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Abstract
Objective  One year of comprehensive continuous care 
intervention (CCI) through nutritional ketosis improves 
glycosylated haemoglobin(HbA1c), body weight and liver 
enzymes among patients with type 2 diabetes (T2D). Here, 
we report the effect of the CCI on surrogate scores of non-
alcoholic fatty liver disease (NAFLD) and liver fibrosis.
Methods  This was a non-randomised longitudinal study, 
including adults with T2D who were self-enrolled to the 
CCI (n=262) or to receive usual care (UC, n=87) during 
1 year. An NAFLD liver fat score (N-LFS) >−0.640 defined 
the presence of fatty liver. An NAFLD fibrosis score (NFS) 
of >0.675 identified subjects with advanced fibrosis. 
Changes in N-LFS and NFS at 1 year were the main 
endpoints.
Results  At baseline, NAFLD was present in 95% of 
patients in the CCI and 90% of patients in the UC. At 1 year, 
weight loss of ≥5% was achieved in 79% of patients 
in the CCI versus 19% of patients in UC (p<0.001). 
N-LFS mean score was reduced in the CCI group 
(−1.95±0.22, p<0.001), whereas it was not changed in 
the UC (0.47±0.41, p=0.26) (CCI vs UC, p<0.001). NFS 
was reduced in the CCI group (−0.65±0.06, p<0.001) 
compared with UC (0.26±0.11, p=0.02) (p<0.001 between 
two groups). In the CCI group, the percentage of individuals 
with a low probability of advanced fibrosis increased from 
18% at baseline to 33% at 1 year (p<0.001).
Conclusions  One year of a digitally supported CCI 
significantly improved surrogates of NAFLD and advanced 
fibrosis in patients with T2D.
Trial registration number  NCT02519309; Results.

Introduction 
Non-alcoholic fatty liver disease (NAFLD) is 
an important cause of chronic liver disease, 
hepatocellular carcinoma and liver transplant 

worldwide and is associated with increased 
risk of heart disease, diabetes, chronic kidney 
disease and malignancies.1–4 NAFLD is highly 
prevalent (~70%) among patients with obesity 
and type 2 diabetes (T2D).5 T2D is usually 
associated with the more aggressive form of 
NAFLD, including non-alcoholic steatohep-
atitis (NASH; indicating significant hepato-
cellular injury) and advanced fibrosis6 and is 
linked with high risk for all-cause and liver-re-
lated mortality.7–10 Currently, there are no 
approved pharmacological interventions for 
NASH. Weight loss (WL) via lifestyle changes 
including dietary modification and exercise 
is the first-line intervention used in treating 
and improving NAFLD/NASH.11 12 However, 
the majority of patients do not achieve or 

Strengths and limitations of this study

►► This is a longitudinal study including 262 continuous 
care intervention and 87 usual care patients with 
type 2 diabetes who have higher risk in developing 
non-alcoholic fatty liver disease (NAFLD).

►► This study performed exploratory association anal-
yses to demonstrate the relationship between gly-
caemic improvements and improvements in alanine 
aminotransferase levels.

►► The assessment of resolution of steatosis and fibro-
sis is limited by the sensitivity and specificity of the 
non-invasive markers used in the study.

►► The patients were restricted in their carbohydrate 
intake and monitored for their nutritional ketosis 
state, but dietary energy, macronutrient and micro-
nutrient intakes were not assessed.
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sustain targeted WL  goals.11 13 Previous studies show a 
close relationship between the degree of weight reduc-
tion and improvements in most of the NASH-related 
features, including steatosis, inflammation, fibrosis, 
insulin resistance and elevated liver enzymes, irrespective 
of the type of diet consumed.13–22 However, there is an 
intense debate about what types of diet are most effec-
tive for treating NASH and, to date, the optimal degree 
of energy restriction and macronutrient composition of 
dietary interventions in subjects with NASH and T2D are 
not well defined.12 

Low-carbohydrate, high-fat (LCHF) and ketogenic 
diets have demonstrated a superior WL effect to low-fat, 
high-carbohydrate diets in adults with overweight and 
obesity23–26 and short-term interventions with very 
low  carbohydrate diets are associated with improved 
insulin sensitivity and glycaemic control.27 28 Lower 
consumption of carbohydrate, LCHF and ketogenic diets 
improve appetite control, satiety and/or reduce daily 
food intake helping to limit dietary energy consumption 
while maintaining patient-perceived vigour.29 In patients 
with NAFLD, the beneficial effects of LCHF diets on liver 
enzymes and intrahepatic lipid content (IHLC) have been 
explored with contradictory results. Among studies with 
varied carbohydrate intakes, some reported a significant 
reduction of aminotransferases,16 30–32 while others did 
not report significant changes in these enzymes.17 33 34 A 
recent meta-analysis of pooled data from 10 clinical trials 
reported that low carbohydrate diet (LCD) in patients 
with NAFLD led to a significant reduction in IHLC.35

We recently demonstrated that 1 year of a telemedi-
cine-based comprehensive continuous care intervention 
(CCI) with carbohydrate restriction-induced ketosis and 
behaviour change support significantly reduced glyco-
sylated haemoglobin  (HbA1c) level and medication 
usage in patients with T2D.36 The effectiveness of the 
CCI relies in maintaining a carbohydrate-restricted diet 
and monitoring compliance with the dietary regimen by 
assessing the patient’s nutritional ketosis by blood tests 
during the year. We also demonstrated that 1 year of 
the CCI was effective in improving liver enzymes, where 
mean alanine aminotransferase (ALT), aspartate amino-
transferase (AST) and alkaline phosphatase (ALP) were 
reduced by 29%, 20% and 13%, all p<0.01, respectively. 
These findings highlight the beneficial effect of the CCI 
on diabetes management and in ameliorating the liver-re-
lated injury. These changes were not reported in the 
usual care (UC) patients receiving standard diabetes care 
treatment. Therefore, in the current post hoc analysis, we 
assessed 1 year within-group and between-group (CCI vs 
UC) differences in non-invasive liver markers of steatosis 
(NAFLD liver fat score  (N-LFS)) and fibrosis (NAFLD 
fibrosis score (NFS)) in the full study sample (CCI and 
UC cohorts). In addition, we assessed these outcomes in 
the subgroup of patients with abnormal ALT at baseline 
(ALT levels of >30 U/L in men and >19 U/L in women). 
Among all patients, ancillary aims included assessing if 
changes in weight and HbA1c were associated with ALT 

and metabolic parameter improvements and potential 
relationships between changes in the ALT with other 
metabolic parameters.

Methods
The design and primary results of this study were previously 
published, and the current results are based on a 1-year 
post hoc analysis using the data collected from the same 
cohort in that clinical study (​Clinicaltrials.​gov identifier: 
NCT02519309).36 A brief description of the study design, 
participants and interventions are listed in the  online 
supplementary appendix (methods section). Briefly, this 
was a non-randomised and open-label controlled longitu-
dinal study, including patients 21–65 years of age with a 
diagnosis of T2D and a body mass index (BMI) of >25 kg/
m2. Furthermore, patients were excluded if they had 
significant alcohol intake (average consumption of three 
or more alcohol-containing beverages daily or consump-
tion of more than 14 standard drinks per week), presence 
of any other cause of liver disease or secondary causes of 
NAFLD and decompensated cirrhosis.

Patient and public involvement
Patients were not involved in the design and implementa-
tion of the study. Patient participants have been thanked 
for their participation in all resulting manuscripts and will 
receive information on publications on study completion.

Study recruitment and intervention
Patients participating in the CCI had access to a remote 
care team consisting of a personal health coach and 
medical providers (physician or nurse practitioner). The 
participants in the CCI self-selected between two different 
educational modes, either via on-site education classes 
(n=136, CCI on-site) or via web-based educational content 
(n=126, CCI  virtual). The CCI patients were routinely 
assessed for nutritional ketosis based on blood beta-hy-
droxybutyrate (BHB) concentrations. We also recruited 
and followed a cohort of UC patients with T2D (n=87) 
who received a standard diabetes care treatment from 
their primary care physician or endocrinologist without 
modification.36 37

Outcomes
Primary outcomes: NAFLD liver fat and liver fibrosis by non-
invasive surrogate markers
N-LFS is a surrogate marker of fatty liver that includes the 
presence of the metabolic syndrome, T2D, fasting serum 
insulin, AST and the AST/ALT ratio. An N-LFS cut-off 
of >−0.640 predicts liver fat (>5.56% of hepatocytes) with 
a sensitivity of 86% and specificity of 71%.38 39 NFS is a 
widely validated biomarker for identifying patients at 
different risks of fibrosis severity. NFS is derived from 
age, BMI, hyperglycaemia, the AST/ALT ratio, platelet 
and albumin. The NFS threshold of  <−1.455 can reli-
ably exclude patients with advanced fibrosis (negative 
predictive value ≈92%) and >0.675 can accurately detect 
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subjects with advanced fibrosis (positive predictive value 
≈85%).40–42 The equations for calculating both scores 
are displayed in the online supplementary appendix 
(methods section).

Ancillary outcomes: other biochemical markers
Results from other metabolic (HbA1c, fasting glucose, 
fasting insulin, homeostatic model assessment-insulin 
resistance (HOMA-IR), triglycerides, total cholesterol, 
high-density lipoprotein (HDL) cholesterol and low-den-
sity lipoprotein cholesterol), liver (ALT, AST and ALP), 
kidney (creatinine  and estimated glomerular filtration 
rate (eGFR)), BHB and high-sensitivity C reactive protein 
parameters were previously published in the full CCI and 
UC cohort.36 These additional biochemical markers were 
assessed in the subset analyses of patients with abnormal 
ALT at baseline.43

Statistical analyses
First, we examined the assumptions of normality and 
linearity. According to Kline’s guidelines,44 seven outcomes 
(ie, N-LFS, ALT, AST, fasting insulin, triglycerides, C reac-
tive protein and BHB) were positively skewed. We explored 
two approaches to handling the skewed variables: natural 
log-transformations and removing the top 1% of values. 
For N-LFS, which includes both positive and negative 
values, a modulus log-transformation45 was performed 
instead of a natural log-transformation. For every vari-
able except triglycerides, both approaches resulted in 
new skew and kurtosis values falling within the acceptable 
range. We conducted sensitivity analyses related to our 
first aim to compare the two approaches. The results did 
not differ between the two approaches, and to make inter-
pretation feasible, we report results from the approach of 
removing the top 1% of values for the linear mixed-ef-
fects model (LMM)  analyses. For triglycerides, analyses 
were performed on the log-transformed variable; p values 
reported are based on analyses with the transformed vari-
able, but the means and SEs reported were computed 
from the original variable without any adjustments. For 
both analysis of covariance (ANCOVA) and correlation 
analyses, the natural or modulus log-transformed vari-
ables were used to determine the association.

The first aim of the study was to examine: (1) with-
in-group changes in the study outcomes from baseline 
to 1 year and (2) between-group differences (CCI vs UC) 
in the study outcomes at 1 year. The on-site and virtual 
CCI patients were grouped together for analyses since 
no significant differences were observed in biochem-
ical markers between these two modes of educational 
delivery.36 We performed LMMs in SPSS statistics soft-
ware to estimate the within-group and between-group 
differences. The LMMs included fixed effects for time, 
group (CCI vs UC) and time by group interaction. Covari-
ates included baseline age, sex, race (African-Amer-
ican vs other), diabetes duration, BMI and insulin use. 
This maximum likelihood-based approach uses all 
available repeated data, resulting in an intent-to-treat 

analysis. An unstructured covariance structure was spec-
ified for all models to account for correlations between 
repeated measures. Most analyses were conducted on a 
subsample of participants with abnormal (>30 U/L in 
men and >19 U/L in women)46 ALT at baseline (195 of 
347; 157 CCI and 38 UC). We also conducted analyses 
assessing changes in N-LFS, NFS, albumin and platelets 
on the full study sample because results were not previ-
ously reported. In addition, we examined changes in the 
proportions of participants meeting clinically  relevant 
cut-offs for N-LFS, NFS and ALT. Within-group changes 
in the proportions from baseline to 1 year were assessed 
using McNemar’s test. Between-group differences in 
proportions were assessed using χ2 test. For this set of 
analyses, multiple imputation (20 imputations) was used 
to replace missing values from baseline and 1 year with 
a set of plausible values, facilitating an intent-to-treat 
analysis.

The second study aim was to explore relationships 
between: (1) changes in WL and HbA1c categories and its 
associations with ALT and metabolic parameters improve-
ments and (2) changes in ALT and metabolic variables. 
Multiple imputation was also used to handle missing data 
for aim two analyses. We performed one-way longitudinal 
ANCOVA analyses for comparisons between different 
cutoffs of WL  (<5%, 5%–10% and  >10%) and with 
changes in diabetes-related and liver-related continuous 
variables. Covariates included baseline value of the depen-
dent variables and BMI. Trend analyses were performed 
using Mantel-Haenszel χ2 tests to assess changes in the 
proportions of patients meeting clinical cut-offs (for ALT, 
N-LFS and NFS normalisation) within different weight 
and HbA1c categories. An adjusted OR was calculated 
to measure the strength of association between HbA1c 
changes and ALT normalisation using logistic regression. 
The logistic regression analysis was adjusted by BMI, age, 
gender and baseline dependent covariates. Unadjusted 
and adjusted Pearsons’ correlations were performed to 
identify relationships between changes in ALT levels and 
changes in metabolic-related and lipid-related parame-
ters from baseline to 1 year. Adjusted correlations were 
also performed while controlling for baseline dependent 
covariates, baseline age, sex, race (African-American vs 
other), diabetes duration, BMI and insulin use. All CIs, 
significance tests and resulting p values were two sided, 
with an alpha level of 0.05. A Bonferroni correction 
was applied to each set of analyses (LMM or ANCOVA) 
to control the family-wise error rate. The Bonferroni 
adjusted p  value=0.05/19 variables=0.0025 was used to 
determine statistical significance for each set of hypoth-
esis-driven analyses.

Results
Baseline features of participants
Recruitment and baseline results were published previ-
ously.36 Briefly, between August 2015 and April 2016, 262 
and 87 patients were enrolled in the CCI and UC groups, 

https://dx.doi.org/10.1136/bmjopen-2018-023597
https://dx.doi.org/10.1136/bmjopen-2018-023597


4 Vilar-Gomez E, et al. BMJ Open 2019;9:e023597. doi:10.1136/bmjopen-2018-023597

Open access�

respectively.  Online supplementary figure 1 shows the 
flow of patients through the study. At baseline, average 
age was 53.4±8.7 years and 226 participants (65%) were 
female. The average time since T2D diagnosis was 8.3±7.2 
years and 314 subjects (90%) were obese with a mean 
BMI of 39.5.36 Two  hundred and ninety-three partici-
pants (84%) were on medication for diabetes, and 118 
(34%) were insulin users.36 The proportion of patients 
with abnormal ALT was higher in CCI (58%) compared 
with the UC (44%). At baseline, 330 subjects (95%) had 
suspicion of NAFLD and fewer patients (69 of 349 (20%)) 
had a NFS threshold of <−1.455 indicating low probability 
of advanced fibrosis. Compared with UC, mean baseline 
BMI was significantly higher in patients in the CCI. The 
remaining patient demographics and baseline features 
were generally not different between the two groups.36 47

Influence of intervention and time on 1-year study endpoints
Non-invasive markers of steatosis (N-LFS) and NAFLD fibrosis 
(NFS)
After 1 year, the CCI decreased N-LFS and NFS for the 
full cohort and among patients with abnormal ALT at 
baseline, whereas no changes were observed in the UC 
full cohort or subset (table  1). There were significant 
between group (CCI vs UC) differences in N-LFS and 
NFS observed in both the full and abnormal baseline 
ALT cohort at 1 year (table  1). Notably, the proportion 
of patients with suspected steatosis reduced from 95% to 
75% at 1 year in the CCI, whereas no change occurred in 
UC. At 1 year, the proportion of patients without fibrosis 
increased from 18% to 33% in CCI group, p<0.001, but 
no change occurred in the UC. Similar to the full cohort, 
the proportion of patients with suspected steatosis 
was reduced from 99% to 76%, p<0.001, and propor-
tion of those without fibrosis increased from 20% to 
37%, p<0.001, through 1 year among CCI patients with 
abnormal ALT levels (table  2). Between-group (CCI vs 
UC) differences at 1 year are listed in table 1.

Metabolic parameters
At 1 year, beneficial changes observed in the metabolic 
parameters of the full CCI cohort36 47 were also reported 
in the subset of patients with abnormal baseline ALT, 
including reduction of HbA1c, fasting glucose, fasting 
insulin, HOMA-IR, triglycerides (all  p<0.001) and 
increase of HDL  cholesterol (p<0.001) (table  1). No 
changes in metabolic parameters were observed in the 
UC group. Between-group (CCI vs UC) differences at 
1 year are listed in table 1.

Other liver-related, kidney function tests and parameters
Among CCI patients with abnormal ALT at baseline, 
significant reductions in the liver enzymes were observed 
(table 1), as previously reported in the full CCI cohort. 
No changes in liver-related tests were observed in the 
UC group. Among patients with increased ALT levels 
at baseline, 93 (61%) of 153 participants enrolled in 
the CCI versus 3 (8%) of 38 patients in UC had ALT 

normalisation at 1 year (table  2). Significant within-CCI 
changes were observed for albumin and platelet in the 
full CCI cohort, whereas in the subsample of patients 
with abnormal baseline ALT, there was only a significant 
decrease in the platelet (table 1). As reported in the full 
CCI cohort,36 significant changes in C reactive protein 
and BHB concentrations were found in the subset of CCI 
patients with abnormal baseline ALT over 1 year. These 
changes were not found in the UC group. When adjusted 
for multiple comparisons, no significant changes in creat-
inine or eGFR were found in either the CCI or UC group. 
Between-group differences at 1 year are listed in table 1.

Associations between WL and study outcomes in the CCI 
group
At 1 year, WL of ≥5% was achieved in 79% of CCI patients 
with 54% achieving WL of  ≥10%. The proportion of 
patients losing weight was lower in the UC group with 
only 17 UC participants (19.5%) achieving ≥5% WL and 
only 4 (6%) with ≥10% WL (online supplementary figure 
2). In the CCI group, there was a trend towards greater 
mean percentage WL by higher baseline BMI classifica-
tion, especially in patients losing more than 5% or 10% 
of body weight (online supplementary table 1). As shown 
in table  3, there were relationship trends between the 
degree of 1 year of WL (%) and changes in liver, meta-
bolic and non-invasive markers of steatosis and fibrosis 
among CCI participants. At 1 year, the CCI patients who 
achieved WL  ≥10% showed the greatest reductions in 
N-LFS (p<0.001) and NFS (p<0.001), whereas no statisti-
cally significant differences were found between patients 
with WL from 5% to 10% versus <5%. Similarly, patients 
who achieved WL ≥10% also showed decreases in HbA1c 
(p<0.001) and triglycerides (p<0.001) from baseline 
to 1 year. The 1-year probability of suspected fatty liver 
(N-LFS  >−0.64) was lower (66%) among patients with 
WL  ≥10% compared with the other WL groups (<5% 
(85%) and 5%–10% (86%)). The proportion of patients 
with low likelihood of fibrosis at 1 year was higher among 
patients with WL ≥10% (41%) versus patients with WL of 
5%–10% (26%) and <5% (22%).

Correlation analyses between changes in ALT levels with 
changes in metabolic parameters in the CCI group
In the CCI group, changes in HbA1c, weight and fasting 
glucose from baseline to 1 year were associated with 
changes in ALT levels in the full cohort (HbA1c: r=0.148, 
p=0.03; weight: r=0.198, p=0.004; fasting glucose: r=0.176, 
p=0.004) and among patients with abnormal levels of ALT 
at baseline (HbA1c: r=0.253, p=0.005; weight: r=0.278, 
p=0.003, fasting glucose: r=0.305, p<0.001) (table  4). 
Changes in other lipid markers did not correlate with 
changes in ALT levels (table 4). Figure 1A–D displays 1-year 
associations between change in HbA1c and normalisation 
of ALT levels. In the full CCI group, 141 (70%) of 201 
patients with HbA1c reductions of ≥ 0.5% at 1 year had 
normal ALT levels (figure 1A). Among CCI patients with 
abnormal ALT levels at baseline, 77 (65%) of 119 patients 
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Table 1  Estimated marginal means and mean changes in metabolic, liver-related and non-invasive markers at baseline and 
after 1 year of the CCI and UC interventions

Baseline 1 year Change

Variables Mean±SE P value Mean±SE P value
Mean 
difference±SE P value

Full cohort (CCI, n=262 and UC, n=87)

Non-invasive biomarker

 � NAFLD-LFS*†

0.44 9.8×10-9

 � �   CCI 3.26±0.21 1.30±0.19 −1.95±0.22 3.3×10−16

 � �   UC 3.25±0.38 3.71±0.35 0.47±0.41 0.26

 � �   CCI versus UC 0.01±0.44 −2.41±0.41

 � NAFLD fibrosis score*

0.31 4.3×10-8

 � �   CCI −0.32±0.06 −0.97±0.07 −0.65±0.06 6.5×10−22

 � �   UC −0.45±0.11 −0.19±0.12 0.26±0.11 0.02

 � �   CCI versus UC 0.13±0.13 −0.78±0.14

Liver-related tests

 � Albumin (g/dL)*

0.84 0.02

 � �   CCI 4.43±0.02 4.51±0.02 0.08±0.02 4.7×10−6

 � �   UC 4.42±0.04 4.42±0.03 −0.01±0.03 0.87

 � �   CCI versus UC 0.01±0.04 0.09±0.04

 � Platelet (× 109)*

0.76 0.06

 � �   CCI 250.52±3.86 227.60±3.69 −22.92±2.28 1.6×10−20

 � �   UC 252.96±6.91 241.87±6.53 −11.09±3.88 0.005

 � �   CCI versus UC −2.44±8.03 −14.27±7.62

Abnormal ALT cohort (CCI: n=153 and UC: n=38)

Non-invasive biomarker

 � NAFLD-LFS‡†

0.46 2.7×10-6

 � �  CCI 3.96±0.28 1.46±0.26 −2.50±0.30 1.5×10-13

 � �  UC 4.44±0.58 4.53±0.57 0.09±0.66 0.9

 � �  CCI versus UC −0.48±0.65 −3.06±0.63

 � NAFLD fibrosis score‡

0.33 0.0002

 � �   CCI −0.43±0.08 −1.14±0.09 −0.71±0.08 7.5×10−15

 � �   UC −0.62±0.17 −0.35±0.18 0.26±0.17 0.12

 � �   CCI versus UC 0.19±0.19 −0.79±0.20

Metabolic parameters

 � HbA1c (%)‡

0.08 3.4×10−8

 � �   CCI 7.50±0.10 6.16±0.10 −1.35±0.11 3.6×10−25

 � �   UC 7.10±0.21 7.32±0.18 0.22±0.23 0.33

 � �   CCI versus UC 0.41±0.23 −1.16±0.20

 � Fasting glucose (mg/dL)‡

0.07 0.02

 � �   CCI 158.34±4.42 124.05±3.94 −34.29±5.10 2.4×10−10

 � �   UC 139.79±9.15 152.13±8.08 12.34±10.37 0.24

 � �   CCI versus UC 18.55±10.19 −28.09±9.05

 � Fasting insulin (m/UL)‡†

0.62 0.002

 � �   CCI 30.16±1.75 18.01±1.56 −12.15±1.78 3.0×10−10

 � �   UC 32.15±3.63 30.01±3.41 −2.14±3.82 0.58

 � �   CCI versus UC −1.99±4.04 −12.00±3.77

 � HOMA-IR‡

 � �   CCI 9.57±0.60 5.18±0.70 −4.38±0.78 8.7×10−8

 � �   UC 11.51±1.18 13.73±1.43 2.22±1.56 0.16

 � �   CCI versus UC −1.95±1.33 0.14 −8.56±1.60 3.7×10−7

Continued
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Baseline 1 year Change

Variables Mean±SE P value Mean±SE P value
Mean 
difference±SE P value

 � Triglycerides (mg/dL)‡§

0.12 0.0001

 � �   CCI 197.54±8.74 162.59±15.85 −34.95±17.35 2.7×10−9

 � �   UC 232.18±24.87 267.29±47.90 35.11±51.34 0.62

 � �   CCI versus UC −34.64±21.50 −104.70±39.84

 � Cholesterol (mg/dL)‡

0.73 0.17

 � �   CCI 181.58±3.35 197.13±4.46 15.55±4.05 0.0001

 � �   UC 178.91±7.02 182.69±9.51 3.78±8.68 0.66

 � �   CCI versus UC 2.67±7.82 14.44±10.53

 � HDL cholesterol (mg/dL)‡

0.05 1.8×10−7

 � �   CCI 41.67±1.10 50.18±1.30 8.51±1.15 9.2×10−12

 � �   UC 36.60±2.30 33.45±2.77 −3.15±2.46 0.2

 � �   CCI versus UC 5.07±2.56 16.73±3.07

 � LDL cholesterol (mg/dL)‡

0.75 0.002

 � �   CCI 100.31±2.85 117.16±3.42 16.86±3.26 8.7×10−7

 � �   UC 98.12±6.23 90.22±7.87 −7.90±7.56 0.3

 � �   CCI versus UC 2.19±6.88 26.94±8.60

Liver-related tests

 � ALT (U/L)‡†

0.76 3.5×10−6

 � �   CCI 37.00±1.24 23.55±1.32 −13.44±1.59 2.7×10−14

 � �   UC 37.86±2.56 38.04±2.68 0.18±3.23 0.96

 � �   CCI versus UC −0.86±2.86 −14.49±3.01

 � AST (U/L)‡†

0.8 1.1×10−5

 � �   CCI 27.11±0.97 19.77±0.83 −7.34±1.00 8.9×10−12

 � �   UC 27.69±2.03 28.55±1.73 0.86±2.09 0.68

 � �   CCI versus UC −0.59±2.26 −8.78±1.93

 � ALP (U/L)‡

0.22 0.0005

 � �   CCI 74.07±2.00 64.53±2.02 −9.55±1.33 2.5×10−11

 � �   UC 79.79±4.16 81.02±4.18 1.23±2.68 0.65

 � �   CCI versus UC −5.72±4.64 −16.49±4.67

 � Albumin (g/dL)‡

0.64 0.11

 � �   CCI 4.50±0.02 4.56±0.02 0.06±0.02 0.004

 � �   UC 4.52±0.05 4.48±0.05 −0.04±0.05 0.35

 � �   CCI versus UC −0.02±0.05 0.08±0.05

 � Platelet (×109)‡

0.87 0.21

 � �   CCI 247.45±5.21 225.87±5.06 −21.57±3.11 9.8×10−11

 � �   UC 249.46±10.84 240.78±10.48 −8.69±6.30 0.17

 � �   CCI versus UC −2.02±12.09 −14.90±11.71

Kidney function tests

 � Creatinine (mg/dL)‡

0.39 0.71

 � �   CCI 0.86±0.02 0.82±0.01 −0.05±0.01 0.0005

 � �   UC 0.83±0.03 0.83±0.03 −0.01±0.03 0.85

 � �   CCI versus UC 0.03±0.03 −0.01±0.03

 � eGFR (CKD-EPI)‡

0.72 0.43

 � �   CCI 81.53±0.90 83.32±0.88 1.79±0.75 0.02

 � �   UC 82.26±1.86 81.72±1.81 −0.54±1.53 0.72

 � �   CCI versus UC −0.73±2.08 1.60±2.03

Other parameters

Table 1  Continued 

Continued
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with a reduction of ≥ 0.5% in HbA1c showed normali-
sation of ALT levels (figure 1B). One-year reduction of 
≥0.5% in HbA1c increased the odds of ALT normalisation 

2.4-fold (95% CI 1.09  to 5.3) after controlling for base-
line levels of HbA1c, BMI, ALT, diabetes duration, insulin 
use and WL (%) at 1 year. Given that weight reductions 

Baseline 1 year Change

Variables Mean±SE P value Mean±SE P value
Mean 
difference±SE P value

 � CRP (mg/dL)‡†

0.03 8.2×10−6

 � �   CCI 6.85±0.50 4.51±0.50 −2.34±0.48 2.4×10−6

 � �   UC 9.41±1.03 9.84±1.04 0.43±0.97 0.66

 � �   CCI versus UC −2.56±1.15 −5.33±1.16

 � BHB (mmol/L)‡†

0.5 0.002

 � �   CCI 0.17±0.01 0.26±0.02 0.09±0.02 7.3×10−5

 � �   UC 0.15±0.03 0.12±0.04 −0.03±0.04 0.45

 � �   CCI versus UC 0.02±0.03 0.14±0.04

Unless otherwise noted, estimates reported were obtained from linear mixed-effects models that provide marginal means and mean changes, adjusting 
for baseline age, gender, race, diabetes duration, body mass index and insulin use.
This maximum likelihood-based approach uses all available repeated data, resulting in an intent-to-treat analysis.
Multiple comparisons were adjusted for Bonferroni corrections (P<0.0025).
However, because transformed numbers are difficult to interpret, non-transformed and unadjusted means, mean changes, and standard errors for 
participants who completed the study visit were computed and provided in the table. 
*Full sample analysis.
†Variable was positively skewed and after removing the top 1% of values, skew and kurtosis values fell within acceptable ranges. Analyses were 
conducted on data excluding the top 1% of values for each variable, although due to the maximum likelihood approach all cases were still included in 
the analyses.
‡Subgroup analysis of participants with abnormal ALT at baseline. Abnormal ALT refers to >19 U/L for women and 30 U/L for men.
§Variable was positively skewed and a natural log transformation was performed. The linear mixed-effects model analysis including covariates was 
conducted on the transformed variable and significance values provided are from the transformed analysis.
ALP, alkaline phosphatase; ALT, alanine aminotransferase; AST, aspartate aminotransferase; BHB, beta-hydroxybutyrate; CCI, continuous care 
intervention; CKD-EPI, chronic kidney disease-epidemiological collaboration equation; CRP, C reactive protein; eGFR, estimated glomerular filtration 
rates; HbA1c, glycosylated haemoglobin; HDL, high-density lipoprotein; LDL, low-density lipoprotein; LFS, liver fat score; NAFLD, non-alcoholic fatty 
liver disease; UC, usual care. 

Table 1  Continued 

Table 2  Resolution of abnormal ALT, steatosis and fibrosis (as estimated using non-invasive liver markers cut-off) from 
baseline to 1 year in continuous care intervention (CCI) and usual care (UC)

Variables

CCI UC

Baseline 1 year P value* Baseline 1 year P value*
Between-groups 
p values†

Full cohort n=262 n=87

 � Abnormal ALT, n (%)‡ 153 (58) 60 (23) 8.1×10–11 38 (44) 35 (40) 0.664 0.006

 � NAFLD-LFS

 � >−0.640, n (%) 250 (95) 197 (75) 7.9×10–10 80 (92) 79 (91) 0.678 0.002

 � NAFLD fibrosis score

 � <−1.455, n (%) 46 (18) 87 (33) 3.9×10–7 23 (26) 22 (25) 1.0 0.139

Abnormal ALT at baseline n=153 n=38

 � NAFLD-LFS

 � >−0.640, n (%) 151 (99) 117 (76) 1.8×10–7 35 (92) 37 (97) 0.625 0.007

 � NAFLD fibrosis score

 � <−1.455, n (%) 30 (20) 56 (37) 4.1×10–5 11 (29) 11 (29) 1.0 0.266

NAFLD-LFS cut-off >−0.640 for detecting liver fat >5.56% (sensitivity: 86% and specificity: 71%).
NAFLD fibrosis score <−1.455 corresponds with low probability of advanced fibrosis (NPV ≈ 92%) and >0.675 indicates high probability of advanced 
fibrosis (PPV ≈ 85%).
*McNemar’s test. 
†χ2 tests were used when appropriated.
‡Abnormal ALT refers to >19 U/L for women and 30 U/L for men.
ALT, alanine aminotransferase; LFS, liver fat score; NAFLD, non-alcoholic fatty liver disease; NPV, negative predictive value; PPV, positive predictive 
value.
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Table 3  One-year associations between weight loss (%) and changes in liver-related and diabetes-related variables

Variables

CCI cohort, n=262

≤5%
n=54

5%–10%
n=65

>10%
n=143 P value

Liver-related parameters

 � Δ ALT (U/L)* −3.99±2.83 −7.30±2.32 −12.52±2.41 0.01

 � Δ Platelet (×109)* −20.36±5.32 −25.33±4.38 −23.5±3.24 0.656

 � Δ ALP (U/L)* −4.36±2.18 −9.70±1.93 −11.45±1.45† 0.007

Metabolic-related parameters

 � Δ HbA1c (%)* −0.92±0.21 −1.25±0.16 −1.58±0.13† 0.002

 � Δ Triglycerides (mg/dL)* −6.25±39.3 −34.63±25.8 −63.8±13.9† 0.007

 � Δ Cholesterol (mg/dL)* 1.34±7.22 - 0.17±5.78 10.07±3.83 0.134

 � Δ HDL cholesterol (mg/dL)* −0.84±1.8 6.17±1.51‡ 10.41±1.07† 4.6×10–8

 � Δ LDL cholesterol (mg/dL)* 3.42±8.14 0.53±5.15 12.41±3.79 0.183

Kidney function parameters

 � Δ Creatinine (mg/dL)* −0.023±0.022 −0.008±0.019 −0.065±0.017 0.039

Non-invasive biomarkers

 � Δ NAFLD-LFS* −0.197±0.86 −1.291±0.65 −2.805±0.44† 2.5×10–7

 � >−0.640§, n (%) 46 (85%) 56 (86%) 95 (66%) 0.001

 � Δ NAFLD fibrosis score* 0.055±0.13 −0.351±0.10 −1.014±0.08† 2.6×10–15

 � <−1.455§, n (%) 14 (26%) 14 (22%) 59 (41%) 0.007

Other parameters

 � Δ CRP (mg/dL)* −0.506±1.66 −2.831±1.0 −3.970±1.42 0.012

 � Δ BHB (mmol/L)* 0.017±0.06 0.061±0.03 0.203±0.03† 3.8×10–4

Intention-to-treat analysis.
The sign means± SEs. P values represent difference between groups. Δ means change from baseline.
*Analysis of covariance (ANCOVA) while controlling by BMI and baseline values for each analysed covariate. 
†Significant difference (p<0.001) between WL >10% as compared with WL 5%–10% and <5%.
‡Significant difference (p<0.001) between WL >10% and WL 5%–10% as compared with WL <5%.
§For categorical variables, p value for the Mantel-Haenszel χ2 test for trend  and for continuous variables. 
All ANCOVA analyses were adjusted by Bonferroni test for multiple comparisons (p <0.0025). 
ALT, alanine aminotransferase; ALP, alkaline phosphatase; BHB, beta-hydroxybutyrate; BMI, body mass index; CCI, continuous care intervention; CRP, 
C reactive protein; HbA1c, glycosylated haemoglobin; HDL, high-density lipoprotein; LDL, low-density lipoprotein; LFS, liver fat score; NAFLD, non-
alcoholic fatty liver disease; WL, weight loss. 

Table 4  Correlations change in ALT and changes in metabolic parameters

Variable

Full CCI cohort
n=262

CCI cohort with abnormal baseline ALT levels
n=153†

Unadjusted r P value* Adjusted r P value* Unadjusted r P value* Adjusted r P value*

Δ Body weight (%) 0.191 0.043 0.198 0.004 0.253 0.056 0.278 0.003

Δ Fasting glucose (mg/dL) 0.124 0.118 0.176 0.004 0.184 0.051 0.305 1.2×10–4

Δ HbA1c (%) 0.176 0.043 0.148 0.033 0.220 0.018 0.253 0.005

Δ Triglycerides (mg/dL) 0.032 0.741 0.025 0.490 0.091 0.428 0.106 0.163

Δ Cholesterol (mg/dL) −0.076 0.375 −0.031 0.563 −0.046 0.663 −0.020 0.605

Δ HDL cholesterol (mg/dL) −0.115 0.160 −0.069 0.219 −0.145 0.182 −0.118 0.207

Δ LDL cholesterol (mg/dL) −0.049 0.526 −0.022 0.476 −0.042 0.669 −0.032 0.690

ΔMeans change from baseline. 
*Unadjusted and adjusted Pearson’s correlations. Adjustments while controlling for individual baseline covariate levels, age, sex, race 
(African-American vs other), diabetes duration, body mass index and insulin use.
†ALT levels >19 in women and >30 in men.
ALT, alanine aminotransferase; CCI, continuous care intervention; HbA1c, glycosylated haemoglobin; HDL, high-density lipoprotein; 
LDL, low-density lipoprotein.
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(≥ 5%) can be associated with changes in HbA1c level, 
we sought to explore whether a reduction of ≥ 0.5% in 
HbA1c was still associated with ALT normalisation, inde-
pendent of WL (≥5%) (figure  1C,D). A reduction of 
≥0.5% in HbA1c was associated with higher rates of ALT 
normalisation, regardless of whether or not 5% WL was 
achieved (p<0.001).

Safety
Adverse events during this trial were previously reported.36 
Mean platelet count was reduced in the CCI (−22.9±2.3, 
p<0.001) versus UC group (−11.1±3.9, p=0.005); however, 
the proportion of patients with a platelet count below 
150×109 L was not different between groups. There was 
no hepatic decompensation (variceal haemorrhage, 
ascites or hepatic encephalopathy) or ALT flare-up (>5 
times the upper limit of normal) reported during the trial 
in either the CCI or UC group.

Discussion
The findings of the current analysis show that 1 year 
of a digitally  supported CCI reduced risk of fatty liver 
and advanced liver fibrosis in overweight and obese 
adults with T2D. Improvements were concurrent with 
improved glycaemic status, reduction in cardiovascular 
risk factors and decreased use of medications for diabetes 

and hypertension.36 47 The beneficial effects extended 
to patients with increased levels of aminotransferase, 
thus indicating that remote care medically  supervised 
ketosis is also effective in patients at risk of liver disease 
progression. The influence of carbohydrate restriction 
and nutritional ketosis on liver histology of patients with 
biopsy-proven NASH remains largely unexplored in the 
context of a well-designed randomised controlled trial. 
A pilot study including five patients with biopsy-proven 
NASH showed that 6 months of ketogenic diet (KD) (less 
than 20 g per day of carbohydrate) induced significant WL 
(mean of 13 kg) and four of five patients reduced liver fat, 
inflammation and fibrosis.33 The current study provides 
evidence that a remote-care medically supervised KD can 
improve NASH and even fibrosis. A recent meta-analysis 
of 10 studies reported the effects of LCD on liver func-
tion tests in patients with NAFLD and concluded that 
LCD reduced IHLC but did not improve liver enzymes,35 
although heterogeneity among NAFLD populations and 
interventions were observed across the included studies.

Among CCI participants, correlations were also found 
between the improvements in HbA1c and ALT changes, 
even after controlling for WL and changes in insulin use. 
Among subjects with abnormal ALT levels at baseline, a 
reduction of ≥0.5% in HbA1c was associated with increased 
rates of ALT normalisation. This finding suggests that 

Figure 1  Association between reduction in HbA1c (%) and normalisation of ALT* levels at 1 year of intervention in CCI 
group. (A) Full CCI cohort (n=272). Higher proportion of patients with ALT normalisation were observed in HbA1c (%) reduction 
categories 0.5%–1.0%; 71% and >1.0%; 70%. (B) CCI patients with increased levels of ALT at baseline (n=153). higher 
proportion of patients with ALT normalisation were observed in HbA1c (%) reduction categories 0.5%–1.0%; 67% and >1.0%; 
64%. Adjusted OR for change in HbA1c >0.5%=2.4 (95% CI 1.09 to 5.3), p=0.029. (C) CCI patients with weight loss ≥5% 
(n=207). Among patients with weight loss >5%, higher levels of ALT normalisation (85%) were observed in patients with HbA1c 
(%) reduction of >0.5%. (D) CCI patients with increased levels of ALT at baseline and weight loss ≥5% (n=123). Among patients 
with weight loss >5% and abnormal ALT levels at baseline, higher levels of ALT normalisation (86%) were observed in patients 
with HbA1c (%) reduction of >0.5%. *ALT levels <19 in women and <30 in men. ALT, alanine aminotransferase; CCI, continuous 
care intervention; HbA1c, glycosylated haemoglobin. 
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liver enzyme improvements may be related to improve-
ments in glycaemic control and insulin concentration 
in addition to WL. Importantly, few studies have directly 
compared the metabolic advantages of different diets for 
the treatment of NAFLD,15 32 48 and the impact of dietary 
macronutrient composition remains largely unknown. 
Three studies have shown that low-carbohydrate and 
low-fat diets reduced liver fat, transaminases and insulin 
resistance to similar degrees,15 21 48 whereas another study 
reported that a moderate hypocaloric LCD in insulin-re-
sistant patients improved ALT levels more than a hypo-
caloric low-fat diet, despite equal WL.48 Among patients 
with T2D, a ‘moderate-carbohydrate modified Mediterra-
nean diet’ (35% carbohydrates, 45% high monounsatu-
rated fat) showed greater ALT reductions than two other 
higher carbohydrate hypocaloric diets including the 2003 
recommended American Diabetes Association (ADA) or 
low glycaemic index diets.49

Our results also demonstrated that non-invasive 
risk scores for fatty liver and fibrosis were improved in 
patients who underwent CCI as compared with the UC 
control, and greater reductions were observed in patients 
with the largest reductions in body weight (≥10%). Our 
results are consistent with previous studies reporting that 
LCD reduce intrahepatic lipid accumulation.15 16 21 32 33 
Likewise, 1 year liver fibrosis as assessed by NFS improved 
in the CCI group, and the proportion of patients with low 
likelihood of fibrosis increased from 18% to 33% at 1 year 
of intervention. Similar to previous studies addressing the 
impact of WL on NASH-related fibrosis,13 50 we showed 
a relationship between the degree of WL and improve-
ments in NFS.

LCD or KD have been proposed to more effectively 
reduce all features of the metabolic syndrome, which is 
present in approximately 80% of patients with NAFLD, 
compared with low-fat diets51 52; however, the physiolog-
ical mechanisms are not fully established.53–55 In line 
with our findings, Holland et al56 showed that irrespec-
tive of physical exercise, rats fed a ketogenic formulation 
had lower liver triglycerides and lower activation of the 
proinflammatory Nuclear factor kappa Beta (NF-kB) 
pathway compared with rats fed Western and standard 
chow diets. Likewise, a recent human study using a 2-week 
isocaloric carbohydrate restricted diet demonstrated a 
drastic reduction of hepatic steatosis and a shift in lipid 
metabolism pathway from de  novo lipogenesis to ß-oxi-
dation and increased BHB production.57 This shift in 
the lipid homeostasis following a short-term ketogenic 
diet occurred in conjunction with a shift in gut microbia 
towards increased folate production as well as decreased 
expression of key serum inflammatory markers.57

Strengths and weaknesses of this clinical trial have 
been previously described.36 Some strengths of this study 
include a large cohort of patients with T2D and high 
suspicion of NAFLD, an intervention with 1 year of digi-
tally  supported continuous care including monitored 
adherence to nutritional ketosis and a control group of 
patients with T2D provided UC with standard nutritional 

recommendations.36 Relative to prior outpatient inter-
ventions, the current study is unusual in the degree 
of health coach and physician support, the degree of 
prescribed carbohydrate restriction and the use of BHB 
as a blood biomarker of dietary adherence. These attri-
butes may contribute to superior outcomes observed in 
the intervention group when compared with UC patients. 
The multicomponent approach used in the intervention 
encouraged the patient to adapt carbohydrate restriction 
through continuous monitoring of nutritional ketosis 
and provided behavioural support through interaction 
with their health coaches.

Some weaknesses of this study include the absence of 
imaging-proven or biopsy-proven NAFLD or NASH diag-
nosis and lack of random allocation to assign patients to 
intervention and control groups. Food was not provided 
for participants so dietary macronutrient and micronu-
trient contents and sources were not strictly controlled.

In conclusion, 1 year of a digitally  supported 
CCI  including individualised nutritional ketosis led to 
significant improvement in non-invasive markers of liver 
fat and fibrosis together with sustained WL in overweight 
and obese patients with T2D. A relationship was observed 
between the degree of WL and improvements in liver-re-
lated and non-liver-related outcomes with greater bene-
fits in patients losing more than 10% of body weight. A 
reduction of ≥0.5% in HbA1c was independently associ-
ated with ALT normalisation even after controlling for 
WL. Medical interventions incorporating ketogenic diets 
appear effective for improving NAFLD and therefore may 
be an effective approach for reversing the natural history 
of NAFLD progression, although further studies are 
needed to confirm potential beneficial effect in patients 
with biopsy-confirmed NASH.
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