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Abstract

Table tennis is important and challenging project for robotics research, and table tennis

robotics receives a lot of attention from academics. Trajectory tracking and prediction of

table tennis is an important technology for table tennis robots, and its estimation accuracy is

also disturbed by non-Gaussian noise. In this paper, a novel Kalman filter, called minimum

error entropy unscented Kalman filter (MEEUKF), is employed to estimate the motion trajec-

tory of physical model of a table tennis. The simulation results show that the MEEUKF algo-

rithm shows outstanding performance in tracking and predicting the trajectory of table tennis

compared to some existing algorithms.

Introduction

Table tennis is a interesting game for humans to master [1, 2], and it is also an indispensable

part of human life. It is also an important and challenging project for robotics research. Accu-

rate estimation of the trajectory of a table tennis is fundamental to the sport for robots. This

paper focuses on the estimation and prediction of the trajectory of table tennis.

Accurate trajectory estimation is essential for hitting the table tennis and winning the game

for robotic table tennis. The physical model of table tennis is very important for the trajectory

and prediction of its trajectory. A algorithm [3] based on the forces applied approximate physi-

cal model for predicting the trajectory of a table tennis is proposed. A physical flight models

that does not take into account the spin of a table tennis [4, 5]. In order to obtain more accu-

rate tracking, the application of more accurate models in table tennis trajectory tracking stud-

ies is extremely necessary. A physical model [6, 7] that takes into account the rotation of a

table tennis is applied to a table tennis robot. Some vision system [8, 9] that can predict the tra-

jectory of spinning table tennis has been developed. The physical model of table tennis is non-

linear and the observations are often disturbed by impulse noise, which poses difficulties for

the trajectory of the ball.

In recent years, information theoretic learning (ITL) is widely used in the context of state

estimation problem [10–15] for deterministic models. Minimum error entropy (MEE)
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criterion [16], in ITL, is a powerful tool in processing original data mixed with non-Gaussian

noise. Moreover, the criterion is widely used in adaptive filter [17] and Kalman filter. To cope

with the problem of state estimation of nonlinear system, the minimum error entropy

unscented Kalman filter (MEEUKF) [12] and cubature information filter to be based on mini-

mum error entropy (MEE-CIF) [18] are derived. These algorithms based on the MEE criterion

are able to achieve outstanding performance in estimating the state of a non-linear non-Gauss-

ian model. In this study, a physical model that takes into account the spin of table tennis is

used, and we use MEEUKF to estimate this non-linear model in the presence of non-Gaussian

noise. The simulation results show that the MEEUKF algorithm shows outstanding perfor-

mance in tracking and predicting the trajectory of table tennis compared to some existing

algorithms.

Model

The state of the table tennis is represented by using the vector xk with the following form

xk ¼ ½px; py; pz; vx; vy; vz;wx;wy;wz�
T
; ð1Þ

where p, v, and w denote the position, linear velocity, and angular velocity of the table tennis,

respectively. [�]T represents the transpose operation of a matrix.

Assuming that only the position of the table tennis can be observed, and the observation

vector can be represented as

zk ¼ ½px; py; pz�
T
; ð2Þ

where zk represents observation vector. Under ideal conditions, it is considered that the value

of the angular velocity tends to be stable over a short period of time. The equation of motion

for a table tennis can then be constructed as
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>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

where [px,k, py,k, pz,k, vx,k, vy,k, vz,k, wx,k, wy,k, wz,k]T denotes the state of the table tennis at

moment k. t denotes time interval, and uk = [u1,k, u2,k, u3,k, u4,k, u5,k, u6,k, u7,k, u8,k, u9,k] is the

process noise with zero mean. k1 = CD ρA/2m represents air resistance factor (CD is related to
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the roughness of the ball surface, and CD = 0.45 [19]; ρ = 1.205kg/m3 indicates air density; A is

the maximum cross-sectional area of a table tennis),k2 represents the Magnus force factor [20]

(CL = 1.23 the lift factor; D = 0.04m the diameter of the table tennis; m = 0.0027kg the mass of

the table tennis), V indicates the magnitude of the speed of the table tennis.

The observation equation can be set as
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Here, rk indicates observation noise, and observed noise is not correlated with process

noise.

UKF

According to [21], the process equation and measurement equation of non-linear system can

be written as following form

xk ¼ f k xk� 1ð Þ þ uk� 1;

zk ¼ hk xkð Þ þ rk� 1;
ð5Þ

(

where xk 2 R
p

stands for the system state at instant k, zk 2 R
q

reoresents the measurement

vector. fk(�) and hk(�) are the process and measurement function at instant k, f kðxk� 1Þ 2 R
p,

hkðxkÞ 2 R
q
, uk� 1 2 R

p
, and rk� 1 2 R

q
present the process and measurement Gaussian noise

with covariances Qk−1 and Rk respectively. And Qk−1 and Rk are both zero means.

a) The update sigma points Xi,k−1|k−1 are evaluated by the following formulas

X0;k� 1jk� 1 ¼ x̂k� 1jk� 1;

Xi;k� 1jk� 1 ¼ x̂k� 1jk� 1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nþ lð ÞPk� 1jk� 1

q� �

i
; i ¼ 1; 2; � � � 2p;

ð6Þ

8
<

:

where x̂k� 1jk� 1 denotes the predict state at time k − 1. ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ lÞPk� 1jk� 1

q
Þi is the ith column

vector of the square root matrix of (n + λ)Pk−1|k−1, λ presents a composite scaling factor,

which is defined as λ = α2(p + o) − p. Here, α decides the range of the sigma points, which is

set as a small positive value, and parameter o is always set to 3 − p for p< 3 and 0 for p� 0

b) The propagated process sigma points Xi,k|k−1 are computed by

Xi;kjk� 1 ¼ f kðXi;k� 1jk� 1Þ; i ¼ 0; 1; 2; � � � ; 2p: ð7Þ

c) The updated state of system can be obtained by

xkjk� 1 ¼
Xm

i¼0

wm
i Xi;kjk� 1; ð8Þ
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where wm
i can be obtained by
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0
¼

l

pþ l
;
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i ¼

1

2ðnþ lÞ
; i ¼ 1; 2; � � � ; 2p:

8
>><

>>:

ð9Þ

d) The error covariance Pk|k−1 is estimated by
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T
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where wc
i can be obtained by
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8
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>>:

ð11Þ

the parameter β is concerned with the prior knowledge of the distribution of x̂k� 1jk� 1. For

Gaussian distribution, its value is set to 2.

e) The measurement sigma points Xi,k|k−1 and the propagated measurement sigma points

Zi,k|k−1 are estimated by

X̂0;kjk� 1 ¼ x̂kjk� 1;

X̂ i;kjk� 1 ¼ x̂kjk� 1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nþ lð ÞPkjk� 1

q� �

i
; i ¼ 1; 2; � � � ; 2p;

Zi;kjk� 1 ¼ hk X̂ i;kjk� 1

� �
; i ¼ 1; 2; � � � ; 2p:

ð12Þ

8
>>>><

>>>>:

f) Calculate the predicted measurement ẑ i;kjk� 1

ẑ i;kjk� 1 ¼
Xm

i¼1

wm
i Zi;kjk� 1: ð13Þ

g) The innovation covariance matrix Pzz,k|k−1 can be obtained by

Pzz;kjk� 1 �
Xm

i¼1
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iZi;kjk� 1Z

T
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� ẑ i;kjk� 1ẑ
T
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h) Estimate the cross-covariance matrix
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: ð16Þ
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i) The Kalman gain Kk can be evaluated by

Kk ¼ Pxz;kjk� 1P
� 1

zz;kjk� 1
: ð17Þ

j) Get the updated state x̂kjk becomes

x̂kjk ¼ x̂kjk� 1 þ Kkðzk � ẑ kjk� 1Þ: ð18Þ

MEEUKF

We apply a statistical linearization and use measurement slope matrix Hk ¼ PT
xz;kjk� 1

P� 1

kjk� 1
to

solve the nonlinear estimation problem. After state prediction, we obtain the predicted state

vector x̂kjk� 1 and the covariance Pk|k−1 of predict error ξk ¼ xk � x̂kjk� 1. By getting x̂kjk� 1 and ξk,
we can linearise the nonlinear equation

zk ¼ hk xkð Þ þ rk

¼ Hkξk þ hk x̂kjk� 1

� �
þ ςk þ rk;

ð19Þ

where ςk is the statistical linearization error and its covariance can be written as

Fk ¼ Pkjk� 1 � PT
xz;kjk� 1

P� 1
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Pxz;kjk� 1. We can get the batch mode regression form as follow:
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which we set vk ¼ ξk� 1 Bk þ rk �
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Both sides of (20) are left multiplied by S� 1

k , and one can obtain

dk ¼Wkxk þ ek; ð22Þ
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8
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>>>>>>>>>>:
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Now we introduce the MEE based cost function:

J xkð Þ ¼
1

L2

XL

i¼1

XL

i¼1

Gsðek;i � ek;jÞ; ð24Þ

where Gσ(x) = exp(−x2/2σ2) is Gaussian kernel function.

As part 2.2 mentioned, to minimize the error entropy, we should maximize the cost func-

tion. Calculate the derivation of J(xk).

rJ xkð Þ ¼
2

L2s
s WT
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k φek

� �
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½φ�ij ¼

XL

m¼1
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8
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8
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>>>>>>>>>>>>:

SettingrJ(xk) = 0, we can get the maximum state xk.

xk ¼ ½W
T
kχWk�

� 1
WT

kχdk;

χ ¼ � � φ:
ð26Þ

(

To express xk by Bpk and Brk instead of Wk, we denote:

χ ¼
χxx χzx

χxz χzz

" #

; ð27Þ

where χxx 2 R
p�p

, χzx 2 R
q�p

, χxz 2 R
p�q

, χzz 2 R
q�q

.

With a few simple derivations [11], one can obtain the state vector of system

x̂
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ð28Þ

Here,

�Pxx;kjk� 1 ¼ S
� 1
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� �T
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;

�Pxy;kjk� 1 ¼ S
� 1
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� 1

p;kjk� 1
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� 1
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8
>>>>>>>>>><

>>>>>>>>>>:

Here, the estimation ends as k x̂ tkjk� 1
� x̂ t� 1

kjk� 1
k = k x̂ tkjk� 1

k ⩽g and the updated sate

x̂kjk ¼ x̂ tkjk� 1
, γ is the accuracy we want the filter can achieve. The final covariance Pk|k is
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calculated as:

Pkjk ¼ ½I � �K kHk�Pkjk� 1½I � �K kHk�
T
þ �K kRk

�K T
k : ð30Þ

Algorithm 1: MEEUKF
Input: The model of system,observation data zk
Output: Estimation of the state of system x̂kjk
1 Parameters setting: set proper kernel bandwidth σ; initial value
(x̂0j0) of the system, and an initial covariance matrix P0|0.
2 for i  1 to N do
3 Prediction of the state of the system using (6), (7), (8), and (9);
4 Prediction of the covariance of the system using (10) and (11);
5 Calculate matrix �Pxx;kjk� 1, �Pxy;kjk� 1, �Pyx;kjk� 1, and �Pyy;kjk� 1 using (29);
6 Calculate Kalman gain and update state x̂kjk of system utilizing (28)
7 Update covariance Pk|k using (30)
8 end

Simulation

In this part, the MEEUKF is applied to a table tennis motion model to verify the performance

of the algorithm, and the effect of the parameters on the performance of the algorithm was also

investigated. In the following simulations, the initial value of the table tennis state is set to [0,

0, 0, 3, 5, 5, −56, −53, 47]. All simulation results, in this paper, are averaged over 100 indepen-

dent Monte Carlo runs, and in one run, 100 samples are utilised to measure the MSD that is

used to measure the performance of MEEUKF algorithm.

MSD ¼ E½jjxk � x̂kjkjj�: ð31Þ

We consider the situation where the state transition noise is Gaussian distribution and the

observation noise is mixed-Gaussian and Rayleigh distribution, and these distributions of

Fig 1. The trajectory of table tennis. The picture shows the trajectory of a table tennis.

https://doi.org/10.1371/journal.pone.0269257.g001
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these noises are shown below:

uk� 1 � N 0; 0:01ð Þ;

rk � 0:9N 0; 0:01ð Þ þ 0:1N 0; 100ð Þ:
ð32Þ

(

Fig 2. Convergence curves under different noises. The figure depicts the performance of the algorithm compared

with UKF and MCCUKF in the presence of Mixed Gaussian and Rayleigh noises. (a) Mixed Gaussian noise. (b)

Rayleigh noise.

https://doi.org/10.1371/journal.pone.0269257.g002
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Here, N(�, �) denotes Gaussian distribution. Moreover, probability density function of the

Rayleigh distribution is expressed as:

r tð Þ ¼
t
s2

exp �
t2

2s2

� �

: ð33Þ

The noise that obeys the Rayleigh distribution is defined as v� R(σ).

First, the performance of MEEUKF applied to the table tennis motion model is compared

with some existing algorithms such as UKF, MCCUKF with the presence of mixed Gaussian

noise and Rayleigh noise. A table tennis motion model in the section named Model is used to

test the performance of these algorithms, and the trajectory of the table tennis is shown in Fig

1. The convergence curves and parameters of these algorithms are shown in Fig 2 with the

assurance that the initial convergence rate of these algorithms is almost identical. It is obvious

that MEEUKF performs best when tracking table tennis in the presence of mixed Gaussian

and Rayleigh noises.

Second, the effect of kernel width σ on algorithm performance is investigated. We set differ-

ent kernel width σ = 0.1, 0.5, 5.0, 10.0, 100.0 separately to explore its impact on the perfor-

mance of the algorithm, and the other parameters of the algorithm and noise are the same as

in the previous simulations. The steady-state MSD and convergence curves of the algorithm

are shown in Fig 3 and Table 1 respectively. One can obtain that the value of σ is too large or

Fig 3. Convergence curves with different kernel bandwidths γ. The picture depicts the convergence curves of the

algorithm with different kernel bandwidths.

https://doi.org/10.1371/journal.pone.0269257.g003

Table 1. MSDs with different kernel bandwidths σ.

Bandwidths σ 0.1 0.3 0.5 1.0 5.0 10.0 20.0 50.0 100.0

MSD -31.22 -32.82 -34.36 -29.14 -20.29 -27.35 -26.52 -25.9 -25.35

The table depicts the relationship between the performance of the algorithm and the bandwidths σ.

https://doi.org/10.1371/journal.pone.0269257.t001
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too small to achieve the best performance, and the tracking performance of the MEEUKF algo-

rithm for table tennis when σ = 0.5.

Conclusion

For non-linear and non-Gaussian model of table tennis, the MEEUKF algorithm is used to to

estimate and predict the trajectory of this model. This algorithm is able to suppress non-Gauss-

ian noise very well. Simulations show MEEUKF performs well in predicting table tennis trajec-

tories compared with some existing algorithms.
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