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Abstract: Bigels are biphasic semisolid systems that have been explored as delivery vehicles in
the food and pharmaceutical industries. These formulations are highly stable and have a longer
shelf-life than emulsions. Similarly, cellulose-based hydrogels are considered to be ideal for these
formulations due to their biocompatibility and flexibility to mold into various shapes. Accordingly, in
the present study, the properties of an optimized guar gum hydrogel and sesame oil/candelilla wax
oleogel-based bigel were tailored using date palm-derived cellulose nanocrystals (dp-CNC). These
bigels were then explored as carriers for the bioactive molecule moxifloxacin hydrochloride (MH).
The preparation of the bigels was achieved by mixing guar gum hydrogel and sesame oil/candelilla
wax oleogel. Polarizing microscopy suggested the formation of the hydrogel-in-oleogel type of bigels.
An alteration in the dp-CNC content affected the size distribution of the hydrogel phase within the
oleogel phase. The colorimetry studies revealed the yellowish-white color of the samples. There were
no significant changes in the FTIR functional group positions even after the addition of dp-CNC. In
general, the incorporation of dp-CNC resulted in a decrease in the impedance values, except BG3
that had 15 mg dp-CNC in 20 g bigel. The BG3 formulation showed the highest firmness and fluidity.
The release of MH from the bigels was quasi-Fickian diffusion mediated. BG3 showed the highest
release of the drug. In summary, dp-CNC can be used as a novel reinforcing agent for bigels.

Keywords: date palm-derived cellulose nanocrystal; guar gum hydrogel; sesame oil; candelilla wax;
oleogel; drug delivery

1. Introduction

In recent years, bigel-based delivery systems have been proposed as novel biphasic
systems [1]. Such systems are developed by mixing two types of gelled systems of different
polarities, namely hydrogels and oleogels, under a controlled temperature [2]. Hydrogels
are gelled systems that are hydrophilic systems of aqueous solvent [3], while oleogels
are hydrophobic gelled systems of edible oils [4]. The mixing of the aforesaid gelled
systems leads to the formation of biphasic systems, which are structurally similar to
emulsions [5]. However, unlike emulsions, bigels are semisolid in nature [6]. Depending on
the distribution of the gelled systems, bigels are categorized either as oleogel-in-hydrogel
or hydrogel-in-oleogel [2]. Moreover, some authors have reported the formation of bi-
continuous bigel [2,6]. This type of bigel does not have either a clearly dispersed or
continuum phase. The main advantage of bigels is their improved stability and shelf-life [7].
The composition of the constituting oleogels and hydrogels alters the properties of the bigels.
Also, the proportion of the oleogel and the hydrogel can govern their properties [8,9]. Since

Gels 2022, 8, 330. https://doi.org/10.3390/gels8060330 https://www.mdpi.com/journal/gels

https://doi.org/10.3390/gels8060330
https://doi.org/10.3390/gels8060330
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/gels
https://www.mdpi.com
https://orcid.org/0000-0002-3478-1349
https://orcid.org/0000-0002-9384-9067
https://orcid.org/0000-0002-0508-865X
https://orcid.org/0000-0003-1056-6641
https://doi.org/10.3390/gels8060330
https://www.mdpi.com/journal/gels
https://www.mdpi.com/article/10.3390/gels8060330?type=check_update&version=2


Gels 2022, 8, 330 2 of 15

the bigels consist of both hydrophobic (oleogels) and hydrophilic (hydrogels) components,
they are a good candidate for delivering both hydrophobic and hydrophilic bioactive
agents, either individually or simultaneously [10–12]. Due to the versatile properties of
bigels, they have been used for pharmaceutical, food, and cosmetic applications.

Oleogels are gel-based systems of lipids and oils [13,14]. These gels are hydrophobic,
unlike hydrophilic hydrogels. In recent times, the use of oleogels in food and pharmaceuti-
cal applications has received much attention as a solid fat replacer/alternative [15]. The
use of oleogels helps reduce the saturated fatty acid content and consequently increases the
unsaturated fatty acid content in food products [16–18]. The oleogels entrap oils within
a network structure of the gelators, which are hydrophobic. One of the common types
of gelators are vegetable waxes (e.g., mango butter, cocoa butter, sunflower wax, and
candelilla wax) [18–20]. Vegetable wax-based oleogels are prepared by the direct dispersion
method, which is one of the most common and easiest methods of oleogel preparation [21].
Since vegetable waxes are rich in fat molecules, fat crystals are formed within the gelator
network of oleogels during the synthesis process [19,20].

In the present study, candelilla wax (CW) and sesame oil (SO)-based oleogel will be
used as the model oleogel. CW is extracted from the leaves of candelilla shrubs (Euphorbia
cerifera and Euphorbia antisyphilitica; family: Euphorbiaceae) [22]. The shrub is mainly
found in the region of northern Mexico and the southwestern United States [23,24]. CW
is yellowish-brown in color and has a melting point of 62–70 ◦C [25]. Due to its vegan
origin, it has been proposed for food applications. Oleogels of CW have been explored in
recent times as saturated fat replacers [26]. SO is extracted from sesame seeds (Sesamum
indicum; family: Pedaliaceae) [27]. The oil has a high linoleic acid and oleic acid content,
which combined constitute nearly 80% of the total fatty acid content [28,29]. It is one of the
most widely used cooking oils across the globe and has also been used to develop various
food products.

Hydrogels are polymeric networks that entrap water molecules. In recent years, polysac-
charides have been explored for developing hydrogels. Polysaccharides are naturally-
occurring polymers and are inherently biocompatible. Among various polysaccharides
(e.g., guar gum, alginic acid, chitosan, gum tragacanth), guar gum (GG) is one of the most
widely used polysaccharides. GG is obtained from the seed of the guar plant (Cyamop-
sis tetragonolobus; family: Leguminosae) [30,31]. The polysaccharide is composed of D-
mannopyranose (M) monomer units [32,33]. This natural polymer has been used in the
food, pharmaceutical, and cosmetics industries for a long time. Researchers have proposed
altering the properties of GG-based polymeric architectures with cellulose nanocrystals
(CNCs) [34]. The inclusion of CNC into GG-based formulations help to tailor the properties
of the formulations.

Similarly, nanocellulose has a remarkable skeletal structure, due to its numerous hy-
drophilic functional groups and nano size effect, which allows it to maintain the hydrogel’s
three dimensional structure to a large extent while maintaining the moisture content [35].
Also, a high degree of polymerization and a large surface area to volume ratio result in
increased drug loading and binding capacity for drug release. However, a variety of factors,
such as cellulose source, isolation strategy, size, and shape determine the optimum perfor-
mance of nanocellulose [36]. Cellulose nanocrystals can be obtained from agricultural waste
and used in a range of applications. In earlier work, we isolated cellulose nanocrystals from
date palm (dp-CNC) tree residues. Furthermore, the reinforcing influence of the dp-CNCs
on the bigels has not been studied yet. Therefore, it is reasonable to investigate the potential
of this nanocellulose to tailor the properties of bigels.

Maharana, V. et al. [37] have proposed altering the properties of the filled hydrogels by
reinforcing the dispersed phase. In the study, the authors developed gelatin-tamarind gum-
filled hydrogels (also known as bigels), wherein the tamarind gum was reinforced with
carbon nanotubes. The authors demonstrated that the reinforcement of the dispersed phase
significantly affected the properties of the filled hydrogels. These carbon nanotubes were
found to improve associative interaction among hydrogel components and to maintain the
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architecture of the hydrogels. Accordingly, in this study, we developed a GG hydrogel-
in-CW/SO oleogel bigel. The GG hydrogel was reinforced with varying amounts of
date palm-derived CNC (dp-CNC). The synthesis of the bigels was performed by the
facile mixing approach. The properties of the bigels were then analyzed by microscopic,
FTIR spectroscopic, XRD, impedance spectroscopic, and texture analysis methods. The
developed bigels were also explored as carriers for Moxifloxacin (MH).

Moxifloxacin (MH) is categorized under the quinolone group of antibiotics. The drug
is a broad-spectrum antibiotic and is used to treat a wide variety of bacterial infections.
Accordingly, it has been used to treat several bacteria-induced diseases. Some of the diseases
where MH is used as a drug of choice include respiratory tract infections, conjunctivitis,
tuberculosis, endocarditis, and pneumonia. Though the drug’s elimination half-life is
~12 h, most of the drug is excreted through feces or urine. Accordingly, there is a need to
design controlled drug delivery systems that can prolong the release of the drug and hence
improve bioavailability. In this regard, bigels have been proposed as a novel drug delivery
system by many researchers. The knowledge gathered through this study could allow the
scientific community to understand how the reinforcement of the internal phase of bigels
with CNC affects the properties of the bigels.

2. Results and Discussion
2.1. Microscopic Evaluation

The analysis of the optical micrographs of bigels can provide information about the
dispersion of the dispersed phase (Figure 1). Observation of the micrographs suggest
the presence of globular phases within a continuum phase. As the proportion of the
hydrogel phase was only 25%, it can be expected that the dispersed phase would be the
hydrogel [38]. Consequently, the continuum phase would be the oleogel phase. It can be
seen that BG0 (Figure 1a) showed a wide distribution in the size of the globular phases.
A large number of bigger globular structures could be observed in BG0 (Figure 1a). As
dp-CNC was incorporated in BG1 (Figure 1b), there was a drastic reduction in the size of the
globular structures. However, some bigger size droplets could be seen. A corresponding
increase in the dp-CNC content in BG2 and BG3 (Figure 1c,d), resulted in smaller globular
structures, respectively. Apart from the formation of smaller globular structures, there
was increased homogeneity. It can be observed that the globular size distribution was
highly homogenous in BG3 (Figure 1c). A further increase in the dp-CNC content in BG4
(Figure 1e) caused a slight increase in the size of the globular structures and increased size
distribution. Additionally, it can also be observed that some of the globular structures in
BG0, BG1, and BG4 (Figure 1a,b,e) were apparently deformed. Nevertheless, the globular
structures in BG2 and BG3 (Figure 1c,d) were relatively non-deformed. The variation in the
mean droplet size (Figure 1f) suggested that the addition of dp-CNC reduced the droplet
size of the internal phase. The difference in the droplet size of the internal phase among
the dp-CNC-containing formulations was not significant. The droplet size was calculated
manually using ImageJ software.

The polarized light micrographs of the bigels are presented in Figure 2. It can be
observed from the micrographs that the dispersed phase was darker than the continuum
phase, samples BG0-BG4 (Figure 2a–e). It is well-established that fat crystals appear brighter
under polarizing conditions [39]. This has been attributed to the ability of fat crystals to
diffract light. The diffracted light can be captured by polarizing microscopy. On the other
hand, hydrogels are amorphous structures and appear as dark objects under polarizing
microscopy, i.e., samples BG4 (Figure 2e). Analyzing the microarchitecture confirms that
the dispersed phase was the hydrogel phase, while the continuum phase is composed of
the oleogels. Further, the polarizing micrographs also corroborated the observations from
the optical micrographs. Therefore, it can be concluded that the addition of dp-CNC within
the inner phase of the hydrogel-in-oleogel bigels can help to tailor the size and distribution
of the dispersed phase. It could be further seen that dp-CNC helped form an un-deformed
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dispersed phase of the hydrogels in bigels. The alteration in the properties of the dispersed
phase occurs in a concentration-dependent manner.

Figure 1. Bright-field micrographs of the bigels. (a) BG0, (b) BG1, (c) BG2, (d) BG3, and (e) BG4.
(f) Variation in the mean droplet size.

Figure 2. Polarized light micrographs of the bigels. (a) BG0, (b) BG1, (c) BG2, (d) BG3, and (e) BG4.

2.2. Colorimetry

The results of the colorimetric analysis have been compiled in Figure 3 and Table 1.
The color analysis was carried out in the CIELab color plane, wherein L *, a *, and b *
values are obtained [40]. The main advantage of this color model is that it encompasses the
entire range of human visual color perception [41]. The “L *” parameter is independent of
chromaticity information. It basically represents the perpetual lightness of the samples [42].
From the results, it can be observed that the average “L *” value was in the range of 97.76
and 99.07. However, the “L *” values were not statistically significant from each other. On
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the other hand, “a *” and “b *” values are chromic parameters, wherein “a *” and “b *”
parameters represent green-red and blue-yellow opponent colors, respectively [43,44]. The
negative values of “a *” and “b *” represent green and blue colors. The positive values
of “a *” and “b *” represent red and yellow colors. Analysis of the “a *” and “b *” values
suggest the presence of green and yellow hues within the system. The variation in the
values of the parameters was not statistically significant. Apart from the aforesaid primary
color parameters, derived parameters, namely whiteness index (WI) and yellowness index
(YI), were also obtained from the instrument [45]. The WI was in the range of 75% and 80%,
while the YI was in the range of 27% and 35%. There was no significant difference in the
WI and YI values of the formulations. In summary, the formulations were highly reflective
in nature with predominantly green and yellow hues. The addition of dp-CNC did not
alter the color of the formulations.

Figure 3. Colorimeter profile of bigels. (a) CIELab color parameters, (b) Whiteness index, (c) Yellowness index.

Table 1. Color parameters of bigels.

Sample L * a * b * WI YI

BG0 98.67 ± 0.96 −5.74 ± 1.16 19.06 ± 5.70 80.02 ± 5.77 27.60 ± 8.49

BG1 99.07 ± 0.19 −6.64 ± 1.40 19.80 ± 4.57 79.10 ± 4.78 28.55 ± 6.64

BG2 97.76 ± 2.03 −6.16 ± 2.67 23.92 ± 1.38 75.20 ± 1.09 34.95 ± 2.68

BG3 98.19 ± 1.17 −6.12 ± 1.45 22.13 ± 6.74 76.97 ± 6.82 32.20 ± 6.06

BG4 98.81 ± 0.37 −7.05 ± 0.44 21.97 ± 2.11 76.90 ± 2.12 31.77 ± 3.15

2.3. FTIR Spectroscopy

The FTIR spectrum provides useful information about the presence of potential func-
tional groups and interactions within them in bigel formulations. The FTIR spectra of the
bigels have been provided in Figure 4. The analysis of the functional groups is mainly done
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in the functional group region. The FTIR spectra of the bigels showed that there was a
sharp peak at 1740 cm−1. This peak is associated with the -C=O stretching vibrations of the
esters that are present in lipids and fatty acids [46].

Figure 4. FTIR spectra of the bigels.

The presence of dual peaks at 2854 cm−1 and 2920 cm−1 is due to the sp3 hybridized
carbon atom C-H stretching, which was in abundance in SO, CW, GG, and dp-CNC [47].
The broad peak at 3425 cm−1 was due to the O-H stretching vibrations due to hydrogen-
bonded hydroxyl groups [48]. Further, another peak was observed at 3743 cm−1 that can be
explained by the O-H stretching of the free hydroxyl groups [49]. The hydroxyl functional
groups were in abundance in SO, CW, GG, and dp-CNC. Apart from these major peaks
in the functional group region, a couple of minor peaks were also observed. The minor
peak at 1650 cm−1 was due to the N-H bending of primary amines that are present in
GG. Apart from the peaks mentioned in the functional group region, some additional
peaks at 1370.7 cm−1, 1234.6 cm−1, 1158.4 cm−1, and 1102.7 cm−1 were observed. These
peaks are considered to be in the fingerprint region. These peaks can be associated with
different vibration modes of methyl (-CH3) and methylene (-CH2) groups in SO, CW, GG,
and dp-CNC [50]. In summary, all the formulations (control and dp-CNC-containing bigels)
showed peaks precisely at the exact location. This indicates the presence of similar types
of interactions among all the formulations, including the control sample. However, there
were some variations in the intensity levels.

2.4. Analysis of Impedance

The impedance profiles of the bigels are provided in Figure 5. The impedance profiles
showed typical capacitive behavior; wherein there is a higher impedance in the low-
frequency range that reduces to a basal level in the high-frequency range [51]. The analysis
of the impedance profiles suggested that the control bigel (BG0) was relatively higher than
the dp-CNC-containing bigels, except BG3. This indicated that the addition of dp-CNC in
the bigels reduced the impedance of the bigels in general. Among the dp-CNC-containing
bigels, BG1 had the lowest impedance. In other words, the electrical conductivity of BG1
was the highest. The impedance value was correspondingly increased in BG2 and BG3,
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respectively, with increase in dp-CNC content. In fact, the impedance of BG3 was the
highest. Thereafter, a corresponding fall in the impedance value was observed in BG4,
which contained the highest amount of dp-CNC.

Figure 5. Impedance profiles of the bigels in 50 and 5000 Hz frequency range.

The observed impedance can be related to the microstructure of the bigels. From the
micrographs, it was observed that BG3 showed smaller and homogenous droplets. As the
amount of the hydrogel was the same in all the bigels, the smaller droplets resulted in the
presence of more droplets. These droplets acted as numerous capacitive elements, thereby
resulting in the highest impedance of BG3. The impedance of the other bigel formulations
can also be related to droplet size and homogeneity.

2.5. Stress Relaxation Studies

The stress relaxation (SR) profiles and their parameter values are presented in Figure 6
and Table 2. The F0 value, maximum force attained in the SR profile, of BG0 was signifi-
cantly lower than the dp-CNC containing formulations (p < 0.05). This could be associated
with the reinforcing properties of CNC. Among the dp-CNC containing formulations, there
was an increase in the F0 values from BG1 to BG3. Subsequently, an increase in the dp-CNC
content decreased the F0 value in BG4. However, the differences in the F0 values among
BG1 and BG2, BG2 and BG4, and BG3 and BG4 were statistically insignificant (p > 0.05).
The F60 values, the minimum force value at the end of the relaxation process, followed a
trend similar to F0 values.

The %SR value provides information about the fluidity (or elasticity) of formula-
tions [52,53]. A higher %SR value indicated higher fluidic nature of the formulations.
The analysis of the %SR values suggested that BG0 was highly fluidic in nature and had
the highest %SR value. However, the %SR value of BG0 was similarly valued with that
of BG3 and BG4 (p > 0.05). The %SR value of BG1 and BG2 was the lowest (p > 0.05).
This suggested that the elastic component of BG1 and BG2 was higher than all the other
formulations (p < 0.05). Interestingly, an increase in the dp-CNC content in BG3 and BG4
significantly increased the fluidic component within the bigels that were similarly to each
other to control (BG0) (p > 0.05). In brief, BG3 had the highest firmness and, at the same
time, improved fluidity.
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Figure 6. Stress relaxation study of the bigels. (a) SR profile, (b) F0 profile (average ± standard deviation),
(c) F60 profile (average ± standard deviation), and (d) % SR profiles (average ± standard deviation).

Table 2. Stress relaxation parameters of bigel formulations.

Formulations F0 F60 %SR

BG0 205.37 ± 26.95 78.85 ± 8.09 61.60 ± 2.43

BG1 1349.64 ± 133.67 739.42 ± 105.43 45.21 ± 3.00

BG2 1569.40 ± 219.49 877.00 ± 77.08 44.18 ± 2.94

BG3 2548.71 ± 106.68 1123.40 ± 25.01 55.92 ± 2.60

BG4 2186.90 ± 328.30 971.89 ± 79.98 55.55 ± 3.45

2.6. Drug Release Study

The Moxifloxacin HCI is a new fluoroquinolone antibacterial agent that works against
both gram-positive and gram-negative bacteria. It has better activity against anaerobes
and gram-positive bacteria (such as streptococci, staphylococci, and enterococci) than
ciprofloxacin [54]. Moxifloxacin HCI is used to treat bacterial infections of the respiratory
tract, including community-acquired pneumonia, sinusitis, and acute exacerbations of
chronic bronchitis [55]. The FDA authorized moxifloxacin HCI ophthalmic solution in
April 2003 for the treatment of bacterial conjunctivitis caused by susceptible species [56].
An improved antibacterial activity was reported from chitosan/β-glycerophosphate in situ-
forming thermo-sensitive hydrogel loaded with moxifloxacin HCI (0.25% w/v) compared
to moxifloxacin HCI solution (0.5% w/v) [57]. Accordingly, formulations of 0.25% of
moxifloxacin HCI were developed in this study.

The release profiles of the drug moxifloxacin HCl from the formulations are provided
in Figure 7. It can be seen from the drug release profiles that an increase in the dp-CNC
content correspondingly increased the CPDR (cumulative percent drug release) till BG3D.
However, there was a subsequent decrease in the CPDR values from BG4D. Among the
dp-CNC-containing formulations, the CPDR values were in the same order as that of
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the impedance values in the low-frequency region. Statistically, the CPDR values of the
dp-CNC containing formulations were significantly higher than the control (p < 0.05). This
is suggestive of the fact that the addition of dp-CNC promoted the release of the drug.
Further, the differences in the CPDR values at the end of the experiment of BG1D and BG2D,
BG2D and BG4D, and BG3D and BG4D were statistically similar to each other (p > 0.05).
Overall, the enhanced drug release, due to the addition of dp-CNC, could be explained by
faster diffusion of the drug molecules within the hydrogel matrices, which improved water
absorption capacity, due to dp-CNC, may have promoted.

Figure 7. Drug release profile of bigel formulations. (a) CPDR profile and (b) KP model of CPDR.

The CPDR profiles were then fitted to the Korsmeyer-Peppas (KP) model
(Equation (1)) [58]. The parameters of the KP model are formulated in Table 3. It can
be observed that the diffusion factor (K) of BG0D, with respect to BG1D and BG3D, was
statistically insignificant (p > 0.05). The incorporation of dp-CNC resulted in increase in
the ‘K’ value in a concentration-dependent manner. However, the ‘K’ values of BG1D and
BG3D, BG2D and BG3D, and BG3D-BG4D were statistically insignificant (p > 0.05). The
diffusion exponent (n) values were less than 0.45, suggesting quasi-Fickian diffusion of the
drug molecules during the drug release process:

CPDR = K × tn (1)

where CPDR is cumulative percent drug release, K is the diffusion factor, t is the time of
sampling, and n is the diffusion exponent.

Table 3. Korsmeyer-Peppas model drug release parameters.

Formulations
Model Parameters

K n R2

BG0D 2.294 ± 0.037 0.267 ± 0.016 0.995

BG1D 2.186 ± 0.188 0.308 ± 0.017 0.993

BG2D 3.045 ± 0.227 0.256 ± 0.007 0.988

BG3D 6.023 ± 1.726 0.193 ± 0.050 0.987

BG4D 4.362 ± 0.394 0.232 ± 0.020 0.992

3. Conclusions

GG hydrogel and SO/CW oleogel-containing bigels were developed using an easy
and facile method in the present study. Dp-CNC was then incorporated within the bigel in
varied amounts to alter the physical and biochemical properties of the bigel. It was found
that the developed bigels were smooth and stable. The bigels were yellowish-white in
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color. The formation of biphasic formulations was confirmed by bright field and polarizing
microscopy. The IR spectra suggested that there was no change in the interactions of the
bigel components after the addition of dp-CNC. The incorporation of dp-CNC improved
the firmness of the formulations in a composition-dependent manner. This was associated
with the reinforcing property exerted by CNCs. At lower dp-CNC content, the bigels
contained more elastic components, while the fluidic component was more predominant
when the dp-CNC content was on the higher side. The release of the drug MH was
diffusion-mediated and followed quasi-Fickian release kinetics. In closing, it was observed
that dp-CNC could be explored as a novel reinforcing and drug release agent, which could
be used to develop delivery systems for antimicrobial agents. Finally, the summary of the
key parameters is tabulated in Table 4.

Table 4. Summary of the key parameters.

Formulations Mean
Droplet Size %SR Diffusion Factor

(K)

B0 22.42 ± 0.42 61.60 ± 2.43 2.294 ± 0.037

B1 20.53 ± 0.16 45.21 ± 3.00 2.186 ± 0.188

B2 20.45 ± 0.53 44.18 ± 2.94 3.045 ± 0.227

B3 20.30 ± 0.14 55.92 ± 2.60 6.023 ± 1.726

B4 20.45 ± 0.41 55.55 ± 3.45 4.362 ± 0.394

4. Materials and Methods
4.1. Materials

Candelilla wax (CW, BiOrigins, Hampshire, UK), and Sesame oil (SO, Massy Cedex,
France) were procured from the local hypermarket. Guar gum was used from Scharlab,
Barcelona, Spain. Disodium hydrogen phosphate, and potassium dihydrogen phosphate
were procured from Merck, Darmstadt, Germany. Date palm-derived CNCs were synthe-
sized in our laboratory as per the method described earlier [36]. This has nanoparticles
with sizes ranging from 26 nm to 61 nm, a negative zeta potential of −35 mV, and 89%
crystallinity. Also, double distilled water was used throughout the study.

4.2. Preparation of the Formulations
4.2.1. Preparation of the Oleogel

The critical gelation concentration of CW for inducing gelation of SO was initially
determined. For this purpose, a specified amount of CW was added to SO. The mixture
was then heated at 65 ◦C for 30 min to induce the dissolution of CW in SO. Then, the
hot mixture was kept at 25 ◦C for 120 min to allow the gelation process to complete. The
amount of CW was varied to determine the CGC. The CGC of CW for SO was found to be
7%. The oleogel prepared at CGC was used for further studies.

4.2.2. Preparation of the GG Hydrogels

GG hydrogel was prepared by dispersing 1 g of GG in 99 g of water that was kept
stirring at 800 RPM. The dp-CNC loaded GG hydrogels were prepared by dispersing a
sufficient amount of dp-CNC in water, followed by the addition of GG in water. The
amount of dp-CNC was added so as to maintain the dp-CNC content in the formulations,
as mentioned in Table 5.
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Table 5. Composition of the bigels.

Code Hydrogel (g) dp-CNC (mg) Oleogel (g) Moxifloxacin
HCl (% w/w)

BG0 25 - 75 -

BG1 25 5 75 -

BG2 25 10 75 -

BG3 25 15 75 -

BG4 25 20 75 -

BG0D 25 - 75 0.25

BG1D 25 5 75 0.25

BG2D 25 10 75 0.25

BG3D 25 15 75 0.25

BG4D 25 20 75 0.25

4.2.3. Preparation of the Bigels

Specified amounts of GG hydrogels (60 ◦C) were slowly added to the oleogel (60 ◦C),
which was kept on homogenization at 800 RPM. The homogenization was further continued
for 20 min. Then, the mixture was kept at room temperature (25 ◦C) for 1 h. The reduction
of the temperature of the mixture induced gelation to form bigels. The drug-containing
bigels were prepared by incorporating the drug (moxifloxacin hydrochloride; moxifloxacin
HCl) within the GG hydrogel phase. The composition of the bigels is presented in Table 5.

4.3. Characterization

The microstructures of the bigels were initially visualized using an optical bright field
microscope. Subsequently, polarized microscopy was performed using the same micro-
scope, which was attached with an in-house built polarizer and an analyzer. The microscope
was fitted with an ICC50-HD camera for imaging. The prepared bigels were then subjected
to colorimetric analysis using a reflective colorimeter (X-Rite Ci7600 spectrophotometer,
Grand Rapids, MI, USA).

The functional group identification and their interactions were studied using an FTIR
(Fourier Transform infra-red spectroscope Nicolet iN10, Thermo Scientific, Winsford, UK)
working in the ATR (Attenuated total reflectance) mode. The analysis was performed in the
wavenumber range of 3500 cm−1 to 500 cm−1. An average of 32 scans was used for the final
spectra. The resolution of the instrument was 4 cm−1. The impedance analyses of the bigels
were carried out using an impedance analyzer (Digilant, Pullman, WA, USA). The analysis
was carried out through the parallel plate capacitive method. Briefly, the stainless electrode
system, consisting of two circular parallel plates (diameter: 1 cm, distance between plates:
1 cm), was inserted into the sample. Then, the impedance was measured in the frequency
range of 50 and 5000 Hz.

The viscoelastic properties of the bigels were analyzed by the stress relaxation (SR)
study. The SR study was carried out using a mechanical tester (TA HD-plus, Stable Micro
Systems, Haskmere, UK). The study was conducted using a 30 mm flat probe. The probe
was allowed to penetrate the sample by 1 mm after sensing a force of 5 g. The initial force
value at this position was regarded as F0. Thereafter, the probe remained at the same
location for 1 min. The force at the end of this time was regarded as F60. During this time,
the variation in the force profiles was recorded and consequently analyzed. The percentage
SR (%SR) was calculated using Equation (1):

%SR =
F0 − F60

F0
× 100 (2)
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where %SR stands for percentage stress relaxation, F0 stands for peak force at 1 mm distance,
and F60 stands for the force at the end of the 1 min relaxation process.

The drug release from the bigels was studied in a dissolution apparatus (DS-8000,
LabIndia analytical Instruments Pvt. Ltd., Mumbai, India). The dissolution apparatus
was connected with a basket type (Type-I) sample holder attachment. The dissolution
flask was filled with 400 mL of phosphate buffer (pH 6.8, 37 ◦C). The phosphate buffer
solution was prepared by dissolving 28.20 g of disodium hydrogen phosphate and 11.45 g
of potassium dihydrogen phosphate in 1000 mL double distilled water. Then, 1 g of the
bigels was inserted into the basket. The basket was then rotated at a speed of 100 RPM.
Next, at a specified time period (5, 15, 30, 45, 60, 90, 120, 150, and 180 min), 5 mL of
the dissolution media was withdrawn for further analysis. The withdrawn dissolution
media was replaced with fresh dissolution media. Thereafter, at the end of the study, the
withdrawn dissolution media was analyzed in a UV-visible spectrometer (Shimadzu 3600
UV-VIS-NIR, Kyoto, Japan). The analysis was conducted at a wavelength of 290 nm to
determine the concentration of the drug released into the dissolution media. The UV-vis
spectra of the standard moxifloxacin HCI solution is compiled in Figure 8.

Figure 8. UV-vis spectra of the moxifloxacin HCI standard solutions.
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