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Paternal age at conception has been increasing. In this review, we first present the results
from the major mammalian animal models used to establish that increasing paternal age
does affect progeny outcome. These models provide several major advantages including
the possibility to assess multi- transgenerational effects of paternal age on progeny in a
relatively short time window. We then present the clinical observations relating advanced
paternal age to fertility and effects on offspring with respect to perinatal health, cancer risk,
genetic diseases, and neurodevelopmental effects. An overview of the potential
mechanism operating in altering germ cells in advanced age is presented. This is
followed by an analysis of the current state of management of reproductive risks
associated with advanced paternal age. The numerous challenges associated with
developing effective, practical strategies to mitigate the impact of advanced paternal
age are outlined along with an approach on how to move forward with this important
clinical quandary.
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INTRODUCTION

We are witnessing the progressive increase of paternal age at conception. The birth rate among 35 to
49 year old American men in 2015 was 69.1 per thousand compared with 42.8 per thousand in 1980
(1). Other countries have reported a similar trend (2) that appears to be consistent across all races,
ethnicities, regions and level of education (3). While controversies exist, a preponderance of
evidence from recent scientific literature affirms a negative impact of advanced paternal aging on
reproductive health. In this review we will begin by discussing the role of animal models as a
valuable research tools to study the effects of paternal aging. After presenting how advanced paternal
age impacts the fertility status of men, reproductive outcomes and offspring health, we will provide
an opinionated analysis on the challenges faced by healthcare providers and health authorities in the
development and implementation of practical strategies designed to reduce or mitigate the negative
impact of advanced paternal age from a public health point of view.
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ANIMAL MODELS FOR STUDYING
PATERNAL AGING

A wide range of animal models ranging from insects to worms,
birds, fish and mammals have been used to investigate the effects
of paternal aging on male reproduction function. However,
rodent models have become the predominant species for
determining the cellular and molecular changes with aging that
occur in the testis and epididymis (4–6). Outbred rodents are
often used in drug testing or environmental exposure studies so
to increase the genetic variability in the population. However,
inbred rodents are preferred for aging studies that focus
specifically on the mechanistic pathways in question. A
potential limitation is that several pathologies associated with
aging including pituitary, adrenal or testis tumors may
complicate result interpretation. An ideal animal model should
be long-lived and free from the systemic aging-related diseases,
while maintaining other reproductive changes that emulate those
in aging men.

Mouse Models
Studies using mouse models that lack any known or induced
mutations have demonstrated a quantitative reduction in
spermatozoa with increased age. Testicular architecture reveals
changes in tubule segments with impaired spermatogenesis,
increased number of vacuoles in Sertoli and germ cells, a
thinning of the seminiferous epithelia, and a reduction in the
number of spermatocytes and spermatids (7, 8). An increase in
age-related germ cell mutations has also been reported (9).

Several inbred strains of mice, such as the senescence-
accelerated mouse (10, 11), and transgenic mice, such as
Klotho mice (12, 13), have been developed to model
accelerated aging in humans. These mice exhibit defects in a
wide range of organs (e.g., vessels, lungs, kidney, brain, skin and
testes), and thus are poor models to study aging of male germ
cells as many interfering systems could be operant. However, an
advantage of the mouse model is the feasibility for genetic
manipulations for both over-expressed and knocked out genes,
and consequently allows for studies investigating mechanisms
involved in aging. Mice overexpressing catalase have reduced
ROS and do not exhibit the age-dependent loss of spermatozoa,
do show aging-associated loss in testicular germ and Sertoli cells,
and show reduced 8-oxodG lesions in spermatozoa (14). In
contrast, null mutations for superoxide dismutase show
exacerbated age-induced damage in both the testis histology
and spermatozoa quality (15).

Rat Models
With its long lifespan and relatively free of age-related pathologies
including tumors and obesity, the Brown Norway (BN) rat is a
highly robust model for the study of male reproductive aging (16–
19). Striking age-related changes in the seminiferous tubules (16),
Leydig cells (5) and epididymides (20) of these animals have been
reported. Several genes in the testis (Leydig and germ cells) and in
the epididymis have altered expression as a function of aging (21–
23). With advancing age, Sertoli cells, the niche-forming “nurse”
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cells that surround the germ cells and ensure their normal
development, display anomalies in the structure of the
endoplasmic reticulum and nuclei; large intracellular spaces are
observed between Sertoli cells, rather than the normally embedded
germ cells (24). Genes and proteins associated with the formation
of the blood-testis barrier decline prior to the barrier becoming
“leaky” (25). Effects of aging are also seen in the hypothalamic-
pituitary function (17, 26). Importantly, the changes seen in testis
and hypothalamic-pituitary functions in the BN rat with age
reflect those reported in aging men (27, 28).

Mating of male BN rats of increasing age (3–24 months) to
young females result in an increase in pre-implantation loss, a
decrease in the average fetal weight, and an increase in neonatal
deaths (29). Together, these results show that the quality of
spermatozoa decreases as BN male rats age. The basis for these
age-related declines in reproductive function remains unclear. In
isolated populations of testicular germ cells, the expression of a
number of genes is affected during ageing (21, 30). The findings
of a large increase in sperm with abnormal flagellar midpieces,
decrease in the percentage of motile spermatozoa and elevation
of immature spermatozoa retaining their cystoplasmic droplets
in the cauda epididymides of old rats suggests a defective
spermatozoa formation in aging testes (31) and impaired
epididymal function in supporting sperm maturation. We
reported previously aging related increase in basal sperm
chromatin damage with age (32) which suggest an
accumulation of DNA damage and/or mutations in the germ
line that may contribute to adverse health outcomes of
their offspring.

Advantages and Limitations of Animal
Models Over Human Studies
Animal models have clear advantages for control over the
homogeneity of the genetic pool, for conducting controlled
mating studies and for access to all cells of the reproductive
system for analyses. Indeed, studies using animal models have
unequivocally established that increased paternal age is
associated with decreased sperm number and chromatin
quality, and adverse progeny outcome. For therapeutic and
interventional studies, animal models allow for control of
confounders seen often in human studies such as obesity, diet,
exposure to toxins and the age of female mates. Finally, it is
possible to assess multi- transgenerational effects of paternal age
on progeny in a relatively short time window.

Aging studies with animal are not without limitations. The
relatively shorter lifespan of rodents limits the wide range of
environmental exposures to chemicals that can impinge on
sperm function and production. Further, quantitatively and
qualitatively, men are far less effective at producing sperm per
gram of testis (33), possibly due to postural position and bypass
of temperature regulation for optimal spermatogenesis. Finally,
although the number of genes in man and rodents are similar,
the human genome contains far more non-genomic DNA that
likely plays a role in epigenetic regulation of germ cell functions
(34). Thus, a comprehensive understanding of how paternal age
affects both the genome and epigenome of spermatozoa, and the
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consequences of these effects will require complementary animal
and human studies.
IMPACT OF ADVANCED PATERNAL AGE
IN MEN AND ON THEIR PROGENY

Impact of Advanced Paternal Age on Male
Fertility Status
Various studies have indicated an age-related decline of
conventional semen parameters including semen volume, total
sperm count, motility and morphology (35). Not surprisingly,
natural fertility rates decline as men age, as demonstrated by a
survey that conception at 1yr is 30% less for men >40yrs versus
those <30yrs (36). Similar findings were reported by Hassan and
Killick (37). Natural conceptions with men >35yrs were found to
be 1.26 times more likely to miscarry than those with men <35yrs
(38). In a retrospective cohort study from 1989–2005,
pregnancies sired by father >45yrs showed a 48% increased
risk of late stillbirth, a 19% increased risk of low birth weight,
a 13% increased risk of preterm birth and a 29% increased risk of
very preterm birth (39).

Impact of Advanced Paternal Age on
Assisted Reproductive Outcomes
Advanced paternal age has been associated with various adverse
outcomes with assisted reproductive technologies (ARTs)
including poor embryo quality, increased miscarriage rates,
reduced fertilization, implantation, pregnancy, and live birth
rates (40–48). Inconsistency and conflicting data exist (49–51)
likely due to the results of confounders and bias in the design of
the studies, small sample size, retrospective nature and
heterogeneity of the subjects. One proposed mechanism of the
adverse reproductive outcomes in natural and assisted
reproduction is impaired sperm chromatin integrity and
increased DNA fragmentation rates (52). In a recent systematic
review, 17 out of 19 studies demonstrated an association of
advanced paternal age with significant increase in DNA
fragmentation (53), mostly measured by Sperm Chromatin
Structure Assay ® and sperm chromatin dispersion test. The two
studies that did not find the effect of advanced paternal age on
sperm DNA fragmentation utilized terminal deoxynucleotidyl
transferase-mediated deoxyuridine triphosphate nick end
labelling (TUNEL) assay. Each sperm chromatin integrity and
DNA fragmentation examines different structural aspects of the
target molecule with intrinsic advantages and limitations; thus, it is
clearly important to use a complementary panel of assays to fully
assess sperm quality at the molecular level.

Impact of Advanced Paternal Age on
Offspring Perinatal Health
In a population based cohort study, advanced paternal age was
found to increase risk of premature birth, gestational diabetes and
newborn seizures (54). The odd ratios of birth defects including
cleft lip, diaphragmatic hernia, right ventricular outflow tract
obstruction, pulmonary stenosis was found to increase
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significantly, after adjustment for multiple confounders, with
each year of increase in paternal age (55).

Impact of Advanced Paternal Age on Risks
of Malignancy in Offspring
Results from a prospective cohort study of over 180,000 subjects
indicate that men >35yrs had a 63% higher risk of having offspring
who develop hematologic cancers compared with those whose
fathers were <25yr, with a significant linear dose-response
association noted (56). In a nationwide cohort study of close to
twomillion children born in Denmark from 1978–2010, the risk of
childhood acute lymphoblastic leukemia increases by 13% for
every 5 years increase in paternal age (57). Other offspring
malignancies associated with advanced paternal age include
central nervous system tumors and breast cancer (58–61). One
proposed mechanism for increased cancer risk with advanced
paternal age is telomeres lengthening (62, 63). Telomere
shortening is associated with various diseases and is thought to
be a limitation of longevity. Leukocytes telomeres are lengthened
in offspring of older fathers by 0.5 -2 times per year of paternal age
(62–64). While this may confer some health and longevity
advantage, a higher risk for malignancy has been noted (63, 64).

Impact of Advanced Paternal Age on Risks
of Offspring Mental Health
Advanced paternal age is also linked to psychological and
neurodevelopmental disorders in offspring (65). The relative
risk (RR) of offspring diagnosed with schizophrenia increase
progressively with paternal age from 34 years (RR 2.02, 95% CI,
1.17‐3.51 for the 45‐49 age group; RR 2.96, 95% CI, 1.6‐5.47 for
the older than 50 group) (66). Other investigators have also
reported an increased risk of offspring schizophrenia with
advanced paternal age (67–69) unaccounted by other factors
such as family history of psychosis, maternal age, parental
education and social ability, family social integration, social
class, birth order, birth weight or birth complications (70).
Additionally, the risk of obsessive-compulsive disorder in
offspring was reported to increase with advanced paternal age
(71). After adjusting for maternal and family history, the risk of
offspring of men >54yrs diagnosed with bipolar disorder was
found to be 1.37 times higher than those of men 20–24yrs old
(72). Using paternal sibling comparisons, another cohort study
reported a 24-fold increase of bipolar disorder in offspring born
to fathers 20–24yrs versus those aged 45yrs or older (73). In a
population-based cohort study of over 130,000 births, offspring
from men aged >40yrs were more than fivefold more likely to
develop autism spectrum disorders compared to offspring of
men <30yrs (74), consistent with a registry study using paternal
sibling comparisons (73).

Impact of Advanced Paternal Age on Risks
of Genetic Disorders in Offspring
Several genetic diseases that occur with a low frequency in the
general population are associated with advanced paternal age.
These include Apert, Crouzon and Pfeiffer syndromes,
achondroplasia and other conditions (75). Many of these
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disorders follow an autosomal dominant pattern, consistent with
the opinion that these are mainly de novo mutations in the
germline. Although the incidences of these conditions in
advanced paternal age are generally lower than 1% (76, 77),
they are nonetheless associated with severely debilitating
phenotypes. Hence, prospective parents with advanced paternal
age concerns should be informed and counselled for such risks.

Approximately 0.33% of infants are born with an altered
number of chromosomes. Aneuploidies derive mainly from
non-disjunction events during meiotic divisions, represent the
most common heritable chromosomal anomaly (78). Though
most constitutional aneuploidies originate in the female
germline (79), all men produce approximately 3–5% of
aneuploidy sperm (80) and non-disjunction events, particularly
in sex chromosomes, are more likely to occur with aging (81).
Most de novo structural chromosomal abnormalities are found to
be of paternal origin (82–87). Several studies have shown a
significant age related increase in sperm structural chromosomal
abnormalities (88–93). Results from studies on the association of
advanced paternal age and increased risks of offspring
aneuploidies and structural chromosome anomalies are
inconsistent (82, 94–101). This is in part related to the fact that
the vast majority of chromosome aneuploidies are not compatible
with fetal development, leading to implantation failure or early
miscarriage. Structural chromosomal rearrangements that are
balanced are usually phenotypically normal and are thus
undetected during childhood, while the vast majority of those
that are unbalanced are not compatible with fetal development.
PROPOSED MECHANISMS ON
ADVANCED PATERNAL AGE IMPACT

Studies in animal models suggest that the constitution of the
male germline is relatively robust with far fewer spontaneous
mutations compared to somatic tissues (102, 103). This high
level of genetic fidelity in part explains why even after exposure
to chemotoxic agents or radiation in men, no increase in the
incidence of birth defects, sperm DNA chromatin abnormalities
or de novo germline mutations are noted in their offspring (104,
105). In contrast, paternal aging has been shown to be unique for
the creation of de novomutations in male germline (106). Several
mechanisms of age-induced de novo germline mutations have
been proposed. Cumulative replication error from repeated cell
divisions represents a significant source of germline mutation
(107, 108). Based on whole-genome sequencing studies of
parent-offspring trios, approximately one to three de novo
mutations are introduced to the germline mutational load of
the offspring for each additional year in the father’s age at
conception (109, 110). Selfish spermatogonial selection from
preferentially amplified mitotic clonal expansion of mutated
spermatogonial stem cells (111–113) is another proposed
mechanism to explain why several genetic diseases associated
with advanced paternal age follow the autosomal dominant
pattern. Age-related epigenomic modifications in men, as
reported by our group (114) and others (115) are speculated to
Frontiers in Endocrinology | www.frontiersin.org 4
increase the risk of some rare epigenetic disorders in offspring
conceived with ARTs (116). Other proposed mechanisms involve
post meiotic damage of sperm DNA secondary to the combined
effects of increased oxidative stress (117) and nuclease activities
and aberrant or inadequate repair of such damage by
oocytes (118).
CURRENT STATE OF MANAGEMENT OF
REPRODUCTIVE RISKS ASSOCIATED
WITH ADVANCED PATERNAL AGE

Few professional organizations have provided a clear definition
of advanced paternal age. The American College of Medical
Genetics has defined advanced paternal age as >40yrs at
conception (76) for the purpose of risk counselling. While the
American Society of Reproductive Medicine states that the
sperm donor should be “young enough” (119), the Canadian
Fertility and Andrology Society have set an upper age limit for
sperm donation at 40yrs (120). However, no organizations have
made any clear statements as to whether access to reproductive
technologies after this age should be restricted.

The lack of clear, authoritative clinical guidelines not only
poses challenges to health providers to decline services, but it also
inadvertently allows patients to downplay or ignore the negative
impact of paternal aging. Additional factors further aggravate the
situation: increased access to contraceptives (121), delayed
marriage, high divorce and remarriage rates, increased life-
expectancy (122), increased access to erectile dysfunction
treatment (123) leading to extension of active sex-life
expectancy, continuous spermatogenic activities with aging,
social acceptance in delaying fatherhood as modeled by a
number of male celebrities having children at advanced age,
and widespread usage of social media and dating apps to increase
the odds of courtship (124). These factors have provided
elements for a perfect storm resulting in a rising number of
aging men entering or re-entering fatherhood.
CHALLENGES IN DEVELOPING
EFFECTIVE, PRACTICAL STRATEGIES TO
MITIGATE THE IMPACT OF ADVANCED
PATERNAL AGE

Though experts recognize the importance of disseminating
current knowledge on the negative impacts of advanced
paternal age to clinicians and prospective parents, in practice,
this task is far from simple to execute. For example, when
counselling a couple with an aging male partner seeking
fertility care, merely informing the couple of the potential
adverse outcomes serves little more than risk disclosure.
Obviously, the couple could do nothing to change the age
factor. Alternative options such as using donor gametes or
adoption are unlikely to be accepted when the male partner still
has functional sperm. From their perspectives, risk is
June 2022 | Volume 13 | Article 897101
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not a certainty. Infertile couples who are determined enough to
pursue fertility treatment may feel entirely rational to accept such
risks (125). Additionally, there is ample evidence suggesting that
children born to parents of more advanced age may enjoy further
benefits in life chances such as financial security, parental
psychological maturity and a wider network of support for
upbringing, education and future career development (125,
126). Taken together, the impact of counselling solely for risk
disclosure may not be effective in modifying behavior or
improving treatment outcomes.

To add yet another layer of complexity, denying this couple
further fertility evaluation is not correct since there could be
significant medical conditions including varicoceles, obstruction
of the excurrent ductal system, genetic and endocrinological
disorders that can contribute to impaired semen parameters.
Some causes of male infertility may be correctable to improve
the fertility status of the male partner and allow for a better chance
of conception. Further, detection of impaired semen parameters
may lead to early detection of potential chronic diseases such as
cardiovascular diseases and diabetes mellitus, and even cancers
(127–129). It may be unethical not to diagnose and treat their
infertility. Even for these couples with no correctable male
infertility factors who choose to use ARTs, denying such care
based solely on age may be viewed as age-discrimination.
Additionally, there is a substantial number of children born to
aging fathers from natural pregnancies, yet healthcare providers
generally take no action in prohibiting aging men in the society at
large to have children. Is it rational for them not to intervene with
all men at advanced age who are attempting to have children?

One may propose that a more sensible strategy is perhaps
through general public education for a “preventative” approach.
Unfortunately, this will also encounter obstacles at a different
level. The message that “delayed parenthood could lead to
adverse outcomes” may be misinterpreted as “education and
career commitment are less important” (130, 131). which would
not echo well with the ambitious-minded youngsters Further, as
the negative impact of female aging on reproduction risks is
arguably stronger than that in male aging (44), if the message is
therefore more strongly emphasized to young females than to
young males, one could only imagine the severity of backlash it
would spark from the public.

With regards to reproductive technologies, though planned or
elective egg freezing for non-medical reasons is an established
strategy to reduce the reproductive risks associated with female
aging, planned or elective sperm freezing has not been shown to
be effective in mitigating reproductive and offspring health risks
associated with paternal aging. This is in part related to the fact
that the well-documented chromatin cryodamage from sperm
cryopreservation (132–136) can potentially offset any potential
benefits from sperm banking. Though sperm cryopreservation is
non-invasive and widely accessible, the fees associated with
semen storage for years can be significant. Of note, ARTs are
required when using cryopreserved sperm. Intra-uterine
insemination (IUI) can be used but given its lower success rate
compared to in vitro fertilization (IVF) and intracytoplasic
sperm injection (ICSI), multiple semen samples may have to
Frontiers in Endocrinology | www.frontiersin.org 5
be cryopreserved to allow for repeated trials of IUI to have a
reasonable success rate. In practice, advanced assisted
reproduction such as ICSI are often required when using
cryopreserved sperm. Aging men who previously banked
sperm at a younger age may opt to attempt conception
through intercourse when they realize the cost, invasiveness
and potential risks on the female partners and offspring
associated with using ICSI (137–139). Ultimately, large scale
studies to unbiasedly compare the reproductive outcomes and
long-term offspring health of with natural conception versus
long-term cryopreserved sperm with ICSI are required to
establish the benefits and cost-effectiveness of planned or
elective sperm freezing against male aging.

Accumulating evidence from the past two decades links
impaired sperm chromatin integrity and DNA fragmentation
to increased risk of pregnancy loss and reduced success rate with
assisted reproductive technologies. Growing interest in recent
years on various sperm selection strategies has led to studies that
provided preliminary evidence of improving reproductive
outcomes in selected infertile couples (140, 141). However, the
question of whether these sperm selection strategies are effective
in cases of advanced paternal age, particularly in lowering the
risks of health conditions linked to aberrant chromatin, remains
to be answered.
LOOKING FORWARD

In dealing with the risks association with advanced paternal age,
too often wrong questions were asked: “how old is too old?”,
“What is the paternal age cut-off at which we can justify
imposing restriction of access to reproductive care?” Although
most experts agree that the negative impacts of advanced
paternal age can be detected in some men after the age of 40
years, currently there is no consensus on the optimal definition
of advanced paternal age as studies have used different age
inclusion and different outcomes with different definitions. The
progressive nature of the physiological changes associated with
male aging is a main reason why it is challenging for investigators
to reach agreement on a clear definition for aging.

To begin the mission to reduce risks associated with paternal
aging, paradoxically, the focus of discussion must first be shifted
away from chronological age to gamete-mediated risk on
reproductive outcomes and offspring health. In other words,
advanced paternal age should be treated as other male factor
infertility causes with a focus on identifying elements that can be
ameliorated, assessment of gamete functional status, and
selection of the gametes with the best chance for a successful
procreation. Health policy makers and healthcare providers may
have to accept the fact that the growing number of aging men
having children is an inevitable phenomenon in the current
direction of societal evolution. It is equally important to
recognize that strategies aiming to prohibit or dissuade this
behavior through establishing a clear paternal age limit for
provision of fertility care or through education and counselling
can readily be challenged and therefore deemed ineffective.
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An alternative approach is to have policy makers, clinicians and
investigators work closely together to synthesize information on the
risks that can be disseminated to prospective parents to allow them
to engage in a shared decision-making model with their healthcare
providers. Risks on adverse reproductive outcomes and offspring
health that are gamete mediated should be comprehensively
assessed and defined, using established diagnostic tools at the
molecular levels. It is important to emphasize that, in addition to
aging, gamete mediated risks may well be attributed to other health
conditions such as intrinsic genetic disorders, gonadotoxin
exposure, history of cytotoxic therapies, metabolic derangements,
obesity, smoking, and varicoceles. Thus, communication of gamete
mediated reproductive risks should be conducted across the board
as a standard of practice to all male partners seeking fertility care
and not just to those at an advanced age. Shifting the focus of
counselling from chronological age to gamete mediated risks allows
clinicians to formulate a treatment plan or decline treatment
without being accused of age discrimination. Finally, additional
psychosocial concerns beyond gamete quality in the context of
advanced paternal age such as life-expectancy of parents, should
also be an important consideration in this shared decision-
making model.

To minimize or mitigate the negative impact of advanced
paternal age, comprehension of the collective body of scientific
Frontiers in Endocrinology | www.frontiersin.org 6
evidence is only the first step. Continued dialogues must be
maintained among stakeholders at all levels, including
investigators, healthcare providers, health policy makers and
patients, on emerging data and their implications at the
personal as well as societal levels. Most importantly, it is
imperative for all parties to collaborate rigorously, with the
goal of catalyzing a new agenda to reconceptualize the
management strategy of advanced paternal age in the context
of reproductive care of prospective parents.
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124. Castro Á, Barrada JR. Dating Apps and Their Sociodemographic and
Psychosocial Correlates: A Systematic Review. Int J Environ Res Public
Health (2020) 17(18):6500. doi: 10.3390/ijerph17186500

125. Smith KR. Paternal Age Bioethics. J Med Ethics (2015) 41(9):775–9. doi:
10.1136/medethics-2014-102405

126. Janecka M, Rijsdijk F, Rai D, Modabbernia A, Reichenberg A. Advantageous
Developmental Outcomes of Advancing Paternal Age. Transl Psychiatry
(2017) 7(6):e1156. doi: 10.1038/tp.2017.125
Frontiers in Endocrinology | www.frontiersin.org 9
127. Latif T, Kold Jensen T, Mehlsen J, Holmboe SA, Brinth L, Pors K, et al.
Semen Quality as a Predictor of Subsequent Morbidity: A Danish Cohort
Study of 4,712 MenWith Long-Term Follow-Up. Am J Epidemiol (2017) 186
(8):910–7. doi: 10.1093/aje/kwx067

128. Choy JT, Eisenberg ML. Male Infertility as a Window to Health. Fertil Steril
(2018) 110(5):810–4. doi: 10.1016/j.fertnstert.2018.08.015

129. De Jonge C, Barratt CLR. The Present Crisis in Male Reproductive Health:
An Urgent Need for a Political, Social, and Research Roadmap. Andrology
(2019) 7(6):762–8. doi: 10.1111/andr.12673

130. Simoni MK, Mu L, Collins SC. Women's Career Priority is Associated With
Attitudes Towards Family Planning and Ethical Acceptance of Reproductive
Technologies. Hum Reprod (2017) 32(10):2069–75. doi: 10.1093/humrep/
dex275

131. Blair-Loy M. Competing Devotions: Career and Family Among Women
Executives. Cambridge, MA: Harvard University Press (2003).

132. Lusignan MF, Li X, Herrero B, Delbes G, Chan PTK. Effects of Different
Cryopreservation Methods on DNA Integrity and Sperm Chromatin Quality
in Men. Andrology (2018) 6(6):829–35. doi: 10.1111/andr.12529

133. Nijs M, Ombelet W. Cryopreservation of Human Sperm. Hum Fertil (2001)
4:158–63. doi: 10.1080/1464727012000199232

134. Paoli D, Pelloni M, Lenzi A, Lombardo F. Cryopreservation of Sperm:Effects
on Chromatin and Strategies to Prevent Them. Adv Exp Med Biol (2019)
1166:149–67. doi: 10.1007/978-3-030-21664-1_9

135. Jennings MO, Owen RC, Keefe D, Kim ED. Management and Counseling of
the Male With Advanced Paternal Age. Fertil Steril (2017) 107:324–8. doi:
10.1016/j.fertnstert.2016.11.018

136. Le MT, Nguyen TTT, Nguyen TT, Nguyen TV, Nguyen TAT, Nguyen QHV,
et al. Does Conventional Freezing Affect Sperm DNA Fragmentation? Clin
Exp Reprod Med (2019) 46:67–75. doi: 10.5653/cerm.2019.46.2.67

137. Pinborg A, Wennerholm UB, Romundstad LB, Loft A, Aittomaki K,
Soderstrom-Anttila V, et al. Why do Singletons Conceived After Assisted
Reproduction Technology Have Adverse Perinatal Outcome? Systematic
Review and Meta-Analysis. Hum Reprod Update (2013) 19:87–104. doi:
10.1093/humupd/dms044

138. Berntsen S, Söderström-Anttila V, Wennerholm U-B, Laivuori H, Loft A,
Oldereid NB, et al. The Health of Children Conceived by ART: ‘The Chicken
or the Egg’. Hum Reprod Update (2019) 25:137–58. doi: 10.1093/humupd/
dmz001

139. Zhao J, Yan Y, Huang X, Li Y. Do the Children Born After Assisted
Reproductive Technology Have an Increased Risk of Birth Defects? A
Systematic Review and Meta-Analysis. J Matern Fetal Neonatal Med
(2020) 33:322–33. doi: 10.1080/14767058.2018.1488168

140. Herrero MB, Lusignan MF, Son WY, Sabbah M, Buckett W, Chan P. ICSI
Outcomes Using Testicular Spermatozoa in non-Azoospermic Couples With
Recurrent ICSI Failure and No Previous Live Births. Andrology (2019) 7
(3):281–7. doi: 10.1111/andr.12591

141. Baldini D, Ferri D, Baldini GM, Lot D, Catino A, Vizziello D, et al. Sperm
Selection for ICSI: Do We Have a Winner? Cells (2021) 10(12):3566. doi:
10.3390/cells10123566

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Chan and Robaire. This is an open-access article distributed under
the terms of the Creative Commons Attribution License (CC BY). The use, distribution
or reproduction in other forums is permitted, provided the original author(s) and the
copyright owner(s) are credited and that the original publication in this journal is
cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.
June 2022 | Volume 13 | Article 897101

https://doi.org/10.1007/978-3-319-71815-6_16
https://doi.org/10.1038/nrurol.2013.18
https://doi.org/10.1038/35049558
https://doi.org/10.1016/S0140-6736(55)92305-9
https://doi.org/10.1038/ng.3292
https://doi.org/10.1038/ng.3469
https://doi.org/10.1038/s41588-018-0226-5
https://doi.org/10.1126/science.1085710
https://doi.org/10.1111/j.2047-2927.2013.00175.x
https://doi.org/10.1186/s13148-020-00988-1
https://doi.org/10.1016/j.fertnstert.2013.05.039
https://doi.org/10.1016/S0140-6736(03)13592-1
https://doi.org/10.3390/biology9090282
https://doi.org/10.1146/annurev-genet-112618-043617
https://doi.org/10.1016/j.fertnstert.2021.01.045
https://cfas.ca/_Library/clinical_practice_guidelines/Third-Party-Procreation-AMENDED-.pdf
https://cfas.ca/_Library/clinical_practice_guidelines/Third-Party-Procreation-AMENDED-.pdf
https://doi.org/10.1097/01.AOG.0000459866.14114.33
https://doi.org/10.1001/jama.2019.16932
https://doi.org/10.1001/jama.2019.16932
https://doi.org/10.1016/j.jsxm.2020.01.027
https://doi.org/10.3390/ijerph17186500
https://doi.org/10.1136/medethics-2014-102405
https://doi.org/10.1038/tp.2017.125
https://doi.org/10.1093/aje/kwx067
https://doi.org/10.1016/j.fertnstert.2018.08.015
https://doi.org/10.1111/andr.12673
https://doi.org/10.1093/humrep/dex275
https://doi.org/10.1093/humrep/dex275
https://doi.org/10.1111/andr.12529
https://doi.org/10.1080/1464727012000199232
https://doi.org/10.1007/978-3-030-21664-1_9
https://doi.org/10.1016/j.fertnstert.2016.11.018
https://doi.org/10.5653/cerm.2019.46.2.67
https://doi.org/10.1093/humupd/dms044
https://doi.org/10.1093/humupd/dmz001
https://doi.org/10.1093/humupd/dmz001
https://doi.org/10.1080/14767058.2018.1488168
https://doi.org/10.1111/andr.12591
https://doi.org/10.3390/cells10123566
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles

	Advanced Paternal Age and Future Generations
	Introduction
	Animal Models for Studying Paternal Aging
	Mouse Models
	Rat Models
	Advantages and Limitations of Animal Models Over Human Studies

	Impact of Advanced Paternal Age in Men and on Their Progeny
	Impact of Advanced Paternal Age on Male Fertility Status
	Impact of Advanced Paternal Age on Assisted Reproductive Outcomes
	Impact of Advanced Paternal Age on Offspring Perinatal Health
	Impact of Advanced Paternal Age on Risks of Malignancy in Offspring
	Impact of Advanced Paternal Age on Risks of Offspring Mental Health
	Impact of Advanced Paternal Age on Risks of Genetic Disorders in Offspring

	Proposed Mechanisms on Advanced Paternal Age Impact
	Current State of Management of Reproductive Risks Associated With Advanced Paternal Age
	Challenges in Developing Effective, Practical Strategies to Mitigate the Impact of Advanced Paternal Age
	Looking Forward
	Author Contributions
	Funding
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


