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Introduction

The temporomandibular joint (TMJ) is a bilateral joint 
(synovial articulation) between the condyle (head of man-
dible) and part of skull (upper temporal bone). In addition 
to the above two skeletal structures, TMJ additionally con-
sists of lateral pterygoid muscle, articular disk, surrounding 
capsule, and three ligaments (sphenomandibular, temporo-
mandibular, and stylomandibular ligament) from front to 
back in a sagittal plane. The surrounding capsule consists 
of a dense fibrous membrane and is filled with synovial 
fluid, providing nutrition for the avascular central area of 
the disk, lubricating during opening and closing of mouth, 
and providing a space for therapeutic molecules used to 
cure diseases.1–3 Because of the biconcave shape of the 
articular disk, the central area of TMJ lacks blood and nerve 
innervation, inflammatory-associated pain or swelling is 
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from the peripheral region which is full of blood vessels 
and nerves.

Temporomandibular joint disorder (TMD), also known 
as myofascial pain syndrome (MPS), is a general term to 
describe pain and malfunction of the masticatory actions. 
The cause of the onset of TMD is poorly understood but 
considered from multiple reasons of psychosocial, habitu-
ally occlusal, mentally, genetic, or hormonal factors.4 
Although TMD is not life-threatening, it can be critical to 
the quality of life5,6 because it becomes prevalent even in 
young generations, chronic, irreversible, and usually diffi-
cult to manage, leading to increasing number of TMD 
patients and undesirable effects on patients’ professional 
and social lives.7,8 The most common symptom of TMD is 
acute or chronic pain, followed by restricted mandibular 
movement and noises during jaw movement, leading to pro-
gressive TMJ degeneration and limitation of talking, chew-
ing, and other basic daily mouth activities.9 Interestingly, 
unlike other degenerative joint diseases such as arthritis 
which are more common in the elderly, TMD even affects 
up to one-third of adolescents and young adults.

TMD is generally classified into three categories accord-
ing to the symptoms: myofascial pain, internal derangement 

of the joint with/without reduction, and inflammatory joint 
disease. Conventional treatment aims at decreasing hyper-
tonic muscles and increasing TMJ mobility. Based on this, 
current clinical treatments (Figure 1) are divided into four 
groups: noninvasive, minimally invasive, invasive, and allo-
plastic replacement. The first stage of clinical treatment for 
TMD is noninvasive therapy which includes physical treat-
ment using low-level laser or ultrasonic device, behavioral 
interventions often with occlusal splint, or pharmacologic 
approaches (i.e. taking analgesics, anti-depressants, muscle 
relaxant, or non-steroidal anti-inflammatory drugs 
(NSAIDs)). However, above conventional noninvasive 
treatment is often limited to regenerate severe or chronic 
TMD and systemic side effects such as gastrointestinal tox-
icity, cardiovascular risk, and anaphylaxis, disorders to the 
other tissues can be raised especially from oral administra-
tion in a dose-dependent manner.10

Second, minimally invasive therapies include the injec-
tions and arthrocentesis where a needle is used to flush and 
drain the joint space for removing inflammatory mediators 
and enhancing lubrication. The intra-articular injection is 
considered as a more promising method to deliver drugs or 
biomolecules to the target site, leading to a reduction of the 

Figure 1.  (a) Schematic image of the anatomical structure of temporomandibular joint (TMJ) and the most common target sites for 
treating temporomandibular disorder (TMD). The image shows components of normal joint anatomy, including the articular disk of 
TMJ, mandibular fossa, the head of the mandibular condyle, lateral pterygoid muscle, and TMJ capsule enclosing the disk. (b) TMD 
morphology; the head of the mandibular condyle and the articular disk lose their structures and functions. Intra-articular injection: 
injection with syringe and needle can deliver proper biomolecules into TMJ capsule for treating TMD.
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risk of the systemic side effects.11 Currently, there are sev-
eral injectable drugs such as NSAIDs, corticosteroid (glu-
cocorticoids, triamcinolone acetonide, and dexamethasone), 
platelet-rich plasma (PRP) from blood and hyaluronic acid 
(HA) which relieve pain and improve maximal incisal 
opening.12,13 However, the side effects of injected (bio)
molecules, including dizziness, dry mouth, and possible 
drug dependency are considered limitations of the proce-
dures.4,14–16 Thus, biomaterial-based carriers have been 
developed mainly to deliver the drugs controllably into the 
specific anatomical area.17–23

Surgical treatments of invasive intervention or alloplastic 
replacement are also considered when advanced or chroni-
cally degenerative TMD is present and mouth opening is 
extremely limited.24 They are quite effective in cleaning up 
inflammatory granular tissues and their degenerative 
cytokines, but they need high demand of cost and time. In 
case of alloplastic replacement, unpredictable outcomes are 
sometimes produced from uncontrollable inflammation and 
immune responses after replacement surgery using the artifi-
cial disk. Thus, minimally invasive intra-articular injection is 
highlighted as a promising general treatment even in severe 
TMD patients due to their high efficiency of regeneration 
and relatively easy procedure according to the development 
of stem cell biomaterial–based tissue regeneration.

There are many successful in vitro or in vivo studies on 
intra-articular injections to TMD patients using nano/
micro biomaterials, (stem) cells, drugs, or their composite 
(Table 1). However, the clinical outcomes of intra-articular 
injections to TMD patients are by far still controversial 
because reports have revealed diverse outcomes from 
“therapeutic” to “degenerating.”31,56 In addition, like other 
inflammatory disease in the joint area (i.e. osteoarthritis), 
no agents are available to reverse the ongoing TMD to a 
healthy state. Current clinical therapies using intra-articu-
lar injections are only effective in pain relief at an early 
stage of disease but fail to alleviate severe or chronic pain 
lacking regenerative potential.57

To overcome the limitations of current intra-articular 
injections, nano and microscale biomaterials with or with-
out (stem) cells or curable molecules (RNA, proteins, drugs, 
and macromolecules) have been introduced. They can effec-
tively relieve pain and symptoms for long time, reduce sys-
temic side effects of injections and tissue damages, control 
the release of drug and macromolecules delivered, and in 
turn increase regeneration process.58 This review discusses 
current therapeutic strategies of using injectable biomate-
rial-based delivery carriers for the treatment of TMD.

Delivery vehicles of therapeutic 
molecules

Delivering drugs through oral administration to the targeted 
site takes long (1–5 h) and leads to the decrease of drug effi-
ciency due to their gastrointestinal adsorption and systemic 

circulation.59,60 Corticosteroid injection has a palliative (not 
curative) effect, is only used in severe acute pain, and gener-
ally for limited doses only. The effect of steroid on the disk is 
widely reported to irritate. Therefore, intra-articular injection 
of (therapeutic) biomaterials (i.e. HA and corticosteroids) 
has been widely used in clinics because high drug concentra-
tions are possibly delivered with minimal side effects com-
pared with systemic administration. However, rapid 
clearance of the injected biomolecules requires repeated 
injections, which causes complications like infection, fibrous 
tissue formation, and consequent joint damage.52,56 Such 
obstacles are possibly tackled through the use of nano and 
microparticles that can deliver therapeutic molecules, such 
as anti-inflammatory drugs, steroids and genes, and release 
them in a sustained manner. In addition, nano and micropar-
ticles interact with cells at the intra and extracellular space 
depending on their size (Figure 2). Thus, another strategy to 
enhancing regeneration of TMD is through regulating the 
interaction between (newly conjugated or residual) cells and 
injected intra-articular biomaterial.

Nanoparticle-based drug delivery system

Nanoparticles have been widely used in biomedical appli-
cations due to their unique properties such as large sur-
face-to-mass ratio, quantum properties, and ability to load 
and deliver small-sized biomolecules (proteins and 
drugs).11,17 Nanoparticles are solid or colloidal particles 
with sizes ranging from tens to hundreds of nanometers.17 
Particle size is a typical factor that determines toxicity, 
delivery capability, and in vivo distribution. Nanoparticles 
readily enter into cells by an endocytosis mechanism. 
Thus, they can deliver small-sized biomolecules intracel-
lularly to control cell fate.61,62 Also, degraded products (i.e. 
ions) of nanoparticles can sometimes be therapeutic, exert-
ing co-delivery functions with drugs (i.e. ion-drug).62

Biodegradable synthetic (poly (lactic-co-glycolic acid) 
(PLGA) and poly lactic acid (PLA) or natural polymers (chi-
tosan and gelatin) are mainly developed into nanoparticles. 
For example, drugs for antinociceptive or anti-inflammatory 
effects were incorporated into biodegradable synthetic nano-
particles for controlled delivery, which revealed high antino-
ciceptive activity and healing process.63 HA has also been 
delivered for anti-inflammatory action. HA has the binding 
ability to CD44 receptor expressed on the surface of chondro-
cytes which are the major target cell source for regeneration 
of TMJ.30 When HA moiety was coated on the surface of the 
biodegradable polymer while incorporating therapeutic 
drugs, the targeted delivery to chondrocytes was successful to 
elicit therapeutic effects.30,64 A direct use of protein moiety to 
target cell type was also made with interleukin-1 receptor 
antagonist (IL-1Ra), which targeted synoviocyte cells in TMJ 
capsule.39 The nanoparticles increased the retention time of 
IL-1Ra in rat joint over 14 days and inhibited IL-1-mediated 
inflammatory signaling through IL-1Ra and IL-1 receptor 
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biding. Furthermore, the non-viral gene was delivered via 
chitosan/HA nanoparticles (100–250 nm), successfully trans-
ferring an exogenous gene (~20% for 5 days) into primary 
chondrocytes for protecting degradation of the cartilage.36 
Collectively, the nanoparticle-based delivery system seems to 
be suitable for delivering various types of biomolecules (i.e. 
drugs and genes), releasing them in a controlled manner and 
even targeting specific cell sources (chondrocytes or synovio-
cytes) to regenerate TMD.

Recently, mechanical stress or inflammatory reaction in 
articular tissue is reported to increase reactive oxygen spe-
cies (ROS) level, leading to cartilage destruction in 
TMJ.65,66 Therefore, the control of ROS generation during 
inflammation is highlighted as one of the strategies to pre-
vent cartilage and bone degradation in TMJ. Antioxidant 
biomolecules or antioxidant nanoparticles have recently 
been suggested as potential options for such purposes.67,68 
However, the underlying mechanism is still not clearly 
understood and further researches regarding the roles of 
antioxidant and how to combine this with drug delivery 
strategies aforementioned remain. Moreover, there are 
some challenges for the clinical uses of nanoparticles 
developed so far, such as biocompatibility for Food and 
Drug Administration (FDA) approval and limited physio-
chemical properties associated with agglomeration, which 
need further improvement.69–71

Microparticle-based drug delivery system

Microparticles have three-dimensional (3D) spherical 
shapes with sizes of ten to hundreds of micrometers that 
are suitable to deliver large-sized drugs or biomolecules. 
In particular, microparticles can be tuned to deliver cells 

within macro/micro-porous inner structure or onto the sur-
face, enabling co-delivery of cells and biomolecules (or 
drugs).72,73 Because of micron-scale, when microparticles 
contact with cells, they interact mainly extracellularly, 
unlike the intracellular interaction of nanoparticles. 
Therefore, intra-articular injected microparticles contact 
directly with the joint cavity and avoid from the mac-
rophage engulf and removal.74,75 This allows microparti-
cles to retain in target regions while releasing therapeutic 
molecules to target cells (i.e. synovial lining cells or chon-
drocyte). One exemplar study showed that intra-articular 
injection of dexamethasone-loaded poly (d, l-lactic acid) 
(PDLA) microspheres (size range, 40–110 µm) in healthy 
rabbits exhibited no drug detection in the serum over 24 h, 
suggesting most of the drug successfully localized in the 
synovial cavity.76 Small (1–20 µm) biodegradable micro-
spheres presented faster degradation in rabbit joints than 
large microparticles (35–105 µm), suggesting the impor-
tance of microparticle size for TMD applications.77

Microparticles are a good candidate due to their high 
loading capacity of biomolecules and controllable release 
benefited from different morphologies (bulk, porous, and 
hollow, etc.) or functionalization. Typical composition of 
microparticles varies from synthetic (polycaprolactone 
(PCL), poly(l-lactide) (PLLA), PLGA, poly (propylene 
sulfide) (PPS), and (polyphosphazene based)56 to natural 
polymers (collagen, gelatin, alginate, HA, and chitosan).78 
Common drugs loaded in microparticles are steroidal (i.e. 
methylprednisolone and dexamethasone) and NSAIDs 
(i.e. ibuprofen, flurbiprofen, lornoxicam, and brucine). 
Besides, anti-inflammatory small interfering RNA 
(siRNA) was also used with PLGA microspheres function-
alized with poly(ethylenimine) (PEI), and the system 

Figure 2.  Nano and microparticles have the potential to deliver various biomolecules and drugs and act intracellularly or 
extracellularly depending on the particle size.



Dashnyam et al.	 7

demonstrated a controllable release of siRNA, conse-
quently reducing inflammation in TMJ.40,43

Compared with solid microparticles, hydrogel micro-
particles are often preferred because they can provide 
extracellular matrix (ECM) mimicking native tissues.79 
Alginate-based hydrogel microparticles were first intro-
duced due to their good biocompatibility and easy process 
to fabricate.80,81 Other biopolymers such as PLGA, HA, and 
PLLA were also developed into hydrogel microparticles. 
Bédouet et al.44 designed nondegradable or degradable pol-
yethylene glycol (PEG) hydrogel depending on the type of 
cross-linker to evaluate degradability and the consequent 
inflammatory response when delivered to the shoulder 
joint. After 4 weeks’ implantation in sheep shoulder joint, 
histological analysis presented degradable PEG hydrogel 
microparticles cross-linked by (PLGA–tri ethylene glycol 
(TEG)–PLGA) dimethacrylate indicated less inflammatory 
cells around compared with nondegradable hydrogel con-
trol. The covalent bond between drug and polymer can sus-
tain the releases. Degradable PLGA-PEG (40–100 μm) 
hydrogel microparticles were functionalized with a meth-
acrylic derivative of ibuprofen drug using a degradable 
cross-linker oligo(ethylene-glycol) methacrylate and 
poly(PLGA-PEG) dimethacrylate. Ibuprofen loaded in 
PEG hydrogel microparticles by a covalent bond showed 
reduced burst release and more sustained release up to 
months, resulting in the enhanced preservation of the anti-
inflammatory response and cyclooxygenase-inhibition.45,82

Furthermore, microparticles have the potential to 
deliver or tune stem cells due to their large surface area 
and tailored 3D architecture where cells adhere and dif-
ferentiate into specific cell lineage. The microparticles 
also release biomolecules while the cell-produced ECM 
can mimic host environment for less anti-inflammatory 
and enhanced healing process.73,83 Therefore, microparti-
cles as cell carriers have been used also in TMD area, 
which described in the following section.

However, some challenges still exist for the clinical 
applications of microparticles. For instance, large diameter 
gauge for injection can induce pain during procedures, and 
limited amounts of microparticles for small articular space 
can restrict therapeutic functionality.11,84 Also, the in vivo 
biocompatibility of microparticles associated with their 
derivatives/byproducts and the possible fragmentation 
makes it difficult to get the FDA approval.19,53,85

Intra-articular stem cell delivery

Stem cells self-renew and differentiate to target cells, and 
produce ECMs that are favorable for regenerative pro-
cess.86 Therefore, stem cell–based therapies have the 
potential to bring substantial benefit to patients suffering a 
wide range of diseases and injuries.87 Many studies have 
tried for different tissues including heart, bone, tendon, 
and neuron, and some stem cell therapies were FDA-
approved for clinical uses.88 Given the potential of this 

strategy, a lot of effort has also been dedicated to TMD 
through intra-articular delivery with or without 
biomaterials.

The majority of TMJ structures derive from mesenchy-
mal cells during morphogenesis. Mesenchymal stem cells 
(MSCs) maintain physiologically for tissue remodeling/
turnover and, upon injury or disease, differentiate into tar-
get tissue including cartilage, bone, ligaments, and muscu-
lature to start tissue repair/regeneration. MSCs isolated 
from synovial fluid in TMJ have markers typically includ-
ing CD44, CD73, CD90, and CD 105 but not the hemat-
opoietic stem cells markers such as CD34 and CD45.89 
Among the stem cell sources, MSCs from TMJ, knee 
joints, bone marrow, adipose tissue, and dental pulp has 
been widely used for intra-articular injections.54,55 More 
recently, MSCs differentiated from induced pluripotent 
stem cells (iPSCs) were suggested as a candidate cell 
source due to the noninvasive cell collection (i.e. from 
skin) and unlimited self-renewal capacity of iPSCs.90 Of 
course, synovium-derived MSCs displayed superiority in 
proliferation and differentiation to chondrocytes compared 
with MSCs from other tissues, supporting the beneficial 
use of these cells for TMJ repair and regeneration.91,92 Cell 
density also matters in the tissue regeneration of TMJ. An 
unsatisfactory tissue maturation was made using a low 
number of pre-differentiated MSCs (5 × 106 cells/mL) in 
immune-deficient mice, whereas tissue maturation and 
osteochondral integration were made using high number 
of pre-differentiated MSCs (20 × 106 cells/mL).93,94 At pre-
sent, clinical study to optimize MSCs number for TMJ 
regeneration is under investigation, while intra-articular 
injection for treatment of osteoarthritis of the knee was 
recently made clinically. The low-dose (1.0 × 107 cells), 
mid-dose (5.0 × 107), and high-dose (1.0 × 108) groups, the 
high-dose of adipose tissue derived MSCs into the osteoar-
thritic knee, improved function with regeneration of hya-
line-like articular cartilage, and reduced pain of the knee 
joint without causing adverse events.95

However, acute donor-cell death within a short period 
after cell delivery remains a critical hurdle for clinical 
translation. Biomaterials including micro/nanoparticles 
offer a potential vehicle for an effective delivery and main-
taining cells close to implanted tissue while driving cellu-
lar fate into a target lineage (Figure 3).96–98 Recently, the in 
vivo differentiation or survival of stem cell grafts has been 
proposed by the controlled release of biomolecules conju-
gated to injected micro/nanoparticles; growth factors (i.e. 
betamethasone dipropionate (BMP)-2, basic fibroblast 
growth factor (bFGF), or transforming growth factor beta 
(TGF-β)) and drugs (i.e. dexamethasone, corticosteroid, or 
other single chemicals).99 In another approach, pre-differ-
entiated MSCs into certain cell lineages (chondrocyte or 
osteoblast) by in vitro culture with micro/nanoparticles 
were utilized for the advanced MSCs delivery strategy due 
to the enhanced biological interaction of pre-differentiated 
MSCs to a target tissue. As to the type of other carriers 
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such as 3D scaffolds and their use as stem cell delivery for 
TMD, readers are recommended to a reference.7

For intra-articular delivery of stem cells, typical hydro-
gel-based microparticles were initially utilized, which 
allow injection after gelation. However, the cell-loading 
capacity to conventional hydrogels is limited because 
incorporation of stem cells increases viscosity and thereby 
leads to decrease of injectability of mixture and stem cells 
delivered. To enhance loading capacity of stem cells, in 
situ forming hydrogels have been developed and evaluated 
to encapsulate stem cells more.

In situ forming hydrogels were revealed to encapsu-
late stem cells more and even homogeneously due to 
their solution state when injected, which become gel in 
body temperature (~37°C) or normal pH conditions 
(~7).100 Poly(N-isopropylacrylamide) (PNIPAM), poly-
esters, chitosan, polyphosphazenes, polycarbonates, 
polycyanoacrylates, polyorthoesters, poly(ethylene 
glycol)-b-poly(l-alanine), polypeptides, and their com-
posite hydrogels have been developed.101,102 When the 
thermo-sensitive in situ forming gels can deliver bio-
molecules for chondrocyte targeting, the effects are syn-
ergized. For example, chitosan-based thermo-sensitive 
hydrogel incorporated with HA and beta-glycerophos-
phate was used for intra-articular injectable vehicles to 
the TMJ in a rabbit model. The hydrogel could release 
therapeutic biomolecules (HA and beta-glycerophos-
phate) with improved stability.52 Besides, on demand 
gelation from external stimuli, including magnetism or 

heating over body temperature (~40°C), is another prom-
ising tool to improve stem cells delivery/differentiation 
potential from hydrogel-based microparticles.103 These 
findings highlight that the intra-articular injected degra-
dable hydrogel microparticles stay in synovial cavity up 
to a few months while delivering biomolecules to the 
inflamed joint and providing ECM structure for TMJ 
regeneration, not scavenged by macrophages.

In particular, the hydrogels can be designed to have 
chemical (ECM composition; for example, collagen type 1 
and glycosaminoglycans (GAGs)) or physical properties 
(e.g. stiffness and stress relaxation) that can mimic the 
TMJ tissues.58,104 Among them, the static stiffness value 
has been a key factor in hydrogels until the emergence of 
stress relaxation, a time-dependent stress change.105 This 
stress relaxation mimics the viscoelastic responses of 
ECM in the target tissue, determining cellular mecha-
notransduction and consequent ECM-integrin networks 
remodeling. Recently, the stress relaxation effects were 
revealed on chondrocytes behaviors; the chondrocytes in 
rapidly relaxing hydrogels could produce cartilage ECM 
significantly, whereas those in slowly relaxing hydrogels 
suffered limited volume expansion due to persistent elastic 
stresses from the surrounding matrix, leading to a degen-
eration of cartilage.106 Taken some of the recent key find-
ings related to tunable physical/chemical properties, in situ 
forming hydrogels with TMJ mimic stiffness and stress 
relaxation may be promising for future stem cell delivery 
and regeneration of TMD.

Figure 3.  Intra-articular stem cell delivery with nano/microparticles for accelerating the regeneration of damaged TMJ.
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With the advance in nanotechnology, clinicians expe-
rience the significant therapeutic potential of stem cells 
through nanoparticle delivery, and at the same time faces 
the need to reduce harmful side effects related to nano-
particles.84,107 Nanoparticles are biomedical materials 
developed to host and deliver therapeutic and diagnostic 
molecules, ranging from drugs, peptides, proteins, 
genetic molecules, ions, or their combination, intracel-
lularly or extracellularly.62,107 Especially, when nanopar-
ticles are co-delivered with stem cells through an 
intra-articular injection, they internalize by endocytosis 
and the loaded therapeutic molecules intracellularly 
functioning are efficiently delivered to specific cellular 
components such as mitochondria and nucleus, possibly 
accelerating their carrier performance and the biological 
fate for TMJ regeneration.108 Nanoparticles can also be 
incorporated into hydrogel-based microparticles that 
support and deliver stem cells. Such a combinatory 
approach remains as a promising future study for the 
therapeutic treatment of TMD through biomaterial-based 
intra-articular delivery.

Concluding remarks

TMD is considered one of the complex joint diseases caused 
by inflammation and irreversible degeneration, degrading 
the quality of life associated with malfunctions in chewing 
and opening mouth. Intra-articular injection, albeit high-
lighted as a minimally invasive clinical treatment, still suf-
fers low regenerative potential of single injection or 
complications from the repeated injection. With the develop-
ment of injectable biomaterials (nano/microparticles and 
hydrogels), the intra-articular injection holds great promise 
for therapeutic roles in TMD with the effective and con-
trolled delivery of drugs and stem cells. More in vitro and 
animal studies to optimize the compositions and formula-
tions of injections will gain clinical acceptance in the near 
future.
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