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Abstract

Major depressive disorder (MDD) is a serious mental illness characterized by dysfunc-

tional connectivity among distributed brain regions. Previous connectome studies

based on functional magnetic resonance imaging (fMRI) have focused primarily on

undirected functional connectivity and existing directed effective connectivity

(EC) studies concerned mostly task-based fMRI and incorporated only a few brain

regions. To overcome these limitations and understand whether MDD is mediated by

within-network or between-network connectivities, we applied spectral dynamic

causal modeling to estimate EC of a large-scale network with 27 regions of interests

from four distributed functional brain networks (default mode, executive control,

salience, and limbic networks), based on large sample-size resting-state fMRI con-

sisting of 100 healthy subjects and 100 individuals with first-episode drug-naive

MDD. We applied a newly developed parametric empirical Bayes (PEB) framework to

test specific hypotheses. We showed that MDD altered EC both within and between

high-order functional networks. Specifically, MDD is associated with reduced excit-

atory connectivity mainly within the default mode network (DMN), and between the

default mode and salience networks. In addition, the network-averaged inhibitory EC

within the DMN was found to be significantly elevated in the MDD. The coexistence

of the reduced excitatory but increased inhibitory causal connections within the

DMNs may underlie disrupted self-recognition and emotional control in MDD.
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Overall, this study emphasizes that MDD could be associated with altered causal

interactions among high-order brain functional networks.
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brain networks, drug-naive, dynamic causal modeling, effective connectivity, first-episode, major

depressive disorder, parametric empirical Bayes, resting-state fMRI

1 | INTRODUCTION

Major depressive disorder (MDD) is a common but devastating mood

disorder that causes severe personal distress and tremendous cost to

society. It is the second leading cause of disability worldwide and

affects 4.7% of the global population (Ferrari et al., 2013). Despite

decades of extensive research, the etiology and pathophysiology of

MDD remain not well understood. Converging neuroimaging studies

based on blood-oxygen-level-dependent functional magnetic reso-

nance imaging (fMRI) have revealed disrupted functional connectivity

(FC) in the resting-state brain networks including the default mode

network (DMN), executive control network (EXE), and salience net-

work (SAL; Brakowski et al., 2017; Dutta, McKie, & Deakin, 2014;

Menon, 2011; Mulders, van Eijndhoven, Schene, Beckmann, &

Tendolkar, 2015; Zheng et al., 2015). For example, MDD was found

to be associated with increased FC within the anterior DMN (Zhu

et al., 2012) and between the SAL and anterior DMN (Manoliu et al.,

2014), and with decreased connectivity between the DMN and EXE

(Manoliu et al., 2014). In addition to these “core” triple networks,

altered interactions have also been observed in other FC links such as

those in the frontolimbic networks (Greicius et al., 2007; Pezawas

et al., 2005; Zhong, Pu, & Yao, 2016). It is now generally accepted that

MDD can be characterized as a disorder with dysfunctional connec-

tions among various brain regions and networks (Drysdale et al.,

2017; Mulders et al., 2015; Yan et al., 2019).

However, most existing fMRI studies of MDD focused on undi-

rected synchronizations (i.e., FC) rather than causal influence (directed

connectivity) among the neural populations that give rise to the

regional fMRI signals (Friston, 2011). Among many other metrics (such

as Granger causality analysis, structure equation modeling, psycho-

physiological interaction), dynamic causal modeling (DCM) is a well-

established and popular method allowing for modeling such a causal

influence (a.k.a. effective connectivity or EC) among different brain

regions (Friston, Harrison, & Penny, 2003), which is well suited for

MDD study. As the conventional deterministic DCM applies to task-

based fMRI only, two variations of DCM have been developed to esti-

mate EC from resting-state fMRI (rs-fMRI), that is, stochastic DCM

(Li et al., 2011) and spectral DCM (Friston, Kahan, Biswal, & Razi,

2014). Stochastic DCM differs from the conventional deterministic

DCM in that it models endogenous or random fluctuations in hidden

neuronal and physiological states (Li et al., 2011). Because stochastic

DCM estimates both EC and hidden neuronal fluctuations, it is com-

putationally intensive and consequently, can only model a limited

number of brain regions (Razi et al., 2017). Spectral DCM, on the

other hand, estimates the parameters of cross-spectral density of neu-

ronal fluctuations rather than the time-varying fluctuations in neuro-

nal states (Friston et al., 2014). Because spectral DCM does not

estimate fluctuations on hidden states, it is much more stable and

computationally efficient (Friston et al., 2014). The computational effi-

ciency of spectral DCM is further increased by using FC as prior con-

straints, making it ideally suited to model large-scale EC networks

(Razi et al., 2017).

The majority of DCM studies on MDD have used task-based fMRI

yet there are still a handful of reports with rs-fMRI (Hyett, Breakspear,

Friston, Guo, & Parker, 2015; Kandilarova, Stoyanov, Kostianev, &

Specht, 2018; Li et al., 2017). Hyett et al. (2015) used stochastic DCM to

infer spontaneous interactions among five canonical resting-state net-

works (DMN, EXE, bilateral anterior insula, and left and right

frontoparietal attention networks) from 16 participants with melancholia,

16 with nonmelancholic depression, and 16 healthy individuals. It was

observed that melancholia was characterized by reduced EC from the

anterior insula to right frontoparietal network compared with

nonmelancholic depressive subjects and from the anterior insula to EXE

in comparison with normal controls (NCs). Li et al. (2017) examined

resting-state EC among four regions of the DMN using spectral DCM

with 27 MDD patients and 27 healthy controls. The study revealed

decreased EC from the left parietal cortex to other DMN regions in the

unmedicated patients. More recently, Kandilarova et al. (2018) employed

spectral DCM to study EC difference among eight brain regions on a sin-

gle brain hemisphere between a group of 20 healthy subjects and

20 medicated patients with either MDD or bipolar disorder. They found

that depressive patients showed a significantly reduced EC from the

anterior insula to the middle frontal gyrus (i.e., dorsolateral prefrontal cor-

tex) and increased EC from the amygdala to the anterior insula.

Although these rs-fMRI studies were able to characterize abnormal

EC in resting-state brain networks in MDD, they included a limited num-

ber (<10) of brain regions and relatively small (<30 subjects for each

group) sample sizes. Such limitations reduced statistical power and hin-

dered a comprehensive understanding of the large-scale EC changes in

MDD. In addition, new statistical methods have recently been developed

for network analysis and DCM, which offers more power, improved sen-

sitivity, and hypothesis testing capability in MDD study. Parametric

empirical Bayes (PEB) is a two-stage empirical Bayesian model dedicated

to DCM studies, which considers both the mean and uncertainty (vari-

ance) of the EC estimation to infer group differences. PEB was recently

used in DCM studies, showing increased sensitivity and robustness
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(Friston et al., 2016; Zhou et al., 2018). In particular, by utilizing Bayesian

Model Comparison implemented in the PEB framework, one can test dif-

ferent competing hypotheses to reveal the best model.

To overcome the aforementioned limitations of the previous DCM

studies and take full advantage of spectral DCM in handling large-scale EC

networks, we conducted an EC study and identified abnormal causal links

as potential biomarkers of MDD based on rs-fMRI data collected from a

relatively large sample size (100 [NC] subjects and 100 individuals with

first-episode drug-naive [FEDN] MDD, to rule out the possible con-

founding effect of medication). Specifically, we built a relatively large-scale

DCM model containing 27 regions of interests (ROIs) from four probably

involved resting-state networks (DMN, EXE, SAL, and limbic [LIM] net-

works) using the spectral DCM approach to examine whether MDD alters

brain EC and, if so, whether the altered ECs are mainly within-network

and/or between-network ECs. To achieve this goal, we first applied

network-based statistics (NBS) to detect significant abnormal EC links in

MDD. Based on the NBS results, we then formed specific hypotheses, that

is, the test within- and/or between-network EC changes in MDD and

tested them by using the Bayesian Model Comparison implemented in the

PEB framework. Lastly, we performed an automatic search over the

reduced PEB models to validate the model comparing results. Results indi-

cated that MDD altered EC both within and between high-order functional

networks. Specifically, at the individual connection level, MDD was mainly

characterized by reduced excitatory EC within the DMN and between the

DMN and the SAL. At the network level, the inhibitory influence within

the DMN was abnormally elevated in the MDD. Overall, our study offers

novel insights into the pathophysiological mechanisms of MDD.

2 | METHODS

2.1 | Participants

A total of 100 FEDN MDD (for convenience, we call them FEDN from

now on) patients and 100 NCs were selected from our MDD database

(see later for the selection criteria). The demographic and clinical char-

acteristics of participants are shown in Table 1. The FEDN patients

were recruited from the psychological counseling outpatient of the First

Affiliated Hospital of Guangzhou University of Chinese Medicine,

Guangdong, China from September 2015 to June 2018. After an initial

screening using a 17-item Hamilton Rating Scale for Depression

(HDRS-17) with a total score larger than 18 (Hamilton, 1967), two pro-

fessional psychologists who have more than 10 years experience sepa-

rately carried out the MDD diagnosis according to the Diagnostic and

Statistical Manual (DSM-5, American Psychiatric Association, 2013).

Only the patients who were diagnosed with FEDN by both of the psy-

chologists would be recruited. The inclusion criteria of FEDN are as fol-

lows: (a) aged between 18 and 55 years old, (b) right-handed native

Chinese speaker, (c) firstly diagnosed with MDD and had no history of

any neurological illness or any other forms of psychiatric disorders, and

(d) head motion smaller than 2 mm of translation or 2� of rotation in any

direction during the rs-fMRI scan (see Section 2.3). Exclusion criteria

included (a) a history of significant medical illness, (b) alcohol abuse

(a total score ≥ 8 in Alcohol Use Disorders Identification Test [Saunders,

Aasland, Babor, de la Fuente, & Grant, 1993]), and (c) contraindications

to MRI scan. A rough illness duration of each FEDN patient was self-

reported and recorded. NCs were enrolled locally at the same period of

time and were physically and mentally healthy based on their medical

history and the Mini-International Neuropsychiatric Interview (Sheehan

et al., 1998) as well as the total HDRS-17 score of less than 7. This study

was conducted in accordance with the Declaration of Helsinki. All partici-

pants provided written informed consent and the study was approved

by the local ethics committee.

2.2 | Image acquisition

MRI data were acquired using a 3.0-T GE Signa HDxt scanner with an

8-channel head-coil within 3 days of diagnosis. The participants were

instructed to close their eyes and refrain from thinking anything particular.

Two radiologists made consensus decisions that all participants were free

from visible brain abnormalities or any form of lesions based on thick-slice

axial T1- and T2-weighted images, as well as a T2-weighted fluid-

attenuated inversion recovery images. The rs-fMRI and three-dimensional

T1-weighted images (3D-T1WI) in the database have the following

parameters: repetition time (TR) / echo time (TE) = 2,000/30, flip

angle = 90�, matrix size = 64 × 64, and slice spacing = 1.0 mm for rs-

fMRI, and slice thickness = 1.0 mm, no slice gap, matrix = 256 × 256, field

of view = 256 mm for 3D-T1WI. Because the large-sample MDD data-

base construction took 4 years, there inevitably existed a few differences

in the rs-fMRI acquisition protocols, such as the field of view, slice thick-

ness, slice number, and total scanning time; to increase sample size,

TABLE 1 Demographic and clinical characteristics of participants

Characteristics FEDN (N = 100) NC (N = 100) t/χ2 p

Age (years) 29.46 ± 9.34a 29.59 ± 10.33 −0.09 .93b

Gender (F/M) 34/66 41/59 1.05 .31c

Education (years) 12.46 ± 3.22a 12.88 ± 2.77 −0.09 .32b

Duration (months) 8.64 ± 10.86a NA NA NA

HDRS-17 22.15 ± 3.18a NA NA NA

Abbreviations: FEDN, first-episode drug-naive major depressive disorder; HDRS-17, 17-item Hamilton Depression Rating Scale; NC, normal control.
aMean ± SD.
bThe p values were obtained by two-sample t test.
cThe p value was obtained by a chi-square test.
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datasets with two imaging protocols from the same center were used.

However, their influence on the ROI rs-fMRI time series was negligible.

2.3 | Image preprocessing

Image preprocessing was performed using SPM12 (www.fil.ion.ucl.ac.

uk/spm) and Data Processing Assistant for Resting-State fMRI

(DPARSF) version 2.3 (http://rfmri.org/DPARSF) as detailed previ-

ously (Yan & Zang, 2010). For each subject, 180 rs-fMRI volumes

were remained after removing the first five volumes. The remaining

images were corrected for slice acquisition timing and head motion.

Those with excessive head motion were not enrolled (see the inclu-

sion criteria above). The 3D-T1WI was used to guide rs-fMRI registra-

tion by using unified segment and Diffeomorphic Anatomical

Registration through Exponentiated Lie Algebra (DARTEL) in SPM12.

The rs-fMRI data were smoothed with a 6-mm full-width-at-half-

maximum Gaussian kernel, and further denoised by regressing out

several nuisance signals, including the Friston-24 head motion param-

eters and signals from cerebrospinal fluid and white matter, before lin-

ear detrending and temporal band-pass filtering (0.01–0.08 Hz).

2.4 | Spectral DCM

We specified a large DCM model with full connectivity consisting of

27 predefined ROIs (see the detailed ROI definition in Table 2) from four

distributed high-order cognitive function-related brain functional net-

works (DMN, EXE, SAL, and LIM) based on their vital role in MDD neuro-

pathology (Drysdale et al., 2017; Dutta et al., 2014; Menon, 2011). The

coordinates of the ROIs from the DMN, EXE, and SAL were adopted from

Raichle (2011) and those from the LIM network were taken from Dry-

sdale et al. (2017). Please note that we limited the network scale to only

27 ROIs as they are representative nodes in the four functional networks.

Compared to the previous small-scale DCM studies, an EC network with

27 nodes is already relatively large. Our method can be straightforwardly

applied to even larger scale EC networks with more computing resources.

After extracting rs-fMRI time series from these ROIs (each of them was a

sphere centering at the above coordinates with a radius of 5 mm), we

used spectral DCM (Friston et al., 2014; implemented by the

spm_dcm_fmri_csd routine in SPM12) to estimate pairwise EC among the

27 ROIs and constructed a directed and weighted graph (representing an

EC network) for each subject. The maximal number of iterations was set

to be 256 and all DCMs were converged within 256 iterations.

The theoretical foundation and optimization scheme of spectral

DCM have been well documented (Friston et al., 2014; Razi et al.,

2017; Razi, Kahan, Rees, & Friston, 2015). Here, we briefly recapitu-

lated the basics of spectral DCM for rs-fMRI built on the concept that

neuronal fluctuations are driven by intrinsic activity in the absence of

external inputs. The generative model of spectral DCM for rs-fMRI is

similar to the state-space model in the conventional DCM for task

fMRI (Friston et al., 2003) except adding a stochastic term and remov-

ing the modulatory component:

_x tð Þ= f x,u,θð Þ+ v tð Þ=Ax tð Þ+Cu tð Þ+ v tð Þ, ð1Þ

y tð Þ= h x,φð Þ+ e tð Þ, ð2Þ

TABLE 2 Names and MNI coordinates of 27 regions of interests included in the dynamic causal modeling

Region name Coordinates (in mm) Region name Coordinates (in mm)

DMN (default mode network) SAL (salience network)

1 Posterior cingulate cortex/Precuneus (PCC_D) 0 −52 7 15 Dorsal anterior cingulate cortex (dACC_S) 0 21 36

2 Medial prefrontal cortex (mPFC_D) −1 54 27 16 Left anterior PFC (L_aPFC_S) −35 45 30

3 Left lateral parietal cortex (L_lPar_D) −46 −66 30 17 Right anterior PFC (R_aPFC_S) 32 45 30

4 Right lateral parietal cortex (R_lPar_D) 49 −63 33 18 Left insula (L_Insula_S) −41 3 6

5 Left inferior temporal gyrus (L_IT_D) −61 −24 −9 19 Right insula (R_Insula_S) 41 3 6

6 Right inferior temporal gyrus (R_IT_D) 58 −24 −9 20 Left lateral parietal cortex (L_lPar_S) −62 −45 30

7 Medial dorsal thalamus (mdThal_D) 0 −12 9 21 Right lateral parietal cortex (R_lPar_S) 62 −45 30

8 Left posterior cerebellum (L_pCERE_D) −25 −81 −33 LIM (limbic network)

9 Right posterior cerebellum (R_pCERE_D) 25 −81 −33 22 Left subgenual anterior cingulate cortex

(L_sgACC_L)

−4 15 −11

EXE (executive control network) 23 Right subgenual anterior cingulate cortex

(R_sgACC_L)

4 15 −11

10 Dorsal medial PFC (dmPFC_E) 0 24 46 24 Left amygdala (L_Amyg_L) −19 −2 −21

11 Left anterior PFC (L_aPFC_E) −44 45 0 25 Right amygdala (R_Amyg_L) 19 −2 −21

12 Right anterior PFC (R_aPFC_E) 44 45 0 26 Left ventral hippocampus (L_vHPC_L) −27 −15 −18

13 Left superior parietal lobule (L_sPar_E) −50 −51 45 27 Right ventral hippocampus (R_vHPC_L) 27 −15 −18

14 Right superior parietal lobule (R_sPar_E) 50 −51 45

Note: The first letter in region name abbreviations (if available) indicates left or right, the last letter indicates network affiliation (D, DMN, E, EXE, S,

SAL, L, LIM).
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where x(t) are the hidden neuronal states for multiple brain regions, u

(t) represent any exogenous inputs that are usually absent in the

resting-state fMRI design, y(t) is the observed fMRI response, and v(t)

and e(t) represent endogenous fluctuations and measurement noises,

respectively. The matrix A denotes EC among different brain regions,

the matrix C represents the influence of exogenous inputs on neuro-

nal states, and θ and φ are the parameters of the neuronal model ({A,

C} � θ) and the hemodynamic response function h(x, φ), respectively.

Instead of inverting the stochastic model in the time domain

(i.e., stochastic DCM [Li et al., 2011]), spectral DCM converts the sto-

chastic model to a deterministic model by parameterizing the cross-

spectral density of neuronal fluctuations (Friston et al., 2014):

gv ωð Þ=V ωð ÞV ωð Þ* = αvω−βv , ð3Þ

ge ωð Þ= E ωð ÞE ωð Þ* = αeω−βe , ð4Þ

where V(ω) and E(ω) represent the Fourier transform of v(t) and e(t)

respectively, and the parameters αv/e and βv/e characterize the ampli-

tude and exponents of the spectral density of neural fluctuations. The

state-space model of spectral DCM can be transformed to the follow-

ing spectral representation:

Y ωð Þ=K ωð Þ �V ωð Þ+ E ωð Þ, ð5Þ

where K(ω) is the Fourier transform of κ(t), the system's first-order

Volterra kernel (Razi et al., 2015). The expected cross spectra of y(t)

can then be achieved as:

g y ω,ψð Þ=Y ωð ÞY ωð Þ* = K ωð Þj j2gv ωð Þ+ ge ωð Þ, ð6Þ

where ψ = {θ, φ, α, β} are unknown parameters of the deterministic

model that can be estimated using the standard Variational Laplace pro-

cedures (Friston, Mattout, Trujillo-Barreto, Ashburner, & Penny, 2007).

2.5 | NBS

After EC was estimated individually for all NC and FEDN subjects, the

EC parameters of the two groups were compared using NBS for the

directed graph to identify potential abnormal EC links in the FEDNs.

We used NBS as an exploratory method to detect abnormal EC links in

MDD and to develop hypotheses that can be tested (using a more tai-

lored method, PEB, see next section) due to its popularity in many

exploratory brain network studies (Alexander-Bloch, Raznahan,

Bullmore, & Giedd, 2013; Wang et al., 2013; Zalesky, Fornito, &

Bullmore, 2010; Zhang et al., 2011). Compared to the conventional sta-

tistical analysis methods (e.g., two-sample t test), NBS is desirable when

performing mass-univariate statistical tests on every connection in a

complex graph (Zalesky et al., 2010). The directed version of NBS is

based on the same principles as the conventional NBS in that they both

rely on finding the connected components. The main difference is that

a directed definition of a connected component is defined for the

directed version of the NBS, where a pair of nodes must be connected

by at least one path, regardless of the direction of the path. The NBS

analysis included the following steps (Zalesky et al., 2010). First, a two-

tailed two-sample t test was conducted on each connection (link) in the

EC network (first testing for NC < FEDN then NC > FEDN, with a p-

value of .025 as a threshold for each direction of comparisons). After

such linkwise thresholding, a set of suprathreshold connections were

identified. Second, topological clusters (if any) among the sup-

rathreshold connections were identified. In each topological cluster,

there was at least one path that connected all the involved nodes (all

the brain regions were interconnected). Third, a family-wise error rate

(FWER)-corrected p-value for each cluster was calculated using a per-

mutation test (conducted for 5,000 times; cluster-level threshold set at

p < .05). This is similar to the AlphaSim correction in the voxel-wise sta-

tistical analysis adopted by other toolboxes (e.g., SPM and AFNI

[https://afni.nimh.nih.gov/]). This statistical analysis method respects

the topology of the links, thus well-balancing Type-I and Type-II errors.

2.6 | PEB model

PEB is a between-subject hierarchical and empirical Bayesian model

that estimates the effects of group mean and group differences on

each EC link and it was specifically proposed for DCM studies (Friston

et al., 2016). PEB has been recently used to identify altered EC in a

small-scale DCM with nine ROIs (Zhou et al., 2018) and its applicabil-

ity to test specific hypotheses in large EC networks (>25 ROIs) was

evaluated in this study for the first time. The PEB model is character-

ized by the following equations (Friston et al., 2016):

yi =Γ
1ð Þ
i θ 1ð Þ
� �

+ ε 1ð Þ
i , ð7Þ

θ 1ð Þ =Γ 2ð Þ θ 2ð Þ
� �

+ ε 2ð Þ, ð8Þ

θ 2ð Þ = η+ ε 3ð Þ, ð9Þ

where yi is the observed fMRI data for subject i, Γ 1ð Þ
i is the subject i0

DCM with parameters θ(1), and ε 1ð Þ
i is the observation noise. The func-

tion Γ(2) is a second-level general linear model (GLM) with parameters

θ(2) plus between-subject variability ε(2). Finally, the second-level

parameters θ(2) is expressed in term of expected value η with residual

ε(3). In this study, we entered the ECs estimated by spectral DCM

approach into the second-level GLM and specified two covariates

(overall group mean and between-group difference) in the design

matrix. The parameters of the PEB model are estimated using the

standard variational Laplace procedures (for more details about the

estimation, see Friston et al., 2007 and Friston et al., 2016).

2.7 | Bayesian Model Comparison

After estimating the PEB model parameters for the fully connected

DCM, we tested specific hypotheses using Bayesian Model Comparison
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implemented in the PEB framework (Friston et al., 2016; Zeidman et al.,

2019b). It refers to the process of comparing the evidence of the full

GLM model with multiple reduced GLMs that have certain combina-

tions of parameters switched off (by fixing the prior expectation at

zero; Zeidman et al., 2019b). Such comparisons are very efficient since

the evidence and parameters of reduced PEB models can be derived

analytically from the full model using Bayesian Model Reduction

(Friston et al., 2016). We tested four competing hypotheses developed

based on the NBS results: (a) FEDN alters within-network connections

only; (b) FEDN alters between-network connections only; (c) FEDN

alters both within- and between-network connections; or (d) FEDN

alters no connections. As summarized in Table 5, each hypothesis con-

tained multiple reduced models that were defined based on the NBS

results. Bayesian Model Comparison then assigned a posterior probabil-

ity (evidence) to each of the candidate models (i.e., the probability of

obtaining a particular model given the data) by computing their respec-

tive free energy (Zeidman et al., 2019b).

Lastly, to confirm the Bayesian Model Comparison results, we

applied Bayesian Model Reduction to automatically remove redundant

EC links from the full PEB model that did not contribute to the model

evidence. Specifically, the algorithm implemented a greedy searching

over all the permutations of a small set of parameters (i.e., eight

parameters) whose removal produces the smallest reduction

(i.e., greatest increase) in model fitting (Friston & Penny, 2011). The

procedure was repeated until discarding any parameter starts to

decrease model evidence or there were no more new parameters to

add. After Bayesian Model Reduction, the best 256 reduced models

were combined by using Bayesian Model Averaging to account for

uncertainty about the underlying model.

To summarize our analysis pipeline, we first estimated EC among

the 27 predefined brain regions by using spectral DCM for all 200 sub-

jects (100 NCs and 100 FEDNs). We then applied NBS to identify

potentially abnormal EC links in FEDNs and formulated specific

hypotheses to test. Next, we took the estimated EC of the full DCM

for each subject to the group level and set up a GLM (PEB model) to

estimate the effects of group mean and diagnosis difference on each

EC link. By utilizing the Bayesian Model Comparison implemented in

the PEB framework, we compared multiple reduced models that

encoded different hypotheses for finding out the best model that

could explain the effect of diagnosis. Finally, we performed an auto-

matic search over the reduced PEB models to confirm the model com-

paring results.

2.8 | Data and code availability

Due to sensitive patient information, the fMRI data is protected by

the First Affiliated Hospital of Guangzhou University of Chinese Med-

icine and thus cannot be publicly available. However, upon direct

request, we will be able to share all our code for modeling large-scale

DCM for boosting future research and helping to assess the reproduc-

ibility of our findings.

3 | RESULTS

3.1 | Participants

There was no significant difference in age (p = .93, two-sample t test),

gender (p = .31, chi-square test), or education (p = .32, two-sample

t test) between NC and FEDN. The disease duration was 8.64

± 10.86 months, and the HDRS-17 score was 22.15 ± 3.18 for the

FEDNs (Table 1).

3.2 | NBS-based group difference in EC

The EC of all subjects was individually estimated using spectral DCM

approach (see Section 2). From the fully connected model, the EC

among the 27 ROIs was compared between the NCs and FEDNs. The

average EC matrices for NC and FEDN groups are shown in Figure 1a,

b, respectively. We observed that the pattern of the average EC was

quite similar between NC and FEDN with relatively higher EC within

each functional network compared with internetwork connectivity. In

addition, there was strong self-inhibition of each brain region indi-

cated by the dark blue color along the diagonal (Figure 1a,b; note that

we converted the estimated self-connection value to units of Hz by

multiplying a default value of −0.5 Hz; Zeidman et al., 2019a). The dif-

ference in average EC between the NCs and FEDNs (NC–FEDN) is

shown in Figure 1c where most EC links were weaker in FEDN than

NC. Figure 1d shows the t values from the one-tailed two-sample

t test for each EC link, with NBS-derived, significant group differences

highlighted in red boxes (p < .05 corrected). All these group differ-

ences indicated that FEDN had significantly weaker EC compared to

NC. To further evaluate the possible influence of gender, age, and dif-

ferent imaging parameters on the group comparison results, we con-

ducted another two-sample t test with gender, age, and imaging

protocol information regressed out; the significant cluster identified

by the NBS remained almost the same (Supporting Information

Figure S1).

The averaged EC strength at the links with significant group differ-

ences between NC and FEDN is shown in Table 3. The significant

group differences involved 20 ROIs, most of them located in the

DMN and SAL (70%, 14/20). The group differences also involved

31 EC links, most of which lied within the DMN (29%) as well as

reciprocally between the DMN and SAL (DMN ! SAL: 19.4%;

SAL ! DMN: 22.6%; Figure 2a). The remaining small percentage of

EC links was distributed between the SAL and EXE (SAL ! EXE:

9.7%), DMN and LIM (DMN ! LIM: 6.5%; LIM ! DMN: 9.7%), and

within the EXE network (3.2%; Figure 2a). In addition, of the 31 EC

links, a majority (77.4%, 24/31) maintained excitatory for both NCs

and FEDNs, while 19.4% (6/31) switched from excitatory in NC to

inhibitory in FEDN and only one (3.2%, 1/31) remained inhibitory for

both groups (Figure 2b). For the EC links that remained excitatory or

switched from excitatory to inhibitory, the mean absolute EC dropped

more than 50% (excitatory/excitatory: from 0.079 to 0.036; excit-

atory/inhibitory: from 0.041 to −0.015; Figure 2c). By comparison, for

the EC link that maintained inhibitory (inhibitory/inhibitory), the EC
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increased a lot, from −0.002 to −0.05 (Figure 2c). Here, a more nega-

tive EC corresponded to stronger inhibition strength. From the group

difference result (excitatory/excitatory, the largest category in

Figure 2b), the average excitatory EC between NC and FEDN among

the four functional networks (DMN, EXE, SAL, and LIM) is separately

displayed in Figure 2d, where the EC of all four networks showed a

significant decrease in FEDN compared to NC. The LIM network

showed the largest reduction (76.8%), followed by the DMN (64.8%).

Overall, the excitatory influence was greatly reduced, while the inhibi-

tory effect was substantially increased in FEDN compared to NC.

The group differences between NC and FEDN was visualized in

two weighted and directed graphs using BrainNet Viewer (Supporting

Information Figure S2; Xia, Wang, & He, 2013). The node degrees

(in and out degrees, as well as the total degree) of the 20 ROIs

involved in the group differences were shown in Table 4. The nodes

in the DMN and SAL networks had higher degrees, such as bilateral

posterior cerebellum, right lateral parietal cortex, right inferior tempo-

ral gyrus, medial dorsal thalamus, left anterior prefrontal cortex, and

left insula. At the network level, the SAL network had more outgoing

connections than incoming connections, while the EXE network had

F IGURE 1 Network-based statistics analysis reveals a cluster of effective connectivity (EC) links that show significant group difference
between normal control (NC) and first-episode drug-naive (FEDN) major depressive disorder. (a) Average effective connectivity from the NC
subjects (N = 100). (b) Average effective connectivity from the FEDN subjects (N = 100). (c) Difference in average effective connectivity between
the NC and FEDN groups. (d) T-value from the one-tailed two-sample t test for each individual EC link. The links with significant group difference
(p < .05, corrected by network-based statistics) are highlighted in red boxes
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more incoming connections than outgoing connections showing group

differences (Table 4). This indicated that the SAL network influenced

other networks more and the EXE network was predominantly under

the influence of other networks. Overall, the NBS analysis demon-

strated that the default mode and salience networks may be particu-

larly affected by the pathophysiology of MDD.

To evaluate potential EC changes at the network level, we calcu-

lated the average excitatory or inhibitory EC among the four func-

tional networks (DMN, EXE, SAL, and LIM) for both NC and FEDN

groups. Specifically, all excitatory or inhibitory EC links (including the

31 links with group differences) among the four networks were sepa-

rately averaged for each subject and then averaged across subjects

for each group. The average excitatory EC for NC and FEDN is shown

in Figure 3a,b respectively, while the average inhibitory EC for NC

and FEDN is shown in Figure 3c,d, respectively. There was no signifi-

cant difference between NC and FEDN for the internetwork or intra-

network excitatory EC, while the intranetwork inhibitory EC of the

DMN was found to be significantly increased (more negative) in FEDN

compared to NC (p < .05, FDR corrected).

3.3 | PEB-based Bayesian Model Comparison

The above results from NBS indicated that FEDN was associated with

EC changes mainly within the DMN and between DMN and SAL, with

a smaller percentage of connections within the EXE, between SAL and

EXE, and between DMN and LIM (Figure 2a). Based on these

observations, we specified four groups of candidate hypotheses

(i.e., nested or reduced models; Table 5) to test which mixture of con-

nections best explained the effect of diagnosis using PEB-based

Bayesian Model Comparison (Friston et al., 2016; Zeidman et al.,

2019b). The first group of candidate models consisted of connections

within the four functional networks: (a) DMN; (b) EXE; (c) SAL;

(d) LIM; and also (e) all within-network connections (Table 5). The sec-

ond group of candidate models were comprised of particular pairs of

functional networks (including both directions): (a) DMN-SAL;

(b) DMN-SAL, DMN-LIM, and EXE-SAL; (c) DMN-SAL, DMN-LIM,

EXE-SAL, and DMN-EXE; (d) DMN-SAL, DMN-LIM, EXE-SAL, DMN-

EXE, and SAL-LIM; and (e) all between-network connections (Table 5).

That is, the first model corresponded to the largest internetwork con-

nection type (DMN-SAL) that showed significant group difference

based on NBS (Figure 2a). The second model included all internetwork

connection types (DMN-SAL, DMN-LIM, and EXE-SAL) that exhibited

significant group difference according to NBS (Figure 2a). Given the

important role of DMN and SAL identified by NBS, the third model

additionally included DMN-EXE (from the Model 2) and the fourth

model additionally included SAL-LIM (from Model 3), so that all inter-

network connections with DMN and/or SAL were included (Table 5).

The third group of candidate models consisted of all possible combi-

nations of the models in the first group (within-network) and the sec-

ond group (between-network), with a total of 25 candidate models

(Table 5). The fourth group of candidate models embodied the null

hypothesis that FEDN did not alter any connections (i.e., the effect of

TABLE 3 Average effective connectivity of the significant edges between NC and FEDN

Connection NC FEDN Connection NC FEDN

DMN ! DMN SAL ! DMN

mPFC ! R_pCERE 0.12 0.07 L_aPFC ! L_pCERE 0.053 0.001

L_IT ! mdThal 0.069 0.012 L_Insula ! PCC 0.059 0.019

L_IT ! L_pCERE 0.106 0.056 L_Insula ! R_IT 0.086 0.041

R_IT ! R_lPar 0.088 0.034 R_Insula ! R_IT 0.079 0.041

mdThal ! mPFC 0.093 0.038 R_lPar ! R_IT 0.109 0.063

R_pCERE ! L_lPar 0.08 0.032 L_aPFC ! mPFC 0.046 −0.014

mdThal ! L_IT 0.05 −0.01 L_aPFC ! R_pCERE 0.037 −0.006

L_pCERE ! R_lPar 0.052 −0.005 SAL ! EXE

R_pCERE ! R_lPar −0.002 −0.05 dACC ! L_aPFC 0.12 0.073

DMN ! SAL dACC ! R_aPFC 0.11 0.065

PCC ! L_Insula 0.086 0.032 R_Insula ! R_aPFC 0.102 0.056

PCC ! R_Insula 0.077 0.035 LIM ! DMN

R_IT ! L_Insula 0.081 0.042 L_sgACC ! L_pCERE 0.034 0.008

L_pCERE ! L_aPFC 0.062 0.017 R_sgACC ! L_pCERE 0.037 0.01

mdThal ! R_lPar 0.038 −0.015 R_Amyg ! R_lPar 0.035 0.004

L_lPar ! L_aPFC 0.021 −0.041 EXE ! EXE

DMN ! LIM R_sPar ! R_aPFC 0.134 0.083

R_lPar ! R_Amyg 0.046 0.010

L_pCERE ! R_sgACC 0.038 0.013

Abbreviations: FEDN, first-episode drug-naive; NC, normal control.
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diagnosis was turned off on all within-network and internetwork con-

nections), resulting in a total of 36 candidate models (Table 5).

After specifying the individual nested (reduced) models, we created

a second-level GLM to estimate the effects of group mean and group

difference on each connection (see Section 2). The posterior parameter

estimations of the full PEB model are shown in Supporting Information -

Figure S3a,b, respectively. We then compared the evidence of the full

model with the 35 predefined reduced models using Bayesian Model

Comparison implemented in the PEB framework (Friston et al., 2016;

Zeidman et al., 2019bb). The joint probabilities of all candidate models

are shown in Figure 4a, where each element Pij indicates the posterior

probability of the GLM whose parameters for group mean were

decided by model i and parameters for group difference set by Model

j (Zeidman et al., 2019b). The GLM with the highest probability (34%)

corresponded to Model 1 in term of commonalities and Model 34 with

respect to group differences (Figure 4a). The model evidence was bet-

ter visualized when the effect of group means and group differences

were unpacked by summing over the individual rows and columns of

the joint probability matrix, respectively, to generate the probability of

all candidate models for commonalities (Figure 4b) and diagnosis differ-

ences (Figure 4c). Clearly, the fully connected model, Model 1, was the

only model (100%) that explained the commonalities across subjects

(Figure 4b). By comparison, three different models stood out for the

group difference, Model 1, Model 34, and Model 35, with a posterior

probability of .27, .34, and .26, respectively (Table 5; Figure 4c). Model

34 contained all within-network connections as well as four inter-

network connection assembles (DMN-SAL, DMN-LIM, EXE-SAL, and

DMN-EXE; i.e., Models 6 and 9), while Model 35 additionally included

F IGURE 2 Distribution of significant effective connectivity (EC) links in the dynamic causal modeling model and change in EC from normal
control (NC) to first-episode drug-naive (FEDN). (a) Distribution of significant EC links both within and between the four functional networks
(default mode, executive control, salience, and limbic networks). (b) Proportion of the significant EC links that remain excitatory (Exc/Exc) or
inhibitory (Inh/Inh) under both NC and FEDN conditions and those that change from excitatory in NC to inhibitory in FEDN (Exc/Inh).
(c) Difference in average effective connectivity between NC and FEDN for three different types of connections (Exc/Exc, Exc/Inh, and Inh/Inh).
(d) Difference in average (excitatory) effective connectivity between NC and FEDN among the four functional networks. The total excitatory
(positive) EC (both incoming and outgoing) for each node (in the significant cluster) is summed and averaged within each network. Error bars
denote SE. Abbreviations: DMN, default model network; EXE, executive control network; LIM, limbic network; SAL, salience network
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the SAL-LIM connections (i.e., Models 6 and 10; Table 5). These results

suggested that MDD altered a wide range of network connectivities

including both within-network and between-network connections. The

two connection types that were least affected by MDD included SAL-

LIM and EXE-LIM, since the inclusion of these two types of connec-

tions reduced model evidence (i.e., comparing Model 34 with Model

35 and Model 1; Table 5). This was consistent with the NBS results

where the significant cluster did not contain SAL-LIM and EXE-LIM

connections (Figure 2a). In addition, the next three models with moder-

ate evidence included Models 14, 15, and 16 (Figure 4c), which cor-

responded to DMN and Model 9, DMN and Model 10, and DMN and

Model 11, respectively (Table 5). Thus, DMN was particularly targeted

by MDD as no other single network resulted in a higher probability

when combined with internetwork connections, in good agreement

with NBS findings. We then performed a family-wise analysis by group-

ing the 36 × 36 = 1,296 models (36 models of the commonalities across

subjects, and 36 models of the diagnosis differences) into four families

according to the specific type of connections modulated by MDD, as

defined earlier (Family 1: within-network only; Family 2: internetwork

only; Family 3: both within- and internetworks; Family 4: no modula-

tion). The evidence of the models in each family was then pooled and

the families were compared under the assumption that each family was

equally likely (Zeidman et al., 2019b). The pooled probability of differ-

ent combinations of family models is shown in Figure 4d. Clearly, the

family models achieved the highest probability (98.9%) when the

parameters for both commonalities and group difference were set

according to Family 3 (both within- and internetwork connections).

Hence, the family-wise analysis confirmed that MDD altered both

within-network and between-network connectivities.

For completeness, in order to confirm whether the NBS approach

would give similar results to Bayesian methods implemented in the PEB

framework, as well as to ensure that our particular selection of models

did not preclude detection of interesting between-group effects, we

additionally performed an automatic search over reduced models. This

procedure iteratively removed the GLM parameters that did not contrib-

ute to model evidence, using Bayesian Model Reduction (see Section 2;

Friston et al., 2016; Zeidman et al., 2019b). It removed 25 and 342 con-

nections (out of 729 connections) for commonalities and group differ-

ences, respectively, and the posterior parameter estimates of the best

256 models (using Bayesian Model Average) are shown in Supporting

Information Figure S3c,d. When a posterior probability (free energy)

threshold of .99 was applied, seven connections were further removed,

resulting in 380 connections with strong evidence of existed group dif-

ference (Figure 5b). For comparison with the NBS-based results, we plot-

ted the significant EC links identified by NBS in Figure 5a, with the

overlap highlighted by red boxes. A majority of the altered EC links (71%,

22/31) found by NBS were included in the reduced PEB model after

automatic search. Similar to the NBS-based results, most of the EC links

were found to be reduced in FEDN compared to NC (Figure 5b). How-

ever, the PEB identified significantly more altered EC links than NBS did

(380 vs. 31 EC links). In addition, all the 27 ROIs were involved in the

altered EC links found by PEB, compared to 20 ROIs identified by NBS.

This was consistent with the previous Bayesian Model Comparison anal-

ysis where the winning models incorporated most of within-network and

between-network connections (Table 5 and Figure 4). Lastly, the group

differences revealed by the NBS and those by the PEB were highly cor-

related (r = .39, p < .001, Supporting Information Figure S4). Particularly,

the effective size encoding group difference for the EXE-LIM and SAL-

LIM connections was relatively weak (Supporting Information Figure S4b),

in line with their absence in the best winning model (Model 34; Table 5).

Overall, the PEB method could be more sensitive than the NBS approach

and it generally supported the NBS findings.

TABLE 4 Node degree (number of connections) in the significant cluster identified by network-based statistics

Node Total degree In degree Out degree Node Total degree In degree Out degree

DMN SAL

L_pCERE 7 4 3 L_aPFC 5 2 3

R_lPar 5 4 1 L_Insula 4 2 2

R_IT 5 3 2 R_Insula 3 1 2

R_pCERE 4 2 2 dACC 2 0 2

mdThal 4 1 3 R_lPar 2 1 1

PCC 3 1 2 Average 3.2 1.2 2

mPFC 3 2 1 LIM

L_IT 3 1 2 R_Amyg 2 1 1

L_lPar 2 1 1 R_sgACC 2 1 1

Average 4 2.11 1.89 L_sgACC 1 0 1

EXE Average 1.67 0.67 1.0

R_aPFC 3 3 0

L_aPFC 1 1 0

R_sPar 1 0 1

Average 1.67 1.33 0.33
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4 | DISCUSSION

MDD has been increasingly understood as a mental disorder character-

ized by disrupted interactions among large-scale functional brain net-

works (Menon, 2011). However, current connectome studies based on

rs-fMRI concentrated mostly on undirected connectivity, while existing

directed connectivity analysis based on DCM predominantly used task-

based fMRI and often incorporated very few brain regions and small

sample size. Such limitations hamper a thorough understanding of the

role of within-network versus between-network connectivity in MDD

pathophysiology. Our study represented the first attempt to apply

spectral DCM to identify impaired causal interactions in large-scale

brain network based on rs-fMRI scanned from a large sample size of

healthy and FEDN subjects. Notably, we demonstrated convincingly

that MDD altered connectivity both within and between high-order

functional networks, and detected abnormal causal influences in FEDN

among brain regions from a relatively large-scale brain network, which

expanded our knowledge on the neurophysiological mechanisms of

MDD. It is not a trivial problem when spectral DCM was applied to a

large brain network analysis; we have not only demonstrated the feasi-

bility of applying DCM to a large-scale network-based group compari-

son but also, for the first time, evaluated the complementary utilities of

two different statistical analysis approaches to infer group-level differ-

ence. Below, we discussed the importance of our findings in the con-

text of existing knowledge of MDD pathophysiology.

4.1 | A triple network model of depression

It has been hypothesized by Menon (2011) that aberrant interactions

and engagement of the DMN, EXE, and SAL underlie the psychopa-

thology of a number of neurological and psychiatric disorders includ-

ing depression, anxiety, and schizophrenia. This triple network

F IGURE 3 Average effective connectivity for all nodes and connections among the four networks in the dynamic causal modeling model.
(a) Average excitatory effective connectivity among the four networks for the normal control (NC) subjects (N = 100). (b) Average excitatory
effective connectivity among the four networks for the first-episode drug-naive (FEDN) subjects (N = 100). (c) Average inhibitory effective
connectivity among the four networks for the NC subjects (N = 100). (d) Average inhibitory effective connectivity among the four networks for
the FEDN subjects (N = 100). The inhibitory connection within the DMN shows significant difference between NC and FEDN (p < .05, with FDR
correction). Abbreviations: DMN, default model network; EXE, executive control network; LIM, limbic network; SAL, salience network
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regulates crucial self-referent, cognitive, and emotional processes that

are impaired in depression (Mulders et al., 2015). Numeral fMRI stud-

ies have reported abnormal connectivity patterns among the triple

networks in MDD (for review, see Brakowski et al., 2017; Dutta et al.,

2014; Mulders et al., 2015). Consistently, using DCM of a large-scale

network consisting of the triple network plus the LIM network, we

identified impaired causal interactions among the four major func-

tional networks. Specifically, at the single connection level, application

of NBS revealed a topological cluster that showed decreased EC in

FEDN compared to NCs. In particular, most of the abnormal EC links

located within the DMN and between the DMN and SAL networks,

suggesting that these two functional systems could be especially

targeted by FEDN. At the network level, we observed that the intra-

network inhibitory EC within the DMN was abnormally strengthened

in FEDN. Our findings agree well with the previous studies that the

DMN and SAL networks play a particularly important role in the path-

ophysiology of MDD (Shao et al., 2018). The topological cluster also

contained aberrant nodes in the EXE and LIM networks including the

anterior prefrontal cortex, subgenual anterior cingulate cortex, and

amygdala, whose functional abnormality in MDD has well been docu-

mented (Dutta et al., 2014). It should be noted that the brain regions

in the four functional networks often overlap. For example, the sub-

genual anterior cingulate cortex and hippocampus in the LIM network

may be part of the DMN network and the amygdala could be consid-

ered as a component of the SAL network (Mulders et al., 2015). Over-

all, the results of this study support the triple network model as a

dysfunctional core network for MDD, whose within-network and

between-network connectivities are systematically impaired.

4.2 | Altered EC within the DMN

The DMN is highly activated during rest and passive sensory

processing and deactivated in cognitively demanding tasks (Greicius,

Krasnow, Reiss, & Menon, 2003). Due to its important role in self-

referential processes, the DMN provides the neural substrate for

depressive rumination and receives the most attention in clinical

MDD research (Hamilton, Farmer, Fogelman, & Gotlib, 2015). A

majority of previous studies have reported increased FC in the DMN

related to MDD pathophysiology. As the first study to examine the

role of the DMN in medicated MDD patients, Greicius et al. (2007)

reported increased FC in the DMN involving the subgenual anterior

cingulate cortex and thalamus and the length of depressive episode

correlated positively with the FC in the subgenual anterior cingulate

cortex. Zhu et al. (2012) reported dissociation pattern in the DMN in

FEDN patients where the FC was increased in the anterior medial cor-

tical regions and decreased in the posterior medial cortical regions.

Increased FC in the DMN was also observed in MDD adolescents dur-

ing an emotion identification task (Ho et al., 2015). In contrast, a

recently published large-scale multicenter rs-fMRI study (the REST-

meta-MDD project) found that the FC was decreased within the

DMN in recurrent MDD, but not in FEDN (Yan et al., 2019). Here,

using spectral DCM, we demonstrated that the excitatory EC within

TABLE 5 Different nested parametric empirical Bayes models with posterior probability for the diagnosis difference

Hypothesis Model Connections (ON) Probability

Within-network modulation 2 DMN 0

3 EXE 0

4 SAL 0

5 LIM 0

6 All within-network 0

Between-network modulation 7 DMN-SAL 0

8 DMN-SAL; DMN-LIM; EXE-SAL 0

9 DMN-SAL; DMN-LIM; DMN-EXE; EXE-SAL 0

10 DMN-SAL; DMN-LIM; DMN-EXE; EXE-SAL; SAL-LIM 0

11 All internetwork 0

Both within- and between-network modulation 1 All connections ON .27

12–13 – –

14 Models 2 and 9 .04

15 Models 2 and 10 .03

16 Models 2 and 11 .03

17–33 – –

34 Models 6 and 9 .34

35 Models 6 and 10 .26

No modulation 36 All connections OFF 0

Note: Only models with substantial probability are shown for the hypothesis with both within- and between-network modulation.
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the DMN was also reduced in FEDN, consistent with a recent rs-fMRI

study that reported reduced EC from the left parietal cortex to other

DMN regions in MDD patients who were antidepressant drug-free

for at least 3 months (Li et al., 2017). In addition, we observed the EC

between the cerebellum and other DMN regions substantially

decreased in FEDN, in line with previous studies (Guo et al., 2013; Liu

et al., 2012). Moreover, while the excitatory EC was significantly

reduced within the DMN at the single connection level, the inhibitory

influence at the network level was abnormally increased in the DMN

in FEDN. Our results suggested that in FEDN, the DMN was overly

suppressed with stronger inhibition among different ROIs. Thus, it is

possible that both increased FC and inhibitory EC of the DMN con-

tribute to different depressive symptoms. While increased FC contrib-

utes to excessive depressive rumination, stronger inhibitory EC may

suppress normal self-referential mental processes to a detrimental

level.

4.3 | Reduced causal interactions between SAL
and DMN

The SAL, consisting mainly of the anterior insula and dorsal anterior

cingulate cortex, is activated in response to salient stimuli including

F IGURE 4 Comparison of PEB models in a pre-defined model space. (a) Joint probability of all candidate models. The axes list the
36 candidate models (Table 5) in terms of commonalities across subjects and differences between subjects due to diagnosis. The best model is
Number 1 for the commonalities and 34 for diagnosis difference, with 34% posterior probability. (b) Posterior probability of different models for
the commonalities across subjects (summed over the rows of Panel [a]). (c) Posterior probability of different models for the diagnosis difference
(summed over the columns of Panel [a]). (d) Pooled probability for different combinations of family models for commonalities and diagnosis
differences. Family 1: group level effects on within-network only (DMN, EXE, SAL, or LIM); Family 2: group level effects on internetwork only;
Family 3: group level effects on both within-networks and internetworks; Family 4: on group level effects. The best family combination (with the
highest pooled probability of 98.9%) is Family 3 for both commonalities and diagnosis differences. Abbreviations: DMN, default model network;

EXE, executive control network; LIM, limbic network; SAL, salience network
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the acute stress (Hermans, Henckens, Joëls, & Fernández, 2014;

Seeley et al., 2007). It plays an important role in filtering and integrat-

ing interceptive, autonomic, and emotional information that is related

to affective processes (Seeley et al., 2007), making it a central network

in MDD pathophysiology (Menon, 2011). Several studies indicated an

increased FC between the anterior DMN and SAL, including the con-

nections between the pregenual ACC and insula (Horn et al., 2010)

and between the orbitofrontal cortex and insula (Avery et al., 2013).

Using high-model-order independent component analysis (ICA) of rs-

fMRI data, Manoliu et al. (2014) reported increased FC between SAL

and inferior posterior DMN. It should be noted that the above studies

estimated unidirectional FC instead of directed EC. Using DCM of rs-

fMRI, we observed reduced EC between the SAL and DMN network,

mainly between the insula and posterior cingulate cortex, insula and

inferior temporal cortex and between the anterior prefrontal cortex

and cerebellum. Our results are consistent with the triple network

model proposed by Menon (2011) that weak engagement of the

DMN by salient events leads to altered self-referential mental activity

(i.e., excessive rumination) in MDD.

4.4 | Decreased EC between the SAL and EXE
networks

In this study, the EC between the SAL and EXE networks was also

found significantly reduced which involved connections from the dor-

sal anterior cingulate cortex and insula to the anterior prefrontal cor-

tex. Our results accord with two recent DCM studies that showed

reduced EC between the insula and executive network in melancholia

subjects (Hyett et al., 2015) and decreased influence from the anterior

insula to the dorsolateral prefrontal cortex in patients with depression

(Kandilarova et al., 2018). Such findings also fit well with the triple

network model where weakened interactions from the SAL to EXE

network leads to signaling deficits and inappropriate dorsal attentional

systems responses (Menon, 2011).

4.5 | Relevance to other network measures

As mentioned earlier, a majority of the MDD rs-fMRI studies focused

on undirected connectivities (Brakowski et al., 2017; Dutta et al.,

2014; Mulders et al., 2015). Our major conclusion that MDD alters EC

both within and between multiple functional networks is consistent

with existing FC literature. For example, the FC within the DMN was

found to be significantly increased in the depressive subjects (Greicius

et al., 2007; Ho et al., 2015). Also, it has been shown that the FC

between anterior DMN and SAL positively correlated with depression

severity in poststroke depression (Balaev, Orlov, Petrushevsky, &

Martynova, 2017), and the FC within the EXE (dorsolateral prefrontal

cortex) and between the LIM and DMN (amygdala-posterior cingulate

cortex) increased in MDD adolescents (Peters, Burkhouse, Feldhaus,

Langenecker, & Jacobs, 2016).

The main difference is that we found reduced (excitatory) EC within

the DMN and between the DMN and other networks, while most FC

studies reported increased connectivity in these networks, as discussed

above. It should be noted that a few FC studies did observe reduced

connectivity within the DMN and between particular functional net-

works and our EC results also support them. For instance, a recent large-

scale multicenter rs-fMRI study revealed decreased FC within the DMN

in recurrent MDD (Yan et al., 2019). Connolly et al. (2017) reported that

depressed adolescents showed reduced connectivity between the LIM

and executive network (amygdala-dorsolateral prefrontal cortex) and

F IGURE 5 Comparison between the network-based statistics (NBS) analysis and the parametric empirical Bayes (PEB) model. (a) Significant
cluster (in green) identified by NBS. (b) The effective connectivity links that remain in the PEB model (for group difference) after Bayesian Model
Reduction. A total of 349 (out of 729) connections are removed. The common connections between NBS and PEB are highlighted with red boxes.
Green edges: normal control (NC) > FEDN; blue edges: NC < FEDN
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between the LIM and DMN (amygdala-ventromedial prefrontal cortex).

Deceased FC between the SAL (insula) and frontolimbic networks have

also been reported (Guo et al., 2015).

In addition to static FC, dynamic FC (dFC) and graph theory have

also been applied to study dysfunctional connectivity in MDD. By

comparing unmedicated MDD patients to control participants on

dynamic resting-state FC, Kaiser et al. (2016) showed that individuals

with MDD were characterized by decreased dynamic (less variable)

FC between medial prefrontal cortex (mPFC) and parahippocampal

gyrus within the DMN as well as increased dynamic (more variable)

FC between mPFC and insula, the latter of which was related to

higher levels of recent rumination. Zhi et al. (2018) applied graph the-

ory to examine the impaired topological organization of dFC in MDD

and identified five dynamic functional states, three of which showed

significant group differences. They observed that MDD patients spent

much more time in a weekly-connected State 2, which involved DMN

regions and exhibited significantly decreased harmonic centrality

involving the parietal lobule, lingual gyrus, and thalamus. The reduced

dFC in DMN reported by the two studies (Kaiser et al., 2016; Zhi

et al., 2018) is in agreement with our findings that MDD is character-

ized by lower EC in DMN. In another graph theory study, Zheng et al.

(2015) reported that the connectivity degree was increased for the

right anterior insula and decreased between the DMN and EXE in

MDD, which supported the triple network model (Menon, 2011).

4.6 | Complementary nature between NBS and PEB

Our main objective in this study is to examine whether MDD is medi-

ated by within- or between-network connectivities among high-order

functional networks. Such hypothesis testing is particularly suited to

address using Bayesian Model Comparison implemented in the newly

developed PEB framework (Friston et al., 2016; Zeidman et al., 2019b).

However, in the absence of any prior knowledge of EC abnormality in a

large network, it is difficult to form specific hypotheses (models) to test

due to a large number of possible combinations of within-network

and/or between-network connectivities. For example, in this study,

there are 15 possible within-network models and 63 possible between-

network models, plus 945 (15 × 63) possible combinations of within-

network and between-network models. Under such circumstances,

NBS is an ideal exploratory method to detect significantly abnormal EC

links that could be used to form specific reduced modes to be tested by

the PEB approach. Results showed that the hypotheses (reduced

models) based on NBS were reasonable. For example, the three best

winning models (Models 1, 34, and 35) included all the three significant

between-network connectivities identified by NBS (DMN-SAL, EXE-

SAL, and DMN-LIM; Table 5). It also indicated that DMN was particu-

larly targeted by MDD compared to other functional networks (see

above), consistent with NBS findings.

In addition, our results suggested that the PEB approach could be

more sensitive than the NBS, as more group differences were identified

by PEB (Figure 5). Two reasons may underlie the sensitivity of the PEB

method. First, the PEB model incorporates the uncertainty (variance) of

estimated connection strengths at the single-subject level to make an

inference, which increases its sensitivity and makes it robust to outlier sub-

jects with noisy data (Friston et al., 2016). Second, in a large network,

many parameters may work together to produce the observed group

effects while individual contributions are more difficult to be confidently

identified due to the small effect size with large individual variability. Com-

pared with the PEB method, NBS is able to identify a small set of signifi-

cant EC links that differ between NC and FEDN. Importantly, most of the

significant EC links identified by NBS were included in the PEB model, vali-

dating the topological cluster of group differences found by NBS. More-

over, the PEB estimated group differences were found to be highly

correlated with that from the NBS, indicating the inherent consistency

between the two approaches. However, it should be noted that the

increased number of group differences found by PEB might also reduce

the specificity (more false positives could be revealed). Taken together, we

suggest that NBS is suitable to use as an exploratory approach to detect

the group differences with relatively larger effect size in a large-scale net-

work that can be used to form specific testing hypotheses, while PEB has

the main advantage of testing specific hypotheses and may be more tai-

lored for DCM studies, as previously tested (Zhou et al., 2018).

5 | CONCLUSIONS

For the first time, a large-scale resting-state DCM revealed systemic causal

connectivity changes in subjects with FEDNMDD. We demonstrated that

MDD altered both within-network and between-network effective con-

nectivities. In particular, the excitatory influence among the major high-

order functional networks was found to be significantly attenuated in

FEDN, and the inhibitory influence within the DMN could be abnormally

increased. At the regional level, the reciprocal causal connections between

the default mode and the salience network may be particularly targeted

by MDD, explaining deteriorated self-recognition and emotional control in

MDD. This finding has emphasized the role of altered causal interactions

among high-order brain functional networks in MDD.
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