each cell’s optimization for

10 out of 16 morphologies. For these cases, there was no correlation between the total error

and the main morphological properties, such as soma area, total cell volume, or number of sec-

tions (Fig 7B, Spearman correlation, p>0.05 in all cases). These results suggest that degeneracy

can also be obtained using different morphologies equipped with identical peak channels con-

ductance. A deeper analysis of this issue however was not further considered in this work.

For a more detailed analysis of the configuration of peak conductance values for all models,

we first considered the results for pyramidal neurons. In Fig 8A we show a typical distribution

of normalized values obtained for membrane properties where optimizations yielded a rela-

tively narrow range (somatic KM, Ih, and Ra), or a wider range of values across individuals

(dendritic Na). Note that two of the conductances with a narrow distribution are, in pyramidal

CA1 neurons, the dominant factors in controlling major properties such as excitability and

accommodation (KM, reviewed in [24]), and synaptic integration (Ih, [25]). The paramount

importance of these two types of conductance for reproducing the experimental traces, sug-

gested by their value lying in a narrow range across individuals, emerged from the optimiza-

tion process without any specific constraint.

An insight on degeneracy in these neurons can be obtained by considering correlation

between parameter pairs. In most cases, we found no statistically significant correlation (see

S6 Table for the Spearman correlation coefficients). However, for several cases a significant

correlation between selected parameters was found (S6 Table, grey cells). The conductance

which was most correlated with others was Cagk, a Ca- and voltage-dependent K+ conduc-

tance that is one of the major determinants for accommodation in these neurons. The

inverse correlation with the KM is particularly interesting, since it supports the experimental

finding that these channels operate in combination to control intrinsic hyperexcitability

[26], and modeling results suggesting how they must both be involved to obtain a strong

accommodation [27, 28].

To explore the configuration of the conductances in a more qualitative and intuitive way,

we arranged a radar plot of the conductances most correlated with Cagk (Fig 8B), and one of

those showing little variability (in this case the reversal potential of the leakage current in the

dendrites, e_pas d). The different individuals were sorted with respect to Cagk (Fig 8B, thick

black line) and, for clarity, we plotted only 40 of the 160 individuals. The highly jagged and

intermixed lines represent the different peak conductance type and value for different individ-

uals giving equally good representations of 60 electrophysiological features experimentally

observed in these neurons (see S1 Table). Examples of model traces from a few individuals

(all obtained with a 0.4nA somatic current injection) displayed the same number of spikes

obtained with very different channel configurations. The number of spikes elicited for each

individual is plotted in Fig 8C.
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Fig 7. Degeneracy from different morphologies. (A) (Black symbols): the total error calculated from the best

individual obtained for each morphology; the dotted line identifies the maximum total error. (Open symbols): total

error calculated from all morphologies equipped with the set of conductances obtained for oh140521_B0_Rat_idA. (B)

Soma area, total cell volume, and number of sections of all morphologies.

https://doi.org/10.1371/journal.pcbi.1006423.g007
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Fig 8. Degeneracy in CA1 pyramidal neurons. (A) Distribution of the normalized values obtained for the somatic

KM, dendritic Na, Ih and Ra. (B) Radar plot with the values obtained for a subset of conductances. Parameters’ values

were sorted for those obtained for Cagk (black line); Traces on the left are model traces from individuals #30, 46, 50

and 102 under a 0.4 nA somatic current injection. (C) Number of spikes elicited by a 0.4 nA current injection in each

individual. Abbreviations as in Fig 4.

https://doi.org/10.1371/journal.pcbi.1006423.g008
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These results give a clear indication that degeneracy in CA1 pyramidal cells can easily

emerge from many different combinations of many, but not all, channels. The reason for the

lack of pairwise correlation between most parameters does not exclude that the parameter

space may be shaped by higher order correlations that can be ultimately responsible for degen-

eracy. However, a full quantitative study of higher order correlations was outside the scope of

this study.

The results obtained for interneurons are shown in Fig 9. In this case, to allow an easier

comparison of the parameters among the different e-types, individuals were sorted according

to the somatic Na conductance (Fig 9, thick black lines), which was among the most correlated

with all the others (see S7–S9 Tables). The models suggest a few distinct differences among the

different e-types. Note, for example, the distribution of values obtained for the peak conduc-

tance of dendritic KDR or KA in the various e-types (Fig 9, dark red and blue lines, respec-

tively), or the difference in the overall values of dendritic Na (Fig 9, orange lines) between cAC
and cNAC. In general, however, the distribution of values were analogous to those obtained for

pyramidal cells, with each individual characterized by a highly variable combination of values

for many conductances.

Differences in channel proportions among hippocampal CA1 e-types

Finally, one important factor in determining the firing characteristics of different neurons, in

addition to a substantial change in morphology [29] and/or gene expression profile [30], is the

relative proportion with which specific channels are expressed on the membrane. For this rea-

son, from the optimized models we calculated the relative contribution of each channel in each

e-type, by considering the average value of each peak conductance calculated across all individ-

uals. The results are presented in Fig 10A. In all cases, we found that Na, KA and KDR could

account for most of the channels expressed on the membrane. Interestingly, each e-type

showed a distinct proportion of these channels, with axonal Na channels playing a relatively

large role in all e-types, axonal KA being relatively more important in pyramidal neurons than

in interneurons, and dendritic KDR being significantly higher in cNAC e-types. An analysis of

the relative level of each conductance in the various e-types (Fig 10B) also showed significant

differences in several cases (Pairwise Multiple Comparison Procedure, p<0.05). From the

results it is clear, for example, that dendritic Na should be higher in pyramidal cells than

in any type of interneuron, cAC interneurons should have a higher dendritic Na among inter-

neurons (Fig 10B, dark blue squares for Na d), and that the axonal KM is essentially indepen-

dent from cell type. In summary, these results suggest the experimentally testable prediction

that different e-types can be characterized by a different combination of the same set of

conductances.

Discussion

It has been shown that any individual neuron can express a distinct combination of many

channel types [30] determining its electrical properties [31]. Furthermore, several seminal

papers demonstrated that each cell type could exhibit specific correlation between channels

expression [32], which may emerge from a homeostatic rule [2]. The overall picture is one in

which many different conductances coincide to produce the electrophysiological patterns that

characterize the operating range of any given population of neurons, and they do so in such a

way to compensate for relatively large changes in individual channel density or synaptic con-

nectivity [33]. The robustness of this mechanism relies on degeneracy [4], which can be practi-

cally implemented through a large and flat parameter space for channel conductance. This

issue has been studied in the crab pyloric neurons [3], stomatogastric ganglion neurons
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Fig 9. Degeneracy in CA1 interneurons. Radar plots with the values obtained for a subset of conductances. Parameters were sorted

for the somatic Na values (black line); the bar graph on the right of each radar plot represents the corresponding spike count from

each individual.

https://doi.org/10.1371/journal.pcbi.1006423.g009
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Fig 10. Differences among CA1 neuron populations. (A) Pie charts showing for the different e-types the proportion of each conductance

with respect to the total average peak conductance calculated across all individuals. (B) Schematic representation of a Pairwise Multiple

Comparison Procedure (Dunn’s Method), between each pair of e-types. The colored boxes indicate cases for which p<0.050. Dark blue or

cyan indicates that the average value of the first component is significantly lower or higher, respectively, than the second one. An empty

box indicates no statistically significant difference.

https://doi.org/10.1371/journal.pcbi.1006423.g010
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(e.g. [2, 6]), in the Globus Pallidus neurons of the rat [7]. The presence of degeneracy had yet

to be studied in hippocampal neurons. Two recent modeling studies, in the mouse corticosp-

inal neurons and motor cortex, have explicitly shown how degeneracy in cortical neurons can

work to implement some electrophysiological features but not others [34], and that degeneracy

can also generate multitarget routes from pathological to physiological network dynamics

[35]. The first finding was particularly relevant for our study, and it was among the reasons

why we choose not to include the voltage between spikes among the optimized features. Its

accurate reproduction would have required us to additionally optimize channel kinetics,

which was not within the scope of this work.

The analysis of the modeling results presented in this paper provides many experimentally

testable predictions on the possible co-regulation of ion currents in hippocampal CA1 neu-

rons. Correlation between pairs of specific conductances has been found for cells in the stoma-

togastric ganglion of the crab (STG, [32]) and in the pyloric network of the spiny lobster [36].

These experiments found that several pairwise correlations between the same conductances

can be present in different type of cells, but no cell type showed conductances with the same

set of pairwise correlations. Our optimized models confirmed this result also for the hippo-

campal CA1 neurons. The models also confirmed pairwise correlations already observed in

STG, such as that between KA and Ih, Na, KDR, and Cagk, and between Na and Cagk. Like in

the STG, these correlations were observed in different combinations among different cell

types. It is important to stress that the optimization process did not bias the parameter values

against each other. Correlations thus emerged naturally from the optimization process, and

reflected a better reproduction of the experimental features. The models predict several addi-

tional pairwise correlations between conductances (see S6–S9 Tables), which are specific for

each e-type. All predictions can be tested experimentally, by directly measuring and compar-

ing peak ion currents or (better) channel densities in different neurons or by a genetic pertur-

bation of channel expression [36, 37].

A limitation of this work is that the optimization process was not able to generate a popula-

tion of models reproducing the very large experimental variability. The reason for this effect is

that, in this work, we choose to optimize the different e-types using for each feature the average

and standard deviation calculated from all traces, rather than independently optimizing mod-

els constrained by traces from an individual cell. A partial explanation for this choice was the

limited availability of experimental data on individual cells. Nevertheless, we think that these

results offer a significant improvement on the current state of the art, and a necessary step

towards building a full-scale cellular model of the rat hippocampus CA1 circuit (Romani et al.,

in preparation).

Another experimentally testable prediction of the models is that each type of cell should

have a small number of channel types that would be expressed at the same density in the same

neuronal population. There is already some experimental indication that this is the case for

STG cells in the crab [1], where it has been found that KDR is relatively constant among the lat-

eral pyloric neurons of different animals, whereas KA and Cagk varied more than threefold. In

this study, we found that passive properties, KM, and Ih were among the most stable intrinsic

membrane properties in any given neuron population, together with dendritic KDR for

interneurons.

The models also predict that a different combination of axosomatic Na, KA, and KDR chan-

nels may dominate the distribution of channels on the membrane of a neuron belonging to a

given e-type. This is also experimentally testable, by directly measuring the density of the dif-

ferent channels expressed on the membrane of different type of neurons.

Our analysis suggests a physiological plausible explanation for why single channel muta-

tions can have more or less pathological consequences. A clear example stands out for KM and

Channel density variability among CA1 neurons

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006423 September 17, 2018 17 / 25

https://doi.org/10.1371/journal.pcbi.1006423


Ih channels in pyramidal cells. We found that these channels must be expressed with a rela-

tively stable density; they do not appear to contribute to degeneracy. This may explain why

specific mutations of KM channels can result in neonatal epilepsies in humans [38], or why the

decrease in Ih caused by experimental models for temporal lobe epilepsy can result in major

changes in the electrophysiological mechanisms related to cognitive functions [39].

Finally, the modeling effort presented and discussed in this work is part of a larger modeling

workflow currently underway in the framework of the EU Human Brain Project (https://www.

humanbrainproject.eu/en/), with the main goal to implement a cellular data-driven model of

the entire hippocampus. The Hippocampus is a complex brain structure, deeply embedded

into the temporal lobe, with a paramount importance for higher brain functions such as learn-

ing and memory, and spatial navigation, and is involved in several major brain diseases. In

spite of intensive experimental and computational studies, the mechanisms underlying these

functions (and dysfunctions) are still poorly understood. A model implementation and analysis

at the cellular level may pave the way for a deeper understanding of the diverse and complex

functions of this brain region, and of its levels of organization. One of the major steps towards

this goal is the implementation of morphologically and biophysically accurate single cell mod-

els for the main neuronal populations, equipped with a set of axonal, somatic, and dendritic

currents consistent with many experimentally measured electrophysiological features, in such a

way as to be able to capture the main I/O properties observed experimentally. Here we have

used a general, robust, and flexible tool able to produce, using reasonable computational

resources, ensembles of this type of models for CA1 pyramidal cells and interneurons.

Methods

Experimental procedures for interneurons and pyramidal cells

050921AM2, and 990803

Electrophysiology. All procedures used throughout this study were carried out according

to the British Home Office regulations with regard to the Animal Scientific Procedures Act

1986. Hippocampal slices were prepared as described previously [40, 41]. Briefly, young adult

male rats (Sprague-Dawley, body weight 90–180 g) were deeply anaesthetised with Fluothane

(inhalation) and sodium pentobarbitone (Sagatal, 60 mg kg-1, Rhône Mérieux, Harlow, UK)

and perfused transcardially with ice-cold modified artificial cerebrospinal fluid) containing in

mM: 248 Sucrose, 25.5 NaHCO3, 3.3 KCl, 1.2 KH2PO4, 1 MgSO4, 2.5 CaCl2, 15 D-Glucose,

equilibrated with 95% O2/5% CO2. 450 to 500 μm coronal sections were cut (Vibroslice, Cam-

den Instrument, Loughborough, UK) and transferred to an interface recording chamber. They

were maintained in modified ACSF solution for 1 hour, and then in standard ASCF (in mM:

124 NaCl, 25.5 NaHCO3, 3.3 KCl, 1.2 KH2PO4, 1 MgSO4, 2.5 CaCl2, and 15 D-glucose, equili-

brated with 95% O2/5% CO2) for another hour at 34–36˚C before commencing electrophysio-

logical recordings. Intracellular recordings were made using sharp microelectrodes (tip

resistance, 90–190 MO) filled with 2% biocytin in 2M KMeSO4 under current-clamp (Axop-

robe; Molecular Devices, Palo Alto, CA). Current-voltage characteristics of CA1 pyramidal

cells and interneurons were obtained from their responses to 400 ms current pulses and

recorded with pClamp software (Axon Instruments, USA). Individual neurons were recorded

and biocytin-filled for up to 3 hours.

Histology. The histological procedures have been described previously [42]. Briefly, the

450–500 μm slices were fixed overnight (4% paraformaldehyde (PFA), 0.2% saturated picric

acid solution, 0.025% glutaraldehyde solution in 0.1 M Phosphate buffer). Slices were then

washed, gelatin-embedded and 50–60 μm sections were cut. Sections were cryoprotected with

sucrose, freeze-thawed, incubated first in ABC (Vector laboratories) and then in DAB (3, 3’
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diaminobenzidine, Sigma) to visualize the biocytin and reveal the morphology of the recorded

neurones. Sections were then post-fixed in Osmium Tetroxide, dehydrated, mounted on slides

(Durcupan epoxy resin, Sigma) and cured for 48 h at 56˚C. The calcium-binding protein and

peptide content of some interneurons was investigated by immunofluorescence. Sections

were cut and permeabilised with sucrose and freeze-thawed. They were then incubated in 1%

Sodium Borohydride (NaBH4) for 30 minutes, in 10% normal goat serum for another 30 min

and then incubated overnight in a primary antibody solution (mouse monoclonal anti-Parval-

bumin (Sigma) or rabbit polyclonal anti-calbindin (CB) (Baimbridge & Miller, 1982)) made

up in ABC solution. Sections were then incubated for 2h in a solution of fluorescently labelled

secondary antibodies (anti-mouse fluorescein isothiocyanate (FITC) and/or goat anti-rabbit

Texas Red (TR), and Avidin-7-Amino-4-methylcoumarin-3-acetic acid (Avidin-AMCA)

made up in PBS). Sections were mounted on slides in Vectashield (Vector laboratories) and

studied by fluorescence microscopy. Subsequently, sections were incubated in ABC (Vector

laboratories) and then in DAB (3, 3’ diaminobenzidine, Sigma) to visualise the biocytin, post-

fixed, dehydrated, mounted on slides and cured for 48 h at 56˚C. All CA1 neurons were then

reconstructed using a Neurolucida software (MBF Bioscience).

Histological procedures for pyramidal cells, except cells 050921AM2, and 990803.

For all the other pyramidal cells, ex-vivo coronal preparations (300 μm thick) were obtained

for the hippocampus of wild type rats (Wistar) brains, post-natal 14–23 days. The project was

approved by the Swiss Cantonal Veterinary Office following its ethical review by the State

Committee for Animal Experimentation. All procedures were conducted in conformity with

the Swiss Welfare Act and the Swiss National Institutional Guidelines on Animal Experimen-

tation for the ethical use of animals. All ex-vivo brain slices were cut in ice-cold aCSF (artificial

cerebro-spinal fluid) with low Ca2+ and high Mg2+. The intracellular pipette solution con-

tained (in mM) 110 Potassium Gluconate, 10 KCl, 4 ATP-Mg, 10 Phosphocreatine, 0.3 GTP,

10 HEPES and 13 Biocytin, adjusted to 290–300 mOsm/Lt with D-Mannitol (25–35 mM) at

pH 7.3. Chemicals were from Sigma Aldrich (Stenheim, Germany) or Merck (Darmstadt, Ger-

many). A few somatic whole cell recordings (not available for this work) were performed with

Axopatch 200B amplifiers in current clamp mode at 34 ± 1˚C bath temperature. After the

recordings, cells were left in whole cell mode for 45mins for biocytin to fill up the cell. The

pipette was then carefully removed and the brain slice placed in PFA 4% overnight. Slice were

then placed in PBS 1X, biocytin revealing protocol was performed prior to mounting. Recon-

struction made by eye with assistance of camera Lucida.

Computational methods. The models have been implemented using three-dimensional

morphological reconstructions. Electrophysiological features of interest (see next paragraph)

were extracted from experimental traces using custom code exploiting the open source

Electrophysiological Feature Extraction Library (eFEL, https://github.com/BlueBrain/eFEL).

Extracted features were then used for multi-objective model parameter optimizations per-

formed using the open source Blue Brain Python Optimization Library (BluePyOpt, [43]).

Both are part of a set of tools integrated into many online use cases of the Brain Simulation

Platform (BSP) of the Human Brain Project (https://www.humanbrainproject.eu/en/brain-

simulation/). The optimizations were carried out using HPC systems, accessible from the BSP,

at either the Neuroscience Gateway (https://www.nsgportal.org/), CINECA (Bologna, Italy),

or JSC (Jülich, Germany). On a KNL-based HPC system, a typical optimization run for a pyra-

midal cell, configured to generate 128 individuals/generation, required approximately 1 hour/

generation using 128 cores. Typical production runs for each optimization required approxi-

mately 60 generations to reach an equilibrated state.

The overall optimization approach, of using a genetic algorithm, was similar to other stud-

ies (e.g. [35, 44]), but with important qualitative differences: for example, in [35] only one
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detailed morphology was used, whereas in [44] the authors tested many detailed morphologies

but with the soma as the only active compartment. In our case, we used many detailed mor-

phologies and, in all of them, we distributed dendritic conductances constrained by experi-

mental findings. This allowed us, for example, to also reproduce experimental dendritic

recordings. We believe that for studying degeneracy of ionic currents in hippocampal pyrami-

dal neurons, known to have active dendrites with fundamental roles in signal integration, our

choice can give better results.

All experimental and model files are publicly available at the Human Brain Project collab

https://collab.humanbrainproject.eu/#/collab/18565. Complete model and simulation files will

also be available on the ModelDB section of the Senselab suite (https://senselab.med.yale.edu/

modeldb/ acc. n.244688).

Readers interested in running their own optimization can also access the public “Online Use

Cases” of the BSP directly related to single cell modeling (https://collab.humanbrainproject.eu/

#/collab/1655/nav/28538). A number of tools with an intuitive graphical user interface will

guide the user through all steps, from selecting experimental data to constrain the model, to

running an optimization to generate a model template and, finally, to exploring the model with

in silico experiments.

Electrophysiological features. Thousands of electrophysiological features may be used to

constrain a model’s optimization process and many hundreds of parameters to optimize. Ide-

ally, all of them should be used. In practice, however, this is essentially impossible. The amount

of missing information will make the problem ill-defined, and the sheer number of parameters

that would be required will result in a substantial overfitting. For this reason, we decided to

take into account a selected set of electrophysiological features for each e-type, listed in S1–S4

Tables. They include features that are particularly important in shaping the I/O properties of a

neuron, such as the spike count and spike times, and those associated with the resting potential

and the input resistance. Their average (±sd) value was calculated from experimental traces,

using a custom version of the feature extraction tool.

A total of 225 experimental features were used to constrains the optimization process.

Models configuration. Given the experimentally known differences between pyramidal

cells and interneurons, we used different channels’ configuration and distribution, as schemati-

cally illustrated in S1 Fig. Channel kinetics were based on those used in many previously pub-

lished papers on hippocampal neurons [45, 46], and validated against a number of experimental

findings on CA1 pyramidal neurons. The complete set of active membrane properties included

a sodium current (Na), four types of potassium (KDR, KA, KM, and KD), three types of Calcium

(CaN, CaL, CaT), the nonspecific Ih current, and two types of Ca-dependent K+ currents, KCa

and Cagk. A simple Calcium extrusion mechanism, with a single exponential decay of 100 ms,

was also included in all compartments containing Calcium channels. In general, channels were

uniformly distributed in all dendritic compartments except KA and Ih, which in pyramidal cells

are known to increase with distance from the soma [20, 25]. The values for the peak conduc-

tance of each channel were independently optimized in each type of compartment (soma, axon,

basal and apical dendrites). The parameters’ range, independently for pyramidal cells and inter-

neurons, was defined with preliminary simulations, and it covered a range of at least one order

of magnitude.

We realized that one of the sentences in the Discussion “The presence of degeneracy has

not been systematically studied in hippocampal neurons yet” may incorrectly convey the

notion that there are no previous studies on degeneracy in the hippocampus. We would like to

point out that this is not the case. It is worth mentioning that degeneracy has been previously

studied in one CA1 pyramidal neuron morphology, to study the emergence of a few functional

maps [47], or in the context of spectral tuning (reviewed in [48]) and synaptic integration
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and plasticity [49] using either a single morphology or a reduced model of CA1 pyramidal

neurons.
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S1 Fig. CA1 pyramidal neuron and interneuron active properties. Morphologies of a pyra-

midal neuron (left) and an interneuron (right), with a schematic indication of channels’ distri-
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dal cell models. Only conductances with at least one significant correlation coefficient >|0.25|
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