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Endocrine release of insulin principally controls glucose

homeostasis. Nutrient-induced exocytosis of insulin granules

from pancreatic b-cells involves ion channels and mobiliza-

tion of Ca2þ and cyclic AMP (cAMP) signalling pathways.

Whole-animal physiology, islet studies and live-b-cell ima-

ging approaches reveal that ablation of the kinase/phospha-

tase anchoring protein AKAP150 impairs insulin secretion in

mice. Loss of AKAP150 impacts L-type Ca2þ currents, and

attenuates cytoplasmic accumulation of Ca2þ and cAMP in

b-cells. Yet surprisingly AKAP150 null animals display im-

proved glucose handling and heightened insulin sensitivity

in skeletal muscle. More refined analyses of AKAP150 knock-

in mice unable to anchor protein kinase A or protein phos-

phatase 2B uncover an unexpected observation that tethering

of phosphatases to a seven-residue sequence of the anchoring

protein is the predominant molecular event underlying these

metabolic phenotypes. Thus anchored signalling events that

facilitate insulin secretion and glucose homeostasis may be

set by AKAP150 associated phosphatase activity.
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Introduction

Reversible phosphorylation of proteins contributes to the

regulation of glucose homeostasis and insulin action.

Stimulus-secretion coupling of insulin release from b-cells is

a multistep process: Ca2þ influx triggers fusion of insulin

granules with the cell membrane and this can be modulated

by calmodulin, phospholipid or cAMP-dependent protein

kinases (Bratanova-Tochkova et al, 2002; Hiriart and

Aguilar-Bryan, 2008). Release of insulin can be influenced

by several classes of protein phosphatases, including the

Ca2þ/calmodulin-dependent enzyme PP2B (calcineurin)

(Sim et al, 2003). Yet the same cohort of second messenger-

regulated enzymes enacts hormone-stimulated changes

in glucose uptake and utilization in insulin target tissues.

The differential use of these kinase and phosphatase

combinations is made possible by anchoring proteins that

provide a molecular framework for the compartmentalization

of these enzymes. The principle functions of these non-

catalytic regulatory proteins are two-fold: to target protein

kinases and phosphatases to cellular microenvironments

where they have access to particular substrates, and to

segregate their binding partners in a manner that prevents

the indiscriminate relay of signals (Scott and Pawson, 2009).

Prototypic examples of these signal-organizing elements are

A-kinase anchoring proteins (AKAPs), a group of multivalent

binding proteins classified on the basis of their ability to

interact with the cAMP-dependent protein kinase (PKA). It is

recognized that PKA phosphorylation contributes to b-cell

physiology (Seino and Shibasaki, 2005), though the role of

PKA anchoring is less well understood. While peptides that

globally disrupt the PKA–AKAP interface negatively impact

incretin-stimulated insulin secretion (Lester et al, 1997), the

anchoring proteins responsible have not been identified.

One anchoring protein of particular interest is AKAP79/150

(gene name: AKAP5) that targets enzymes including PKA, a

guanine nucleotide exchange factor (Epac2), protein kinase C

(PKC) and PP2B to the membrane (Hoshi et al, 2005; Nijholt

et al, 2008). We hypothesized that the murine orthologue,

AKAP150, could be a potential modulator of glucose

homeostasis, as previous studies have shown that this

anchoring protein is functionally coupled to G protein-

coupled receptors, adenylyl cyclases and ion channels (Gao

et al, 1997; Fraser et al, 2000; Bauman et al, 2006). In this

report, we show that manipulation of the AKAP150 gene has

metabolic implications for glucose homeostasis. AKAP150 null

mice secrete less insulin from b-cells, yet display improved

glucose handling because of increased insulin sensitivity in

target tissues. These metabolically advantageous characteristics

are retained in AKAP150DPIX mice that lack a seven amino-

acid sequence responsible for tethering PP2B. Hence anchoring

of PP2B is an hitherto unrecognized molecular and metabolic

determinant that contributes to glucose homeostasis.

Results

AKAP150 organizes insulin secretion

Membrane depolarization and the concurrent mobilization

of Ca2þ and cAMP signalling cascades drive the regulated
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exocytosis of insulin granules (Hinke et al, 2004; Hiriart and

Aguilar-Bryan, 2008; Seino et al, 2011). Although anchored

PKA augments GLP-1 mediated insulin secretion (Lester et al,

1997), a question of broader significance is whether AKAPs

facilitate nutrient-induced insulin release. Several RII binding

proteins were detected in INS-1(832/13) insulinoma cells by

overlay assay (Figure 1A). These included AKAP150 and

AKAP220 (Figure 1B; Supplementary Figure S1A and B):

two channel-associated AKAPs that integrate Ca2þ and

cAMP signals (Gao et al, 1997; Yang et al, 2008). A gene-

silencing screen evaluated the role of each AKAP in hormone

secretion from INS-1 cells. Co-transfected human growth

hormone (hGH) served as a marker of exocytosis

(Supplementary Figure S1C–J). Under basal conditions,

insulin secretion was unaltered from AKAP150-depleted

cells (Figure 1C and D; n¼ 6). Blunting effects on insulin

secretion were measured upon administration of 20 mM

glucose and in response to GLP-1 or forskolin (Figure 1D

and E). In contrast, gene silencing of AKAP220 had no

measurable effect on basal or stimulated hormone release

from INS-1 cells (Supplementary Figure S1F–J).

More definitive investigation of AKAP150-dependent

insulin regulation was performed in AKAP150KO mice

(Figure 1F–M). LoxP sites flanking exon 2 of the AKAP5

locus were introduced to permit deletion of the entire open

reading frame (Tunquist et al, 2008). Loss of AKAP150

protein from brain and islet extracts was initially confirmed

by immunoblot (Figure 1G; Supplementary Figure S1K–M).

Subsequent immunofluorescent analyses of paraffin-em-

bedded pancreatic sections revealed that AKAP150 is present
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Figure 1 Loss of AKAP150 supresses insulin secretion in vitro and in vivo. (A) Detection of AKAPs in INS-1(832/13) lysate by digoxigenin-
labelled RII overlay in the presence of 50mM scrambled peptide (lane 1) or 50mM AKAPis PKA-anchoring disruptor peptide (lane 2). (B) Co-
purification of AKAP220 (top) and AKAP150 (mid) with PKA-RII (bottom) from INS-1(832/13) lysate by cAMP-agarose affinity chromato-
graphy. Ethanolamine agarose was used as a control. (C) Immunoblot demonstrating gene silencing of AKAP150. Cells were co-transfected
with human growth hormone and pSilencer or p150i, and used in secretion studies; see Supplementary Figure S1C for quantification.
(D) Measurement of Glucose-, GLP-1- and (E) forskolin-induced insulin secretion from INS-1(832/13) cells co-transfected with pSilencer or
p150i. (F) Schematic of AKAP150KO mice generation. Exon2 of the AKAP5 locus was flanked with loxP sites and mice were crossed onto a EIIa-
Cre-deleter line to excise the AKAP5 coding region. (G) Immunoblot detection of AKAP150, PKA-RII and GAPDH loading control from brain and
islets of Langerhans lysates from matched WTand AKAP150KO mice. (H) Immunofluorescence detection of AKAP150 (green), E-cadherin (red)
and insulin (blue) from paraffin-embedded sections of wild-type and AKAP150 null mouse pancreas, and enlarged composite image (I).
(J) Plasma insulin concentrations measured from fasted wild-type and AKAP150KO mice and following IP glucose (1.5 g/kg) injection.
(K) Insulin content of acid extracted pancreata from WT (grey) and AKAP150KO (green) mice. (L, M) Depict representative 10� images from
WT and AKAP150KO pancreata (respectively) used for determination of islet area and b-cell mass (Table I) as per Materials and methods;
sections are stained for insulin (blue), glucagon (green) and E-Cadherin (red). Data represent mean±s.e.m. *Pp0.05, **Pp0.01. Immunoblots
are representative of 3–6 independent experiments. Age-matched male mice were used for all experiments (WT: 18.5±0.5 weeks, 29.1±0.5 g;
AKAP150KO: 18.6±0.6 weeks, 28.3±0.5 g). Figure source data can be found with the Supplementary data.
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in wild-type islets but is not detected in equivalent samples

from knockout animals (Figure 1H). At higher magnification,

the AKAP150 signal was less prevalent in the non-insulin-

positive islet periphery (Figure 1I). Moreover, only trace levels

of AKAP150 were present in the a-cell-derived line (aTC1–6;

Supplementary Figure S1N). Metabolic studies performed on

matched male mice revealed that fasted serum insulin levels

were reduced 27.4±8.1% in AKAP150KO mice compared to

WT. After IP glucose injection, circulating serum insulin was

27.0±5.6% lower in AKAP150KO animals (Figure 1H; n¼ 21,

Po0.05). A similar trend was evident at early time points

(Supplementary Figure S1O). Since total pancreatic insulin

content (Figure 1K; n¼ 20) and b-cell mass and area

(Figure 1L and M, and Table I; n¼ 3) were similar in both

genotypes, our findings are consistent with a secretory defect

when the AKAP150 gene is deleted.

AKAP150 coordinates Ca2þ and cAMP-stimulated

insulin secretion from b-cells

Next, we monitored a range of cellular and molecular events

associated with insulin secretion in primary islets from

AKAP150KO mice. Static insulin release measurements con-

firmed that islets from both genotypes responded to glucose.

However, less insulin was discharged from AKAP150 null

islets (Figure 2A). Dynamic insulin release, evaluated by islet

perifusion, also detected a modest reduction in the rate of

insulin secretion from AKAP150KO islets. The peak secretory

response to 11 mM glucose was 31.5±10.9% lower from KO

islets, and reached statistical significance upon delivery of the

potent insulin secretagogue forskolin (Figure 2B; n¼ 5). The

viability of islet preparations was determined by 3-(4,5-

dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT)

assay (Supplementary Figure S2A).

Insulin stimulus-secretion coupling involves membrane

depolarization and Ca2þ influx through voltage-gated Ca2þ

channels (Hiriart and Aguilar-Bryan, 2008; Seino et al, 2011).

AKAP150 directs phosphorylation-dependent modulation of

these channels (Oliveria et al, 2007). Dissociated b-cells,

identified on the basis of capacitance (45pF, Supple-

mentary Figure S2D), were voltage clamped in whole-cell

patch mode. Loss of AKAP150 reduced peak current densities

by 26.7±6.8% in b-cells (Figure 2C and D; green, n¼ 11,

Po0.05). Control experiments confirmed that mRNA levels

for the pore-forming a1C and accessory b3 channel subunits,

voltage dependence of channel opening, and steady-state

inactivation parameters were similar in both genotypes

(Figure 2E; Supplementary Figure S2E).

Since Ca2þ currents were altered in AKAP150KO b-cells

we next monitored real-time changes in cytoplasmic

[Ca2þ ] (Figure 2F–H). Fluo-4 fluorescence peak intensities

showed 29.2±8.3% (n¼ 9, Po0.05) and 20.3±5.8%

(n¼ 9, P¼ 0.07) lower [Ca2þ ]i when AKAP150 null cells

were challenged with 11 and 20 mM glucose, respectively

(Figure 2G and H, green). Hence, loss of AKAP150 or mis-

localization of its binding partners in b-cells not only attenu-

ates L-type Ca2þ currents but also perturbs glucose-induced

Ca2þ flux.

Glucose also stimulates local oscillations in cAMP just

below the b-cell plasma membrane (Dyachok et al, 2008).

These fluctuations of cAMP synthesis augment insulin

stimulus secretion via PKA and Epac2-dependent

mechanisms (Hatakeyama et al, 2006; Holz et al, 2006;

Idevall-Hagren et al, 2010). Moreover, AKAP150 is localized

in membrane-associated macromolecular complexes that

include calcium-sensitive adenylyl cyclases (Efendiev et al,

2010; Willoughby et al, 2010). Therefore, dynamic cAMP

production was measured by total internal reflection

fluorescence (TIRF) microscopy detection of a plasmalemmal

localized ratiometric biosensor (Figure 2I–K). Glucose induced

a pulsatile cAMP response in WT b-cells that was essentially

absent in cells derived from AKAP150KO mice (Figure 2J).

Amalgamated data from fluorescence ratio traces showed a

72.3±13.1% reduction in glucose-stimulated cAMP production

in KO islets (Figure 2K; n¼ 17; Po0.05), but no significant

difference in forskolin-induced changes. Collectively, the

data in Figure 2 show that loss of AKAP150 impairs insulin

secretion from b-cells. The mechanism involves reduced influx

of Ca2þ through L-type channels and impaired oscillatory

production of cAMP.

AKAP150 null mice exhibit enhanced insulin sensitivity

Deficient insulin secretion often results in glucose intoler-

ance. However, in some cases reduced availability of insulin

paradoxically improves glucose homeostasis by heightening

sensitivity to this hormone (Elchebly et al, 1999). Consistent

with this latter concept, intraperitoneal glucose tolerance

tests revealed that the glycemic excursion was 35.7±6.5%

lower in AKAP150KO than in WT mice (Figure 3A;

Supplementary Figure S3A; n¼ 30, Po0.01). Since pyruvate

and glucagon tolerance was similar in both genotypes

(Figure 3B and C), it seemed that compensatory mechanisms

such as reduced glycogen mobilization or gluconeogenesis

do not contribute to the improved glucose tolerance of

AKAP150KO mice. Consistent with this postulate, no

alterations in mRNA abundance of G6Pase or PEPCK were

observed in gastrocnemius muscle or liver samples

(Supplementary Figure S3G and H). Hence, we reasoned

that AKAP150 null mice may have adapted to less circulating

insulin by enhancing peripheral insulin sensitivity (Ahren

and Pacini, 2004). To test this hypothesis, insulin (0.5 U/kg)

was injected into the IP cavity of fed mice and clearance of

blood glucose was monitored over time. In AKAP150 null

mice, blood glucose declined to 63.0±4.7 mg/dl at 60 min

post insulin (Figure 3D; green), whereas it only reached

82.6±8.7 mg/dl in control mice (Figure 3D; grey), indicating

significantly enhanced insulin action in the peripheral tissues

of AKAP150KO animals.

A survey of insulin target tissues revealed that AKAP150 is

expressed in skeletal muscle and liver but is not present

in adipose tissue (Figure 3E, top panels; lanes 1, 3

and 5). Therefore, we monitored the activity status of two

metabolically relevant protein kinases in gastrocnemius

Table I Islet area and b-cell mass of AKAP150 transgenic mice

Mouse strain Islet area/pancreas area (%) b-Cell mass (mg)

AKAP150WT 0.654±0.092 (3) 1.535±0.259 (3)
AKAP150KO 0.679±0.130 (3) 1.359±0.202 (3)
AKAP150D36 0.541±0.080 (3) 1.331±0.215 (3)
AKAP150DPIX 0.591±0.174 (3) 1.321±0.414 (3)

Values represent mean±s.e.m. with number of animals examined
in parentheses. Quantitation was performed as described in
Materials and methods.
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muscle and liver. Akt/protein kinase B is a principle intra-

cellular mediator of insulin action including control of glu-

cose transport (Whiteman et al, 2002). Endogenous Akt

activity can be assessed with antibodies that recognize

phosphorylated Ser473. Under basal conditions the skeletal

muscle (P)Ser473-Akt signal was minimal in both genotypes
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(Figure 3F, top panel, lanes 1–4, n¼ 6). However, 15 min after

insulin injection, the (P)Ser473-Akt signal was augmented

1.9±0.3-fold in samples from AKAP150KO mice as compared

to WT (Figure 3F, top panel, lanes 5–8 and 3G; Po0.05,

n¼ 6). Interestingly, Akt activation was not altered when

experiments were performed in liver extracts from AKAP150

null animals (Figure 3H and I). IRS-1 is an upstream effector

of insulin receptor activation, and phosphorylation on

Ser612 is a marker for insulin action (Mothe and Van

Obberghen, 1996). We detected enhanced phosphorylation

of IRS-1 in skeletal muscle extracts from AKAP150KO mice

(Supplementary Figure S3I and J).

AMP-activated protein kinase (AMPK) is a major cellular

regulator of lipid and glucose metabolism. In humans, ex-

ercise-induced stimulation of insulin sensitivity correlates

with elevated AMPK activity. Likewise, the glucose-lowering

effect of the anti-diabetes drug metformin has been attributed

to the tonic stimulation of AMPK (Kahn et al, 2005; Hinke

et al, 2007). Phosphorylation of Thr172 on AMPK indicates the

activity status of this energy sensor kinase. Immunoblot

analysis of skeletal muscle extracts revealed that the

(P)Thr172-AMPK signal was enhanced 1.9±0.4-fold in

AKAP150KO over WT in the fasted state (Figure 3J, top

panel, and Figure 3K; Po0.05, n¼ 6). In contrast, liver

AMPK activity was not statistically different in either geno-

type (Figure 3L and M; n¼ 6). Hence, the data in Figure 3

argue that heightened insulin sensitivity in skeletal muscle is

an adaptive response to reduced serum hormone levels in

AKAP150 knockout mice.

Conditional Ins2-Cre deletion of AKAP150 affects insulin

secretion

In order to delineate between the effects of AKAP150 in the

pancreas and peripheral tissues mice bearing LoxP sites

flanking the coding exon of AKAP150 (AKAP150fl/fl) were

backcrossed onto Ins2-Cre mice (Postic et al, 1999) to

conditionally delete the anchoring protein in insulin

expressing cells (Figure 4A). Immunoblot analysis detected

equivalent levels of AKAP150 in brain extracts from both

Ins2-Creþ /� and � /� animals (Figure 4B, top panel,

lanes 1 and 2). In islet extracts, the anchoring protein was

detected in AKAP150fl/fl tissue, but only trace amounts from

AKAP150bKO (AKAP150fl/fl/Ins2-Creþ /� ) islets (Figure 4B,

top panel, lanes 3 and 4). Metabolic studies performed on

matched male mice revealed that fasted serum insulin levels

were equivalent in AKAP150bKO mice compared to control

mice. After IP glucose injection, circulating serum insulin

was 26.1±4.6% lower in AKAP150bKO animals (Figure 4C;

n¼ 20, Po0.05), despite significantly elevated pancreatic

insulin content (Figure 4D). AKAP150bKO mice displayed

impaired glucose tolerance (Figure 4E; Supplementary Figure

S4A), implying the enhanced insulin content (Figure 4D) was

a physiological response to oppose this phenotype. In con-

trast to global AKAP150KO mice, insulin sensitivity was

similar in both AKAP150bKO and controls (Figure 4F). This

suggests that conditional ablation of AKAP150 from insulin

expressing cells attenuates insulin secretion in a specific

manner but importantly does not alter insulin sensitivity in

peripheral tissues.

PKA anchoring to AKAP150 has little effect on glucose

homeostasis

Since each AKAP150-anchored enzyme influences distinct

metabolic events, we investigated glucose homeostasis in

mouse models where discrete elements of the AKAP150

signalling complex were disrupted. An amphipathic helix

that binds the regulatory (R) subunits of PKA is a defining

characteristic of AKAPs. This structural element is located

between residues 705 and 724 of AKAP150. Mice expressing

a form of the anchoring protein lacking this region

(AKAP150D36; Weisenhaus et al, 2010) are unable to

anchor PKA but retain the ability to tether PP2B

(Figure 5A–C; Supplementary Figure S5A and B). Metabolic

profiling of matched male AKAP150D36 mice selectively

evaluated the contribution of anchored PKA to glucose

homeostasis.

An unanticipated outcome of these studies was that most

aspects of glucose homeostasis are comparable between

AKAP150D36 and WT mice (Figure 5D–K). Circulating in-

sulin levels were minimally lower upon glucose challenge in

AKAP150D36 mice than in controls (Figure 5D; n¼ 14,

P40.05) and the pancreatic insulin content was similar in

both genotypes (Figure 5E; n¼ 18). Glucose-stimulated in-

sulin release from islets was the same for both genotypes

(Figure 5F and G) and superimposable glycemic profiles were

observed during IP glucose tolerance tests (Figure 5H;

Supplementary Figure 5E; n¼ 16). In keeping with this

trend, peripheral insulin sensitivity was similar in both

genotypes (Figure 5I; n¼ 12). Likewise, minimal changes in

the activity status of Akt or AMPK were detected in skeletal

muscle extracts from AKAP150D36 mice (Figure 5J and K;

Supplementary Figure S5F and G, n¼ 3). Collectively, this

battery of metabolic and molecular tests shows that

AKAP150D36 mice exhibit normal glucose handling.

Figure 2 Cellular analysis of insulin release from isolated b-cells. (A) Measurement of glucose-dependent insulin release from isolated islets
from WTand AKAP150KO mice. Data are normalized to total cell content (%TCC) of insulin. (B) Dynamic insulin secretion from perifused WT
and AKAP150KO islets in response to different concentrations of glucose and forskolin. Integrated responses are shown in Supplementary
Figure S2B and C. (C) Representative nifedipine-sensitive, whole-cell Ca2þ current traces from dissociated WT (grey) or AKAP150KO (green)
b-cells. (D) Current–voltage relationship of ICa from WT (grey) or AKAP150KO (green) b-cells. (E) ICa voltage dependence of activation and
steady-state inactivation from WT (grey) and AKAP150KO (green) b-cells. (F) Montage of images showing the time course of Ca2þ transients in
WT and AKAP150KO b-cells in response to 11 mM glucose. Cells were loaded with Fluo-4 AM dye. (G) Fluo-4 AM imaging of glucose-induced
intracellular [Ca2þ ] transients in WT (grey) and AKAP150KO (green) b-cells. (H) Amalgamated data of [Ca2þ ]i transients in WT and
AKAP150KO b-cells after stimulation with 11 or 20 mM glucose. (I) Schematic representation of method used for measuring submembrane
cAMP concentration (J, K). cAMP levels were measured using TIRF to detect PKA-catalytic subunit-YFP dissociation from membrane bound
PKA-RII-CFP in dispersed b-cells. (J) Representative TIRF traces of the membrane cAMP oscillations in WT (grey) and AKAP150KO (green) islet
cells in response to elevated glucose or forskolin. (K) Amalgamated TIRF detection of cAMP production at the membrane of WT (grey) and
AKAP150KO (green) b-cells. Data represent mean±s.e.m. *Pp0.05.
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Loss of PP2B anchoring recapitulates the AKAP150 null

phenotype

Biochemical approaches have identified a ‘PIxIxIT’ motif

located between residues 655 and 661 of AKAP150 that

forms a binding surface for the Ca2þ/calmodulin-dependent

phosphatase PP2B. Deletion of this motif (PIAIIIT) from

AKAP79/150 (DPIX) eliminates PP2B binding in vitro

(Dell’Acqua et al, 2002). Gene targeting deleted the 21-bp

sequence that encodes these residues to generate

AKAP150DPIX knock-in mice (Figure 6A). Removal of these

seven residues did not alter expression of this AKAP150

derivative (Figure 6B) or its ability to anchor PKA, but

prevented association with PP2B (Figure 6C, bottom and

mid panels, lane 6; Supplementary Figure S6A and B).
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Metabolic profiling of matched male mice revealed that the

pancreatic insulin content and fasting serum insulin levels

were similar for each genotype (Figure 6D and E). However,

AKAP150DPIX mice exhibited 21.6±5.1% lower plasma insu-

lin following a glucose challenge (Figure 6D; n¼ 16, Po0.05).

This provided the first hint that the disruption of PP2B–

AKAP150 interaction in vivo has similar phenotypic conse-

quences as the complete removal of the anchoring protein. In

keeping with this observation, static glucose-induced insulin

release was reduced by as much as 35% in islets from

AKAP150DPIX mice when compared to controls (Figure 6F;

n¼ 5, Po0.05). A comparable trend was observed during islet

perifusion (Figure 6G). This indicates that AKAP150 tethering

of PP2B influences insulin secretion from b-cells.

By analogy to the AKAP150KO mouse, we reasoned that

perturbing PP2B tethering might improve glucose tolerance.

Accordingly, AKAP150DPIX mice more efficiently cleared

blood glucose as reflected by a 19.6±9.4% reduction in the

integrated glycemic excursion (Figure 6H; Supplementary

Figure S6E; n¼ 15, Po0.05). In keeping with this trend,

AKAP150DPIX mice also displayed heightened insulin sensi-

tivity as blood glucose more rapidly declined following

exogenous insulin injection in AKAP150DPIX mice than in

WT (Figure 6I; n¼ 12).
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Figure 4 Metabolic profiling of Ins2-Creþ /� .AKAP5fl/fl (AKAP150bKO) conditional deletion mice. (A) Schematic depicting the deletion of
the floxed AKAP5 coding region in insulin expressing tissues by Ins2 promoter-driven Cre-recombinase. (B) Immunoblot detection of AKAP150
from brain and isolated islets of Langerhans lysates of AKAP150fl/fl (control) and AKAP150bKO mice. (C) Plasma insulin concentrations from
matched control and AKAP150bKO mice following overnight fasting and IP glucose (1.5 g/kg) injection. (D) Insulin content of acid extracted
pancreata from control and AKAP150bKO mice. (E) Blood glucose profiles of control (grey) and AKAP150bKO (orange) mice during IP glucose
tolerance testing (1.5 g/kg). (F) Blood glucose profiles of control (grey) and AKAP150bKO (orange) mice following IP injection of insulin
(0.5 U/kg). Data represent mean±s.e.m. *Pp0.05, **Pp0.01, ***Pp0.001. Immunoblots are representative of three independent experiments.
Age-matched male mice were used in all experiments (control: 20.4±0.4 weeks, 29.5±0.6 g; AKAP150bKO: 20.4±0.4 weeks, 28.1±0.5 g).
Figure source data can be found with the Supplementary data.

Figure 3 Glucose tolerance and peripheral insulin sensitivity in AKAP150KO mice. (A) Blood glucose profiles of WT and AKAP150KO mice
during IP glucose (1.5 g/kg) tolerance test (IPGTT). Integrated glycemic responses are found in Supplementary Figure S3A. (B) Blood glucose
profiles of WT (grey) and AKAP150KO (green) mice following IP injection of pyruvate (1.5 g/kg) into fasted animals as an index of
gluconeogenesis. (C) Changes in blood glucose in response to IP injection of glucagon (25 nmol/kg) in fed WT (grey) and AKAP150KO (green)
mice as an index of glycogenolysis. (D) Glycemic profiles of WT (grey) and AKAP150KO (green) mice following IP injection of recombinant
insulin (0.5 U/kg). (E) Immunoblot detection of AKAP150, PKA-RII and GAPDH in gastrocnemius muscle, liver and epididymal fat pad
homogenates from WT and AKAP150KO mice. (F) Immunoblot detection of active (P)Ser473-Akt, total Akt and GAPDH from gastrocnemius
muscle homogenates from WTand AKAP150KO mice 15 min after IP saline or insulin (1.0 U/kg) injection. Two biological replicates are shown
for each genotype and condition. Quantification of compiled results was performed by densitometry analysis of active (P)Ser473-Akt
normalized to total respective protein level (G). (H) Immunoblot detection and (I) densitometry analysis of active (P)Ser473-Akt, total Akt
and GAPDH from liver homogenates from WT and AKAP150KO mice as per (F, G). (J) Immunoblot analysis of active (P)Thr172-AMPK, total
AMPK and GAPDH from skeletal muscle homogenates from WTand AKAP150KO mice. Two biological replicates are shown for each genotype
and condition. Quantification of compiled results was performed by densitometry analysis of active (P)Thr172-AMPK normalized to total
respective protein level (K). (L) Immunoblot detection and (M) densitometry analysis of (P)Thr172-AMPK, total AMPK and GAPDH from liver
homogenates from WTand AKAP150KO mice as per (J, K). Data represent mean±s.e.m. *Pp0.05, **Pp0.01. Immunoblots are representative
of three independent experiments; densitometry represents results from six individual animals of each genotype. Figure source data can be
found with the Supplementary data.
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Next, we monitored the activity status of Akt and

AMPK from AKAP150DPIX mice. In the basal state, the

skeletal muscle (P)Ser473-Akt signal was equivalent in both

genotypes, but was augmented 1.8±0.2-fold by insulin in

AKAP150DPIX samples relative to WT controls (Figure 6J

and K; n¼ 3, Po0.05). In fasted skeletal muscle from
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Figure 5 Metabolic profiling of knock-in mice lacking the PKA binding domain of AKAP150. (A) Schematic depicting the insertion of a premature
stop codon into the coding region of the AKAP5 locus to generate a truncated AKAP150 protein (AKAP150D36) unable to anchor PKA.
(B) Immunoblot detection AKAP150 and AKAP150D36 from brain and isolated islets of Langerhans lysates. (C) Immunoprecipitation of AKAP150
and AKAP150D36 complexes, and immunoblot detection of AKAP150 and co-immunoprecipitating PKA-RII and PP2BB. (D) Plasma insulin
concentrations from matched WTand AKAP150D36 mice following overnight fasting and IP glucose (1.5 g/kg) injection. (E) Insulin content of acid
extracted pancreata from WT and AKAP150D36 mice. (F) Measurement of glucose-stimulated insulin release (%TCC) from isolated WT and
AKAP150D36 mouse islets of Langerhans. (G) Dynamic insulin secretion from perifused WT and AKAP150D36 islets in response to different
concentrations of glucose and forskolin. Integrated responses are shown in Supplementary Figure S5C and D. (H) Blood glucose profiles of WT
(grey) and AKAP150D36 (blue) mice during IP glucose tolerance testing (1.5 g/kg). (I) Blood glucose profiles of WT (grey) and AKAP150D36 (blue)
mice following IP injection of insulin (0.5 U/kg). (J) Immunoblot detection of active (P)Ser473-Akt, total Akt and GAPDH from gastrocnemius
muscle homogenates from WTand AKAP150D36 mice 15 min after IP saline or insulin (1.0 U/kg) injection. Two biological replicates are shown for
each genotype and condition. Quantification of compiled results was performed by densitometry analysis of active (P)Ser473-Akt normalized to
total respective protein level (K). Data represent mean±s.e.m. Immunoblots are representative of three independent experiments; densitometry
represents results from three individual animals of each genotype. Age-matched male mice were used in all experiments (WT: 18.4±0.7 weeks,
26.9±0.6 g; AKAP150D36: 18.9±0.6 weeks, 25.8±0.5g). Figure source data can be found with the Supplementary data.
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Figure 6 Metabolic profiling of AKAP150 knock-in mice unable to anchor PP2B. (A) Schematic depicting deletion of 21 bases in the coding
region of the AKAP5 locus to generate an internally truncated AKAP150 protein (AKAP150DPIX) unable to bind PP2B. (B) Immunoblot
detection AKAP150 and AKAP150DPIX from brain and islets of Langerhans lysates. (C) Immunoprecipitation of AKAP150 and AKAP150DPIX
complexes, and immunoblot detection of AKAP150 and co-immunoprecipitating PKA-RII and PP2BB. (D) Plasma insulin concentrations from
matched WT and AKAP150DPIX mice following overnight fasting and IP glucose (1.5 g/kg) injection. (E) Insulin content of acid extracted
pancreata from WT and AKAP150DPIX mice. (F) Measurement of glucose-stimulated insulin release (%TCC) from isolated WT and
AKAP150DPIX mouse islets of Langerhans. (G) Dynamic insulin secretion from perifused WTand AKAP150DPIX islets in response to different
concentrations of glucose and forskolin. Integrated responses are shown in Supplementary Figure S5C and D. (H) Blood glucose profiles of WT
(grey) and AKAP150DPIX (purple) mice during IP glucose tolerance testing (1.5 g/kg). (I) Blood glucose profiles of WT (grey) AKAP150DPIX
(purple) mice following IP injection of insulin (0.5 U/kg). (J) Immunoblot detection of active (P)Ser473-Akt, total Akt and GAPDH from
gastrocnemius muscle homogenates from WT and AKAP150DPIX mice 15 min after IP saline or insulin (1.0 U/kg) injection. Two biological
replicates are shown for each genotype and condition. Quantification of compiled results was performed by densitometry analysis of active
(P)Ser473-Akt normalized to total respective protein level (K). Data represent mean±s.e.m. *Pp0.05. Immunoblots are representative of three
independent experiments; densitometry represents results from three individual animals of each genotype. Age-matched male mice were used
in all experiments (WT: 18.3±0.7 weeks, 26.1±0.6 g; AKAP150DPIX: 19.1±0.6 weeks, 26.6±0.6 g). Figure source data can be found with the
Supplementary data.
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AKAP150DPIX mice, the (P)Thr172-AMPK signal was en-

hanced 2.1-fold compared to WT (Supplementary Figure S6F

and G; n¼ 3). Remarkably, the results in Figure 6 infer that

the targeting of PP2B is the predominant molecular determi-

nant in AKAP150-mediated control of glucose homeostasis.

Discussion

Glucose homeostasis involves the intake, production, utiliza-

tion and storage of this essential nutrient. Serum glucose

levels decrease in response to insulin whereas counterregu-

latory hormones such as glucagon, adrenaline, cortisol and

growth hormone reverse this response. Clinical interest in

this process is heightened because chronic changes in the

availability or sensitivity to insulin underlie the pathophy-

siology of metabolic syndrome and diabetes (Lee and Cox,

2011). Gene silencing and genetic manipulation of mice has

allowed us to pinpoint AKAP150 as a positive intermediary of

nutrient-mediated insulin secretion from pancreatic islets.

AKAP150 impacts these essential metabolic processes by

directing Ca2þ and cAMP responsive enzymes towards

elements of the insulin release machinery. The cAMP

responsive component of this process proceeds through two

distinct effector pathways. The Epac2 guanine nucleotide

exchange factor modulates SUR1 KATP channel subunits

and activates the small GTPase Rap-1 whereas PKA

phosphorylates ion channels and proteins of the exocytotic

machinery to facilitate insulin release (Seino and Shibasaki,

2005; Holz et al, 2006; Hinke, 2009). Perhaps surprisingly, a

body of data in Figure 5 suggests that PKA anchoring to

AKAP150 is not essential for insulin release, as AKAP150D36

mice experience near normal glucose homeostasis. However,

Epac2 may be an AKAP150 binding partner (Nijholt et al,

2008), suggesting that submembrane targeting of this

guanine nucleotide exchange factor might convey the

cAMP component of AKAP150-mediated insulin release.

Consequently, anchored PKA regulation of insulin exo-

cytosis must proceed through other b-cell anchoring

proteins such as MyRIP and AKAP15/18 that target this

kinase to different subcellular microenvironments (Fraser

et al, 1998; Goehring et al, 2007).

Experiments in Figure 2 use AKAP150 null pancreatic islets

to assess the contribution of this enzyme complex in the

modulation of molecular events that trigger insulin secretion.

Three elements of this pathway appear to be under AKAP150

control. First, AKAP150 tethered PKA and PP2B govern the

phosphorylation-dependent modulation of voltage-gated

L-type Ca2þ currents, in part because this anchoring protein

binds directly to the cytoplasmic tail of the channel (Oliveria

et al, 2007). Electrophysiological recordings show that loss of

AKAP150 suppresses these currents to reduce the influx of

calcium that is a prelude to insulin release. Second, Fluo-4

imaging experiments show that ablation of AKAP150

perturbs glucose-induced intracellular calcium flux. Third,

this interruption in local Ca2þ influx was accompanied by

perturbation of submembrane oscillations of cAMP levels

that are crucial for insulin release (Dyachok et al, 2008;

Idevall-Hagren et al, 2010; Tian et al, 2011). This latter

effect may be indicative of compromised modulation of

Ca2þ -sensitive adenylyl cyclases that are normally under

the control of AKAP150 anchored enzymes (Efendiev et al,

2010; Willoughby et al, 2010). The observation that deletion

of AKAP150 impairs glucose-stimulated cAMP oscillations

but not forskolin-induced cAMP production, yet defective

insulin secretion was observed in response to forskolin, infers

that the scaffold affects both proximal and distal steps. The

important new concept that emerges from these findings is

that reduced insulin release from AKAP150KO islets is not a

consequence of interrupted signalling at a single intracellular

locus, but rather an amalgamation of changes in discrete

molecular events at sites throughout the secretory cascade.

Metabolic profiling of AKAP150 null mice revealed that

these animals have reduced circulating insulin yet they

display improved glucose tolerance. This confounding but

metabolically favourable phenotype can be explained by

compensatory changes at the endocrine and molecular

level. Data presented in Supplementary Figure S3D–F show

that plasma levels of incretin hormones and glucagon are

altered in fed AKAP150KO animals. Since the net effect would

lower blood glucose we propose that these compensatory

endocrine changes represent an attempt to re-establish nor-

moglycemia upon nutrient uptake. Another adaptive mechan-

ism that could counteract reduced insulin secretion is our

evidence that sensitivity to insulin is boosted in peripheral

tissues in AKAP150 null mice. Skeletal muscle accounts for

475% of insulin-mediated glucose uptake (Baron et al,

1988). Furthermore, enhanced activation of Akt is a

recognized hallmark of increased insulin action (Whiteman

et al, 2002). Taken together, these latter observations provide

context for our evidence in Figure 3G that insulin-sensitive

Akt activity is elevated B2-fold in the skeletal muscle of

AKAP150KO mice. AMPK is considered to be the metabolic

master-switch controlling target tissue responsiveness to in-

sulin (Kahn et al, 2005). Data suggest that the activity of

AMPK is elevated in the skeletal muscle of AKAP150KO mice.

Multiple signals converge on the a-subunit of this kinase.

For example, the upstream kinases CaMKK and LKB1 can

phosphorylate Thr172 to stimulate phosphotransfer (Kahn

et al, 2005; Hinke et al, 2007). In contrast, PKA

phosphorylation of the adjacent residue Thr173 inhibits

AMPK activity (Djouder et al, 2010). We postulate that the

involvement of AKAP150 in the control of AMPK activity

may be two-fold: in response to Ca2þ , anchored PP2B could

preferentially dephosphorylate both sites on AMPK, yet upon

elevation of cAMP, anchored PKA might phosphorylate

Thr173. Thus, AKAP150 binding partners may somehow

influence the enzymes that set insulin sensitivity.

Additional albeit indirect support for this concept is

provided by examination of Ins2-Cre conditional deletion of

AKAP150. Although there are recognized caveats associated

with conditional deletion from insulin expressing cells

(Wicksteed et al, 2010), this mouse model duplicated the

circulating insulin phenotype of the global knockout, but

importantly lacked enhanced peripheral insulin sensitivity.

Perhaps, the most intriguing conclusion comes from the

metabolic profiling of AKAP150DPIX mice where mislocali-

zation of PP2B phenocopies the changes in glucose home-

ostasis that occur in the complete absence of AKAP150.

Remarkably, the data in Figure 6 show that deletion of

seven amino acids from AKAP150 not only disrupts PP2B

anchoring in vivo, but also creates a favourable metabolic

state in terms of glucose handling. This is contrary to the

tissue-specific ablation of this phosphatase from b-cells,

which is deleterious and generates a diabetic state that in-
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cludes defects in NFAT transcriptional signalling, diminished

insulin biosynthesis and a loss of islet mass (Heit et al, 2006;

Bernal-Mizrachi et al, 2010). Since none of these adverse

effects were detected in AKAP150KO or AKAP150DPIX mice,

one can deduce that targeting this phosphatase close to the

plasma membrane through its association with AKAP150 is a

little recognized but important determinant of b-cell function.

A recent study on the architecture of the AKAP79/150

signalling complex may shed further mechanistic light on

why the anchored phosphatase is prominent at this location

(Figure 7). Native mass spectrometry analyses indicate that

the anchoring protein is a dimer that coordinates two PKA

holoenzymes and four heterodimers of PP2B (Gold et al, 2011;

Figure 7A). Furthermore, the conformation of the PIAIIIT

motif is a b strand with protruding hydrophobic side

chains that simultaneously contact two A subunits of PP2B

(Figure 7B and C). Thus, exploiting the AKAP150–PP2B inter-

face, and the PIAIIIT sequence in particular, as a viable target

for therapeutic intervention could enhance insulin sensitivity

in selected peripheral tissues.

Materials and methods

Experimental animals
Animals were housed at the University of Washington, under a 12-h
light/dark cycle with free access to food (LabDiet 5001) and water.
All procedures were approved by the institutional IACUC review
process. Animals were maintained on a C57Bl/6 background
(Jackson Laboratories); experiments were performed on littermate
or age-matched mice from het X het breeding pairs, or age-matched
mice from F1 homozygous crosses. Generation of AKAP150KO
(Tunquist et al, 2008) and AKAP150D36 (Weisenhaus et al, 2010)
mice have been previously described. The AKAP150DPIX mutation,
removing the PIAIIIT motif (a.a. 655–661), was introduced into the
mouse genome by homologous recombination (see Supplementary
data). Ins2-Cre mice (Postic et al, 1999) on a pure C57Bl/6
background were obtained from the Jackson Laboratories.

Cell culture and islet isolation
INS-1(832/13) insulinoma cells were cultured as described
(Hohmeier et al, 2000). For transfection, 3�106 cells were seeded
into 10 cm dishes (Falcon) and cultured for 2 days; cells were
transfected with Lipofectamine2000 as per the supplied protocol
(Invitrogen). Constructs used were pSilencer (Ambion) with a rat-
specific AKAP150 targeted shRNA insert (p150i) (Hoshi et al, 2005),
siGENOME RISC-Free siRNA control (Dharmacon D-001220-01) or
rat AKAP220 siRNA duplex 2 (Dharmacon D-090987-02), hGH

(pFox.hGH.CMV) (Goldfine et al, 1997), and pEGFP (Invitrogen).
In all, 10mg of DNA/RNA was transfected per 10 cm dish, consisting
of 5mg hGH plasmid, 0.5mg pEGFP, and siRNA, p150i or controls.
Cells recovered overnight were subcultured into 24-well plates
(Falcon) at 5�105 cells/well and grown for another 48 h before
use in secretion experiments.

Collagenase P (Roche) digested pancreatic islets were isolated as
previously described (Delmeire et al, 2003) by handpicking under a
stereo microscope. Islets were cultured in suspension overnight in
RPMI supplemented with 10% FBS, 10 mM HEPES, 1 mM sodium
pyruvate and antibiotics.

Immunoprecipitation, western blotting and tissue analysis
Cultured cells and mouse tissues were homogenized in lysis buffers
according to the experiments performed: RIPA buffer for immuno-
detection, immunoprecipitation buffer (0.5% NP-40, 100 mM NaCl,
50 mM Tris–HCl, pH7.4), or phosphatase inhibitor buffer (1% Triton
X-100, 60 mM b-glycerophosphate, 20 mM MOPS, 5 mM EDTA,
5 mM EGTA, 1 mM Na3VO4, 20 mM NaF, pH 7.2), each with protease
inhibitors added (1 mM benzamidine, 10 mM AEBSF, 25mg/ml leu-
peptin). Immunoprecipitation was performed for 2 h at 41C in the
presence of 25 ml protein A-agarose beads (Upstate), 2mg antibody,
and 1 mg of lysate. Immune complexes were washed thrice in IP
buffer and bound proteins eluted by boiling in 2� NuPage sample
buffer with 0.5 M DTT (Invitrogen), and resolved by SDS–PAGE
(Invitrogen NuPage). This method was also adapted to cAMP-
agarose (BioLog) and calmodulin-agarose (Sigma). Conventional
western blotting was performed by loading 50mg/lane, electro-
phoretic separation, transfer onto nitrocellulose, and blocking in
1� Blotto. Antibodies used in this report are described in
Supplementary Methods.

Total pancreatic insulin content was measured as previously
described in Supplementary Experimental procedures. Clarified
extract was analysed for protein content (BCA assay, Pierce) and
insulin content (ELISA, Millipore). Immunofluorescent imaging of
paraffin-embedded pancreatic sections, and quantitation of islet
area and b-cell mass are described in Supplementary data.

For examination of phospho-AMPK and phospho-Akt in skeletal
muscle and liver samples, fasted mice were injected with saline or
1.0 U/kg recombinant human insulin (HumulinR; Eli Lilly). At
15 min, animals were sacrificed, the liver and gastrocnemius
muscles were briefly rinsed in ice-cold PBS and snap frozen.
Tissues were homogenized in phosphatase inhibitor containing
solubilization buffer, before protein assay and immunoblot
analysis. Densitometry was performed using NIH ImageJ software
(v10.2).

Hormone secretion studies
INS-1(832/13) cells transfected with hGH and gene silencing
vectors or siRNA were washed twice with 371C HEPES-buffered
Kreb’s ringer bicarbonate buffer (KRBH; mM: 25 HEPES, 5 NaHCO3,
1.2 MgSO4, 1.2 KH2PO4, 4.74 KCl, 125 NaCl, 1 CaCl2) with 2 mM
glucose, and pre-incubated 1 h at 371C/5%CO2. Media was replaced

Figure 7 The AKAP150–PP2B interface. (A) Model of the molecular architecture of a membrane-associated AKAP150/(PP2B)2/PKA dimer. An
AKAP79/150 homodimer coordinates four PP2B holoenzymes and two PKA holoenzymes localized to the plasma membrane. (B) The structure
of the PP2B–PIAIIIT peptide complex and (C) magnified cartoon diagram of the PP2B-PIAIIIT-PP2B interface. Structural information and
coordinates obtained from Gold et al (2011) and Li et al (2012) [PDB ID: 3LL8].
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with 1 ml of KRBH with 2 or 20 mM glucose, with or without GLP-1
(Bachem) or forskolin (Sigma), and incubated for 1 h. Supernatants
were collected, centrifuged, and stored at � 201C until hGH or
Insulin was measured by ELISA (Roche or Millipore, respectively)
according to manufacturer’s instructions.

For static insulin release experiments from overnight cultured
primary islets, 15 size matched (B70–300mm in diameter) islets per
tube were tested in triplicate, pre-incubated (45 min/371C) in 2 mM
glucose RPMI with 10 mM HEPES and 0.1% BSA (Sigma), followed
by 45 min stimulation with 2, 8, 15 mM glucose, with or without
10mM forskolin. Following centrifugation (1200 r.p.m./41C/5 min),
a sample of supernatant was removed for insulin determination,
and remaining media and islet pellet were acidified and sonicated
for normalization purposes. Islet perifusion was performed as
described (Delmeire et al, 2003) on re-picked overnight-cultured
islets (100 per chamber) sandwiched in Biogel P2 (Bio-Rad). Islets
were pre-perifused with 371C 2 mM RPMI/10 mM HEPES/0.1% BSA
continuously bubbled with carbogen, at a flow rate of 0.5 ml/min
for 20 min; fractions were collected at 1 min intervals following
stimulation. Subsequently, total cell insulin content was acid
extracted by sonication for normalization. Under these conditions,
mouse islets do not display distinct first and second phase insulin
responses (Hansotia et al, 2004; Zawalich et al, 2008). Insulin was
measured using mouse insulin-specific ELISA kits from Millipore or
Alpco according to included instructions.

In vivo metabolism studies
Glucose tolerance tests were performed on mice following overnight
food deprivation. Conscious mice were injected with 1.5 g/kg
glucose (10%w/v; Sigma) into the intraperitoneal cavity after
basal samples were obtained. Blood glucose was measured from
tail vein samples using a handheld glucometer (OneTouch Ultra,
LifeScan) at the times indicated in the figures over a 90-min period.
For plasma hormone determination, whole blood was collected
using heparinized capillary tubes (Fisher), and plasma separated
by refrigerated centrifugation. Samples were stored at � 201C until
hormone measurement by commercial ELISA kits: ultrasensitive
mouse insulin (CrystalChem), mouse C-peptide (Alpco), glucagon
(Yanaihara), GLP-1 (Alpco) and GIP (Millipore). The pyruvate
tolerance test was performed identically to the IP glucose tolerance
test, but substituting sodium pyruvate (10%w/v; Sigma), and
tracking the appearance of glucose into the circulation. Insulin
tolerance testing was performed on matched fed mice injected
with 0.5 U/kg recombinant human insulin (HumulinR, Eli Lilly);
the decrease in blood glucose from baseline was monitored by tail
vein whole blood samples. The glucagon tolerance test was per-
formed by IP injecting fed mice with 25 nmol/kg synthetic glucagon
(Bachem) dissolved in 0.9% saline, and measuring the release of
glucose into the blood stream.

Isolated islet studies
The viability and metabolism of overnight-cultured isolated islets
were determined by the MTT assay, as described (Janjic and
Wollheim, 1992; Hinke et al, 2007). Islets were re-picked into
triplicate tubes and washed twice in 2 mM glucose KRBH. After a
30-min pre-incubation, media was changed to KRBH containing 2,
11 or 20 mM glucose and 0.5 mg/ml MTT (Sigma), and incubated
for 2 h/371C. Following centrifugation (3000 r.p.m./41C/10 min) and
removal of the supernatant, formazan crystals were dissolved in
DMSO and absorbance read at A562 and A690.

Ca2þ currents in b-cells were examined using the whole-cell
configuration of the patch-clamp technique with an Axopatch
200B. Isolated islets were dispersed into single cells by trypsin/
EDTA (Invitrogen), and cultured overnight on poly-lysine coated
coverslips. During experiments, cells were superfused with a solu-
tion composed of (in mM): 138 NaCl, 5.4 KCl, 1 MgCl2, 10 CaCl2, 2
Glucose and 10 HEPES adjusted to pH 7.4. Pipettes were filled with
a solution with the following constituents (in mM): 87 Cs-aspartate,
20 CsCl, 1 MgCl2, 5 MgATP, 10 HEPES and 10 EGTA adjusted to pH
7.2 with CsOH. Protocols for measuring the current–voltage rela-
tionship of nifedipine-sensitive Ca2þ currents, voltage dependence
of activation and steady-state inactivation of Ca2þ currents are
described in Supplementary Methods.

For [Ca2þ ]i imaging experiments, dispersed b-cells were loaded
with the Fluo-4 AM (5 mM; 30 min) and perfused with (in mM):
125 NaCl, 4.7 KCl, 1.2 KH2PO4, 1.2 MgSO4, 5 NaHCO3, 2 CaCl2,

10 HEPES, and 2, 11 or 20 glucose, pH 7.4. Images were acquired
using a Bio-Rad Radiance 2100 confocal system coupled to an
inverted Nikon TE300 microscope equipped with a Nikon
PlanApo (60� , NA¼ 1.4) oil-immersion lens, and analysed using
NIH-ImageJ. Background-subtracted fluorescence signals were nor-
malized by dividing the fluorescence (F) intensity at each time point
by the resting fluorescence (F0).

Sub-membrane [cAMP] was measured by TIRF microscopy and a
membrane anchored, truncated form of PKA-RIIb with a CFP tag and
YFP-tagged PKA catalytic Ca subunit. The dissociation of Ca-YFP
from the membrane-targeted regulatory subunit permits the ratio-
metric determination of local cAMP levels (Dyachok et al, 2008).
Islets cultured 2–5 days were infected with adenoviral constructs
encoding the biosensor subunits. Twenty-four hours after infection,
islets were allowed to attach to coverslips and superfused (0.3 ml/
min) with media containing (mM) 125 NaCl, 4.8 KCl, 1.3 CaCl2, 1.2
MgCl2, 25 HEPES, pH 7.4. The islets equilibrated for 30 min in basal
medium (3 mM glucose) before stimulating with 20 mM glucose or
5mM forskolin. The chamber was mounted on the stage of a Ti
microscope with a 60� 1.45NA oil-immersion lens (Nikon), acquir-
ing image pairs at 5 s intervals with a back-illuminated EMCCD
camera (DU-887; Andor Technology) controlled by MetaFluor soft-
ware (Molecular Devices). CFP and YFP were excited by 458 and
514 nm light using an argon laser (Creative Laser Production). All
imaging experiments were performed at 371C.

Quantitative PCR was performed on mRNA obtained from islets
cultured overnight in suspension. mRNA was isolated from 100 to 150
islets using RNeasy spin columns with on column DNAse I treatment
(Qiagen). Messenger RNA from liver or gastrocnemius muscle was
isolated from fresh snap frozen tissue samples according to Qiagen
protocols for RNeasy and RNeasy Fibrous Tissue kits. cDNA was
generated using a TaqMan reverse transcription kit (Applied
Biosystems). Real-time PCR was performed using TaqMan expression
assays for CaV1.2a1C (Mm00437917_m1), CaVb3 (Mm00432244_m1),
Kir6.2 (Mm00440050_s1), SUR1 (Mm00803450_m1), GAPDH
(4352932E) and TaqMan universal PCR master mix (4324018) and
islet mRNA; skeletal muscle and liver samples were assayed using
TaqMan primer/probe sets for G6Pase (Mm00839363_m1) and
PEPCK (Mm01247058_m1) and GAPDH. mRNA abundance was
quantified by the DDCt method and GAPDH as the internal house-
keeping transcript, and expressed as fold-WT.

Statistical analyses and molecular modelling
All values are reported as mean±standard error (s.e.m.) and the
number of times the experiment was repeated (n) shown on the
figures. Data were analysed using GraphPad Prism software (v5.0b).
Statistical significance was determined by Student’s t-tests, with
P¼ 0.05 as the significance level. All molecular representations
were rendered using Pymol (Delano Scientific), as described in
Supplementary data.

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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