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Abstract

Elucidating the molecular drivers of human breast cancers requires a strategy capable of 

integrating multiple forms of data and an ability to interpret the functional consequences of a 

given genetic aberration. Here we present an integrated genomic strategy based on the use of gene 

expression signatures of oncogenic pathway activity (n=52) as a framework to analyze DNA copy 

number alterations in combination with data from a genome-wide RNAi screen. We identify 

specific DNA amplifications, and importantly, essential genes within these amplicons representing 

key genetic drivers, including known and novel regulators of oncogenesis. The genes identified 

include eight that are essential for cell proliferation (FGD5, METTL6, CPT1A, DTX3, MRPS23, 

EIF2S2, EIF6 and SLC2A10) and are uniquely amplified in patients with highly proliferative 

luminal breast tumors, a clinical subset of patients for which few therapeutic options are effective. 

Our results demonstrate that this general strategy has the potential to identify putative therapeutic 

targets within amplicons through an integrated use of genetic, genomic, and genome-wide RNAi 

data sets.

Tumorigenesis is driven by a combination of inherited and acquired genetic alterations 

resulting in a complex and heterogeneous disease. The ability to dissect this heterogeneity is 
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critical to understand the relevance of these alterations for disease phenotypes but also to 

enable the development of rational therapeutic strategies that can match the characteristics 

of the individual patient’s tumor. Many studies, including reports from The Cancer Genome 

Atlas (TCGA) project, have made use of the power of multi-platform genomic analyses to 

identify known and novel genetic drivers of tumor phenotypes1–3. This has led to the 

identification of disease subgroups with distinct characteristics and in some instances, 

distinct genetic mechanisms of disease1,2,4. The strength of this approach relies on the 

integration of large-scale genomic data to reveal biological co-variation that cannot be 

identified when using a single technology. A weakness of this approach is in the 

interpretation of the underlying biology, which generally represents an inference about 

pathway activity based upon prior knowledge concerning an individual gene mutation/

alteration.

Altered signaling pathway activity is an important determinant of the biology of a tumor and 

may predict therapeutic response; therefore, identifying mechanisms driving key 

tumorigenic pathways is essential to understand the transformation process2,5–8. To take 

advantage of the vast amounts of existing genomic data, we utilized a series of 

experimentally derived gene expression signatures capable of measuring oncogene or tumor 

suppressor pathway activity, aspects of the tumor microenvironment, and other tumor 

characteristics including proliferation rate, as a framework by which to integrate multiple 

forms of genomic data. Our results identify patterns of oncogenic signaling within each of 

the molecular subtypes of breast cancer, many of which directly correlate with DNA copy 

number aberrations. By further analyzing functional data from a genome-wide RNAi 

screen9, we identified genes essential for cell viability in a pathway-dependent, and in some 

cases, a subtype-dependent manner. Our results identify a small number of DNA 

amplifications as potential drivers of proliferation in poor outcome luminal/ER+ breast 

cancers, and in general terms, we outline an approach that could be applied to many other 

tumor types where multi-platform genomic data exist.

RESULTS

Subtype-specific patterns of oncogenic signaling

To objectively identify genetic drivers of breast cancer, we examined genomic-based 

patterns of oncogenic pathway activity, the tumor microenvironment, and other important 

features in human breast tumors using a panel of 52 previously published gene expression 

signatures (Supplementary Tables 1 and 2)10–32. Each signature was applied to the breast 

cancer gene expression microarray data (n=476) from the TCGA project (Supplementary 

Table 3) for which the molecular intrinsic subtype had been determined2. Consistent patterns 

of pathway activity emerged for each subtype, as illustrated in Figure 1A, and quantitatively 

assessed by an ANOVA test followed by a Tukey test for pair-wise comparison (Figure 1B, 

Supplementary Table 4). Analyzing differences across subtypes based on these 52 features 

demonstrated that the strongest correlation between samples existed within each molecular 

subtype (Supplementary Figure 1).

Patterns of pathway activity recapitulated known characteristics of each subtype, including 

dysregulation of pathways that can be linked to female Hormone Receptors (HR), and/or 
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oncogenes, and/or tumor suppressor mutation status (Figure 1). For example, basal-like 

tumors, which represent ~80% of triple negative breast cancers, are characterized by low HR 

signaling, mutant p53 signaling and high expression of proliferation pathway activity 

(Figure 1). Likewise, HER2-enriched (HER2E) tumors show high expression of the Her211 

and Her2- Amplicon (Amp)12 signatures, while LumA tumors show high HR signaling and 

wild-type p53 signaling. Highly proliferative LumB tumors, which also show some HR 

signaling, are distinguished from less proliferative LumA samples by increased 

proliferation-associated pathways. Thus these data robustly recapitulate many previously 

published pathways versus subtype associations.

A Pearson correlation to assess the concordance between each of the 52 signatures 

(Supplementary Figure 2, Supplementary Table 5) identified strong relationships between 

independent signatures for a given pathway as well as between related pathways. For 

example, two Myc signatures11,15,32 demonstrate an R value of 0.72, while a PIK3CA18 and 

PTEN-deleted27 signatures had a R value of 0.82. Signatures scoring different pathways 

were also concordant; for instance, Myc-mediated regulation of E2F signaling33 was 

identified by the association between the RB-LOH16 and Myc15 signatures (R=0.79), while 

EGFR-mediated activation of Stat3 signaling34 was recapitulated by the EGFR11,32 and 

Stat311,32 (R=0.72) signatures. These results provide a measure of validity for each signature 

but, since differences do exist between signatures for a specific pathway, suggest that each 

provides an opportunity to investigate a particular pathway taking into account the genetic 

manipulation used to develop a given signature.

Characterization of pathway-specific copy number alterations

We next utilized DNA copy number data from the TCGA project (n=476) to identify Copy 

Number Alterations (CNA) associated with pathway activity (Figure 2A). We first identified 

genes for which CNAs were positively (or inversely) correlated with pathway activity using 

a Spearman Rank correlation (Bonferroni corrected to control the family-wise error rate) to 

assess the relationship between pathway score and gene-level DNA segment score 

(Supplementary Figure 3, Supplementary Tables 6–57). Secondly, we used a Fisher’s exact 

test (Bonferroni corrected) to calculate the frequency of CNA gains (including high-level 

amplification and gains) or losses (including loss of heterozygosity and deletions) in 

samples with high (top quartile) pathway activity compared to all other samples (low 

activity)(Supplementary Figure 4, Supplementary Tables 6–57). To reduce potential false-

positive results associated with either strategy alone, for each signature we focused on those 

genes that were significant in both analyses (Figure 2A); potential drivers of pathway 

activity had a positive correlation and a higher amplification frequency in samples with high 

pathway activity, while potential repressors had a negative correlation and increased 

frequency of copy number losses. Mapping genes that met these criteria to chromosomal 

loci identified pathway-specific patterns of CNA (Figure 2B). Consistent with previous 

studies reporting that basal-like tumors have a higher incidence and larger spectrum of 

CNAs2,35, pathways associated with basal-like tumors have more complex patterns of CNA 

when compared to luminal-associated pathways.
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To further assess the validity of this strategy, we investigated the relationship between 

pathway activity and a chromosomal alteration of known causative activity. We first focused 

on the Her2-Amp signature12 since this signature is comprised of genes located at the 17q 

loci and since ERBB2/17q amplification is the dominant driver of this pathway. As 

illustrated in Figure 2C (Supplementary Table 27) ERBB2 is amplified in 84.9% of samples 

with high (top quartile) pathway activity compared to 7.3% of low scoring samples (q= 1.1 

× 10−55); likewise this relationship has a positive Spearman rank correlation (q= 2.4× 

10−108). While several other alterations, including MYC amplification (q=1.1× 10−02, 

q=6.3× 10−03) were also associated with this signature, thus identifying a previously known 

relationship36, ERBB2 /17q amplification was the dominant alteration identified thus 

providing a robust positive control for this strategy. As expected, similar results were 

observed when analyzing the Her2 pathway using the independently developed Her211,32 

signature (Supplementary Table 26).

This strategy was further validated by assessing the relationship between CNA and 

pathways associated with a more complex genomic landscape. Previous studies from our 

group suggest that the Her1-C213 signature predominantly measures the RAS/RAF/MEK 

arm of the EGFR pathway13. Consistent with this observation, we detected a correlation 

between the Her1-C2 signature (q<0.01) and GRB2, SOS1, KRAS, BRAF, PIK3CA, PIK3CB, 

and MYC genomic DNA amplifications as well as a negative correlation (q<0.01) with loss 

of NF1 and PI3K repressors INPP4B and PTEN (Figure 2D, Supplementary Table 24). 

Finally, we analyzed CNA associated with the RB-LOH16 signature (Figure 2E, 

Supplementary Table 47) and identified associations between it and CNA of known RB/E2F 

components including loss of RB1 and gains of E2F1 and/or E2F3. Consistent with the role 

of the RB/E2F pathway in mediating cell cycle progression and proliferation37, CCND2, 

CCND3, and MYC amplification also correlated with this signature. Collectively these 

results demonstrate that this strategy is able to link CNA with pathway activity and does so 

by focusing on all aspects of the pathway, often beyond the dominant regulator, potentially 

allowing for the identification of novel regulatory components.

Identification of amplified genes linked to pathway activity

Given the ability of this strategy to identify known CNA of pathway activity, we next used 

this approach to identify novel drivers of pathway activity. Because highly proliferative 

luminal/ER+ tumors have a poor prognosis and poor responses to existing therapies38,39, we 

sought to identify amplified genes/CNA associated with our previously published 11-gene 

PAM50 Proliferation signature with the hope that these might represent targetable drivers of 

oncogenesis.

To identify those genes that are specifically altered in highly proliferative luminal tumors, 

while excluding those genes that are associated with proliferation irrespective of subtype, 

analyses were performed on two subsets of samples: all tumors and all non-basal-like tumors 

(henceforth called luminal tumors). Some rationale for this binary distinction comes from 

recent TCGA studies where 12 tumor types were studied simultaneously and showed that 

breast tumors formed two groups, namely Basal-like and all other breast tumors (called 
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Luminal and including HER2+ tumors), suggesting that breast cancer might broadly be 

considered two main disease types40.

Examining the TCGA breast cancer dataset using the PAM50 Proliferation signature31, 

Basal-like, LumB, and HER2E tumors were found to have the highest proliferation levels 

(Figures 3A and 3B) with the top quartile (Figure 3C) comprised of Basal-like (49.6%), 

LumB (33.6%) and HER2E (16.8%) patients, whereas the top quartile of proliferative 

luminal tumors (Figure 3D) contained LumB (68.0%) and HER2E (32.0%) patients. Using 

the PAM50 Proliferation signature, we examined the frequency of CNA gains and losses in 

highly proliferative (top quartile) tumors relative to less proliferative samples irrespective of 

subtype using the previously discussed statistical strategies (Figure 3E–F, Supplementary 

Table 43). To identify those genes that are specifically amplified in highly proliferative 

luminal breast cancer, these analyses were repeated using the luminal tumor subset (Figures 

3G–H, Supplementary Table 58). Analyzing both populations of patients identified three 

classes of proliferation-associated regions (q<0.05): (1) CNAs associated irrespective of 

subtype, (2) those altered in basal-like tumors, and (3) those altered in highly proliferative 

luminal tumors. These results allowed us to focus our analyses on those genes within regions 

that were uniquely altered in highly proliferative luminal tumors by censoring proliferation-

associated genes altered in basal-like breast cancer (e.g.TP53 or INPP4B loss), or that were 

altered irrespective of molecular subtype (e.g. RB1 loss or MYC amplification). These 

analyses identified a number of regions including 3p25, 5p15, 11q13, 17q22, and 20q11-13 

that were uniquely amplified in highly proliferative luminal tumors.

Identification of pathway-specific essential genes

To distinguish essential from non-essential genes in amplified regions associated with 

proliferation in luminal tumors, we next examined data from a genome-wide RNAi screen of 

multiple breast tumor-derived cell lines9. The 52 gene expression signatures were applied to 

a panel (GSE12777)41 of breast cancer cell lines (Supplementary Figure 5, Supplementary 

Table 59), of which 27 had both mRNA expression data and were part of a RNAi 

proliferation screen in which a genome-wide shRNA library (~16,000 genes) was used to 

identify essential genes (Figure 4A)9. For each signature, a negative Spearman rank 

correlation was used to identify pathway-specific essential genes (Figure 4B, Supplementary 

Table 60) by comparing the pathway score against the normalized shRNA score across the 

panel of 27 cell lines. These analyses identified inverse relationships between the abundance 

of shRNAs targeting key regulatory genes and pathway scores. For instance, examining the 

ER11,32, Her211,32, or Stat142 signatures as controls (Figures 4C–4E) showed a negative 

correlation between pathway score and shRNA against ESR1 (p=0.0143), ERBB2 

(p=0.0227), and STAT1 (p=0.0049) or JAK3 (p=0.00013), respectively. These associations 

were expected for the ER and Her2 pathways given the relationship between HER2 or ERα 

mRNA and/or protein expression and the response of cell lines or tumors to trastuzumab or 

anti-estrogen therapies, respectively. These results confirm that this approach is able to 

identify essential genes known to be functionally associated with pathway activity, thereby 

suggesting that these data can serve as a biological filter to distinguish pathway-specific 

essential from non-essential genes.
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Amplified essential genes linked to luminal tumor proliferation

We next sought to distinguish between essential and non-essential genes within regions 

specifically amplified in highly proliferative luminal tumors. For each subset of tumors we 

identified genes in amplified regions that were positively correlated with proliferation and 

showed an increased amplification frequency (q<0.05). We next examined the RNAi data in 

all breast cancer cell lines (Supplementary Figure 6A) and in luminal/HER2+ cell lines 

(Supplementary Figure 6B) in the context of the PAM50 Proliferation signature 

(Supplementary Table 61). Comparing the results of these four analyses (Figure 5A) 

identified 19 genes that were uniquely essential for cell viability in luminal cell lines and 

that were amplified in highly proliferative luminal tumors (Figure 5B). Two additional 

genes, DNAJC5 and SNX21, were identified by RNAi analysis but were initially overlooked 

in the CNA analyses since they were located at the cusp of two segmented regions; however, 

since genes overlapping both 5’ and 3’ of these genes were amplified, these were included 

for further investigation. Of these 21 candidate genes, twelve showed a significant 

relationship between DNA copy number levels and mRNA expression in luminal tumors 

(Supplementary Figure 7). Interestingly, half of these genes were located at 20q11-13 

(EIF2S2, EIF6, SLC2A10, SNX21, ZBTB46 and DNAJC5), with two located at 3p25.1 

(FGD5 and METTL6), and the remaining genes located at 5p15 (TRIO), 11q13 (CPT1A), 

12q13 (DTX3), and 17q22-23 (MRPS23). In contrast, permuting the data labels 1000 times 

for each analysis, in all samples and in luminal samples alone, identified no gene that met 

this statistical threshold, suggesting that the 21 candidate genes could not have been 

identified by chance alone.

Validation of identified candidate genes

We next confirmed that the majority of the identified genes were significantly amplified in 

highly proliferative luminal breast tumors by analyzing an independent breast tumor dataset 

(METABRIC, n=1,992) for which both mRNA expression and genomic DNA CNA data 

were available3. Of the twelve identified genes, nine (FGD5, METTL6, TRIO, CPT1A, 

DTX3, MRPS23, EIFS2S, EIF6, and SLC2A10) were present on both platforms used in the 

METABRIC study. Each of these genes (Supplementary Figure 8) showed a significant 

relationship between CNA status and mRNA expression in luminal breast tumors (n=1,333). 

Importantly, eight of the nine, the exception being TRIO, also showed an increased 

amplification frequency in highly proliferative (top quartile) luminal tumors (Supplementary 

Figure 9), thus recapitulating one of our main findings.

To confirm that DNA mutations of genes associated with proliferation in luminal tumors did 

not confound these results, we examined the relationship between the 11-gene Proliferation 

score and the mutation frequency of the previously identified 35 significantly mutated genes 

in human breast cancers reported by TCGA2. Using a Fisher’s exact test (Bonferroni 

corrected), we determined that only TP53 (q=7.0×10−10) and MAP3K1 (q=5.0×10−03) 

mutations occurred at significantly different frequencies in highly proliferative (top quartile) 

luminal tumors compared to all other samples; TP53 mutations occurred more frequently 

(51.6% vs. 18.6%) while MAP3K1 (2.1% vs.12.4%) mutations occurred less frequently in 

highly proliferative luminal tumors (Supplementary Table 62). Moreover, we found no 

significant relationship between MAP3K1 or TP53 mutation status (Bonferroni corrected 
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Fisher’s exact test, q>0.05) and the amplification status of each candidate gene 

(Supplementary Table 63) in highly proliferative luminal tumors.

Lastly, we investigated whether expression of the candidate genes, independent of CNA 

status, was associated with proliferation in luminal breast tumors. By comparing the mRNA 

expression patterns of each candidate gene in highly proliferative luminal tumor samples 

(top quartile) against all other samples, we found that tumors lacking CNA of each candidate 

gene fell into three categories: those that exhibited a positive relationship between mRNA 

expression and the PAM50 proliferation signature (EIF2S2, EIF6, CPT1A, and MRPS23), 

those that were anti-correlated with the signature (DTX3), and those that showed no 

correlation (FGD5, METTL6, and SLC2A10) between datasets (Supplementary Figure 10). 

These data suggest that amplification is a key mechanism driving the expression of these 

genes. However, our data also suggest, not surprisingly, that for some genes overall high 

expression may be the driver, which can be accomplished by amplification or through other 

unknown means.

Candidate gene amplification correlates with poor prognosis

Previous studies have shown that highly proliferative luminal tumors have a poor 

prognosis38,39, therefore we investigated what impact amplification of each candidate gene 

had on overall survival. From the TCGA (n=388)2 and METABRIC (n=1,333)3 datasets we 

extracted the subset of LumA, LumB, or HER2E patients for which survival data was 

available (Supplementary Tables 64–65). We first analyzed data from the TCGA (Figure 

6A–E), and despite the relatively short follow-up (median: 1.7 years), determined that 

amplification of FGD5 (P<0.0001, HR: 8.0), METTL6 (P=0.0003, HR: 5.9), DTX3 

(P=0.0387, HR: 2.6), and MRPS23 (P=0.0078, HR: 2.9) predicted a significantly worse 

outcome in luminal breast cancer patients whereas CPT1A amplification had no effect on 

patient survival (P=0.3738). Extending these analyses to the METABRIC dataset (Figures 

6F–J), which has a longer median survival time (7.2 years), confirmed that FGD5 

(P=0.0170, HR: 2.0), METTL6 (P=0.0081, HR: 2.1), DTX3 (P=0.0098, HR: 1.8), and 

MRPS23 (P=0.0020, HR: 1.5) amplification correlated with a poor prognosis, while gain of 

CPT1A had no effect (P=0.099) on luminal breast cancer survival. The remaining three 

genes, showed no consistent effect on prognosis (Supplementary Figure 11). While it is 

possibly that other genes within these chromosomal loci are also prognostic, these amplified 

genes were associated with proliferation in vivo, were prognostic in multiple patient cohorts, 

and essential for cell viability in vitro.

Likewise, we determined that for most of the identified candidate genes that failed to meet 

all our predetermined criteria, amplification alone, without a coordinate increase in mRNA 

expression, was not sufficient to affect prognosis since only one (TMEM117) of these genes 

showed a consistently poor prognosis in the TCGA and METABRIC datasets 

(Supplementary Table 66). Lastly, we investigated whether the 12 initial candidate genes 

were predictive of a poor prognosis when compared with standard prognostic markers 

including molecular subtype, tumor stage, node status, ER status, HER2 status, age at 

diagnosis, and the 11-gene proliferation score when tested using a multivariate analysis (Cox 

model). We determined that amplification of a single candidate gene did not consistently 
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outperformed or improve the prognostic capacity of these clinical and genomic variables 

(Supplementary Table 67). However, these candidate genes were not identified to be 

prognostic markers, especially given that they correlate with proliferation, but instead were 

selected to be likely drivers of proliferation, a highly important prognostic feature.

DISCUSSION

Numerous studies, including many focused on human breast cancer, have made use of large-

scale analyses to investigate the genomic landscape of human cancers and to identify 

molecular heterogeneity within tumor types not previously recognized2,3,6,11. The challenge 

presented by these studies, and by the enormous amount of genomic data available from 

resources such as the TCGA and METABRIC projects, is how to integrate multiple forms of 

genomic data to investigate the biology of the disease, and how to interpret the significance 

of identified genomic alterations without relying on inferences of “known” biology to 

determine the role that these alterations play in tumorigenesis.

In this study, we utilize gene expression signatures of signaling pathways to identify patterns 

that can distinguish the known subtypes of breast cancer. These signatures are largely 

developed from controlled manipulations of the relevant pathways in vitro, and are thus 

based on experimental evidence for pathway activation as opposed to extrapolations of 

pathway activity achieved from analyses of annotated gene lists. Therefore, use of an 

experimentally derived pathway signature, as opposed to the analysis of a single genomic 

alteration, provides a measure of pathway activity irrespective of how the pathway may have 

been activated. For instance, a given pathway can be active in a subset of tumors, either as a 

result of an activating alteration (i.e. E2F1 or E2F3 amplification) or an independent event 

that inactivates a negative regulator of the pathway (i.e. RB1 loss and/or mutation), which 

nevertheless achieves the same end result (i.e. DNA replication and cell proliferation); 

importantly, we identified these four genetic events as being statistically associated with the 

RB-LOH signature16, which is dominated by E2F-regulated genes and is a strong indicator 

of cell proliferation and prognosis.

Proliferation is one of the most powerful prognostic features in breast cancers, especially for 

ER+ cancers38,39. Since proliferation is so important, we utilized a gene expression 

signature of proliferation as a means to integrate the DNA copy number data, along with 

data from a genome-wide RNAi screen of luminal breast cancer cell lines, to identify 

luminal-specific genetic drivers of proliferation. We identified 12 genes that were uniquely 

amplified in highly proliferative luminal tumors in the TCGA dataset, have a correlation 

between mRNA expression and DNA copy number, and were shown to be essential for 

luminal breast cancer cell line viability; eight were validated using the independent 

METABRIC dataset. While FGD5, METTL6, DTX3, and MRPS23 amplification was 

prognostic in luminal patients, these and many of the other identified genes have been 

previously reported to regulate tumorigenic characteristics, albeit not necessarily in human 

breast cancer. For example, FGD5 has been shown to regulate the pro-angiogenic function 

of VEGF 43, potentially leading to increased proliferation. DTX3 purportedly promotes 

Notch signaling44,45, while EIF6 is a Notch-dependent regulator of cell invasion and 

migration46 and its inhibition restricts lymphomagenesis and tumor progression47. MRPS23 
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expression is associated with proliferation, oxidative phosphorylation, invasiveness, and 

tumor size in uterine cervical cancer48. METTL6 has been reported to contribute to cytotoxic 

chemotherapy sensitivity in lung cancers49.

Several previous studies have identified chromosomal regions specifically altered in subsets 

of breast cancer, including 3p25 (encompassing METTL6, FGD5)2 and 11q13 (CPT1A)3 in 

luminal breast tumors; however these studies neither discriminated between essential and 

non-essential genes within a specific amplicon, nor did they identified the functional 

consequence of these alterations. In contrast, we have shown that these regions are uniquely 

amplified in highly proliferative luminal tumors and importantly, we distinguish between 

amplified genes that are essential for cell proliferation and thus likely contribute to 

tumorigenesis, versus those that are amplified but not essential. For instance SRC 

(20q12-13), which is co-amplified with EIF6, is similarly amplified in a significant 

percentage of highly proliferative luminal tumors (Supplementary Tables 43 and 58), but 

was not identified as essential in highly proliferative luminal breast cancer cell lines in the 

RNAi screen (Supplementary Table 60). Interestingly, in addition to its role in regulating 

translation50 and Notch signaling46, EIF6 has been reported to link Integrin-β4 to the 

intermediate filament cytoskeleton51, potentially leading to down-stream activation of SRC 

signaling. These results may explain some of the paradoxical findings of SRC in that it may 

contribute to proliferation status, but may not be essential, whereas a gene very near it, also 

linked to proliferation, is essential for cell viability in vitro. Clearly additional experiments 

are needed to address this issue, but these results highlight the complex nature, and 

importance, of this specific amplicon.

A significant challenge to translating these findings into the clinic is the identification of 

genes within amplicons that are therapeutically targetable. One such event may be 

amplification of 11q13-14/CPT1A, which was recently reported3 to be a defining feature of 

a high-risk ER+ subgroup (Integrative Cluster 2) and correlates with a poor prognosis in 

esophageal squamous cell carcinoma52. We identified CPT1A as the only gene within the 

amplified 11q13 locus required for cell viability within the confines of the proliferation 

signature and luminal cell lines, suggesting that repression of CPT1A could affect the 

proliferative phenotype of these tumors. Consistent with this hypothesis, it was recently 

reported that RNAi-mediated down-regulation, or drug-mediated inhibition of CPT1A, 

inhibited cancer cell line proliferation, migration and metastasis53–55, albeit not in breast 

cancer cell lines. Lastly, a specific inhibitor of CPT1A (ST-1326) repressed tumor formation 

and proliferation in an Eμ-myc mouse model of Burkett’s lymphoma55.

Collectively these data demonstrate the ability of this across-platforms genomics approach 

to identify novel oncogenes amplified in a subset of highly proliferative luminal breast 

cancer patients which are essential for cell viability. These data suggest that not only are 

these identified genes potential drivers of oncogenesis and that an emphasis should be 

placed on elucidating their role in breast tumorigenesis, but also that they, or their associated 

pathways, may serve as novel therapeutic targets in a subset of human breast cancers for 

which limited therapeutic opportunities currently exist.
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METHODS

Gene expression data

Agilent custom 244K whole genome gene expression microarray data for human breast 

cancer samples was acquired from The Cancer Genome Atlas (TCGA) project2 data portal. 

Samples were filtered to include only those 476 samples for which Affymetrix SNP 6.0 data 

was present. As previously described, (TCGA) data were median centered for each gene. 

Illumina HT-29 v3 expression data for the METABRIC (Molecular Taxonomy of Breast 

Cancer International Consortium) project (n=1,992 samples) was acquired from the 

European Genome-phenome Archive at the European Bioinformatics Institute and data were 

median centered for each gene3. Expression data for a panel of 51 breast cancer cell lines 

was acquired from GEO (GSE12777)41. Affymetrix U133+2 data were MAS5.0 normalized 

using Affymetrix Expression Console (ver1.2.1.20), and log2 transformed. Expression 

probes were collapsed using the median gene value with the GenePattern56 module 

CollapseProbes.

Affymetrix SNP 6.0 data

DNA copy number values were determined in 490 TCGA primary breast tumors (of which 

476 had matched mRNA expression data) and 1,992 METABRIC primary breast tumors 

using Affymetrix 6.0 SNP arrays as previous described2,3. Copy number segmentation and 

segment calls (i.e. NEUT, AMP, GAIN, HOMD or HETD) was performed using the 

Circular Binary Segmentation (CBS) algorithm as previously described2,3. Using the hg19 

build annotation from the UCSC genome browser, genes were selected if they fell 

completely within a CBS identified copy number segment. Genes that were not found 

completely within a copy number segment across any sample were filtered out. In the 

METABRIC dataset, the copy number call gene-matrix was determined from genes that fell 

completely within a CBS identified copy number segment. Out of the 12 genes of interest, 

SNX21, ZBTB46, and DNAJC5 were not found completely within a CBS identified segment 

among the METABRIC samples and were excluded from further analyses.

Gene expression signatures

A panel of 52 previous published gene expression signatures was used to examine patterns 

of pathway activity and/or microenvironmental states (Supplementary Table 1). In order to 

implement each signature, the methods detailed in the original studies were followed as 

closely as possible. The 22 signatures from Gatza et al.10,11,32 were originally developed 

based on a Bayesian binary regression strategy and identified a signature comprised of 

Affymetrix probe sets with positive and negative regression weights; to translate these 

signatures to a form that could be applied to non-Affymetrix expression data, the original 

reported signatures were altered. For each signature, we excluded those probe sets with a 

negative correlation coefficient. The remaining probe sets with a positive coefficient were 

then translated to the gene level, and replicate genes were merged. To apply a given 

signature to a new dataset, the expression data was filtered to contain only those genes that 

met the previous criteria and the mean expression value was calculated using all genes 

within a given signature that were present in more than 80% of samples. The list of genes in 

each modified signature is reported in Supplementary Table 2 and the scores for the TCGA 

Gatza et al. Page 10

Nat Genet. Author manuscript; available in PMC 2015 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



dataset (Supplementary Table 3) and cell line dataset are provided (Supplementary Table 

59).

Statistical analyses of signature scores

To quantify differences in patterns of signature scores across subtypes, an ANOVA followed 

by a Tukey’s post-test for pairwise comparisons was used (as shown in Figure 1B). To 

investigate the level of concordance between each of the 52 signatures, the pathway scores 

calculated for each sample in the TCGA dataset (Supplementary Table 3) were analyzed. 

The R values calculated by a Pearson correlation are reported in Supplementary Figure 2 

and Supplementary Table 5.

Identification of point mutations as a function of pathway activity

To compare the frequency of mutations, the 35 genes identified as being significantly 

mutated in human breast cancer2 were assessed in the context of the 11-gene PAM50 

Proliferation signature31. A Fisher’s exact test (Bonferroni corrected) was used to compare 

the frequency of mutations in samples with high (top quartile) and low (all other samples) in 

LumA, LumB and HER2E (n=388) samples. The frequency of mutations associated with 

each group for each signature is summarized in Supplementary Table 60–61.

Identification of copy number alterations as a function of pathway activity

To identify copy number alterations two analysis methods were independently used. A 

Spearman rank correlation, both positive and negative, was used to compare gene-level 

segment scores with predicted pathway activity. To compare the frequency of amplification 

and losses, a Fisher’s exact test was used to compare the frequency of either gene-specific 

copy number gains and amplification or deletions (both loss of heterozygosity of deletion) 

against non-amplified or non-deleted samples. Samples in the top quartile of calculated 

pathway activity were compared to those in the bottom three quartiles. For each analysis, the 

negative log10 Bonferroni-adjusted P-values are reported (Supplementary Figure 3 and 

Supplementary Figure 4). To identify genes that were significant across both methods, a 

threshold of q<0.01 (Bonferroni corrected) was set for validation (Figure 2) and q<0.05 for 

discovery (Figure 5). The Bonferroni corrected p-values for the positive and negative 

Spearman rank correlation for each gene and each signature are reported in Supplementary 

Tables 6 through 57. The frequency of copy number gains in the top quartile versus all other 

samples, as well as the Bonferroni corrected p-values calculated by a Fisher’s exact test, are 

reported for each gene and each signature (Supplementary Tables 6–57).

Analysis of genome-wide RNAi proliferation data

In order to identify genes required for cell viability in a signature dependent manner, data 

from a previously published genome-wide RNAi screen carried out on a panel breast cancer 

cell lines were analyzed9. The Gene Active Ranking Profile (GARP)-normalized data were 

obtained from the COLT database and filtered to include only those 27 cell lines for which 

gene expression data (GSE12777) were also available (acquired February 2013). To identify 

gene essential for pathway-dependent cell proliferation, a negative Spearman correlation 
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was performed comparing predicted pathway activity and GARP score for each sample. A 

threshold of p<0.05 was considered significant for all analyses.

Analysis of mRNA expression in copy number neutral samples

To assess mRNA expression in luminal tumors lacking CNA of each candidate genes, 

luminal and HER2E samples from the TCGA (n=388) and METABRIC (n=1,333) studies 

were grouping to high (top quartile) and low (all other samples). Samples with copy number 

gains (including high-level amplification or gain) or losses (both loss of heterozygosity and 

homozygous deletion) were excluded and a t-test was used to examine statistical differences 

between the expression levels of genes in each cohort.

Survival analyses

To investigate the effect that candidate gene amplification has on disease-specific survival, 

clinical data for the 1,992 patients in the METABRIC study were obtained3. The 11-gene 

PAM50 Proliferation signature31 was applied to all 1,992 samples by calculating the median 

value of the signature, for each sample. For survival analyses, patients that died of causes 

unrelated to breast cancer and patients without a date of death were censored. We extracted 

patients classified as Luminal A, Luminal B or HER2E for which survival data was reported 

(n=1,333). For survival analysis of the TCGA dataset2, we extracted patients classified as 

LumA, LumB or HER2E for which clinical data were available (September 2012). Disease-

specific survival was calculated comparing samples with an amplification of a candidate 

gene against those without. In each dataset, patients without a CNA call for a specific gene 

were excluded from the survival analysis. For each analysis, significance was calculated by 

a log rank test and the hazard ratio (HR) is reported. To compare the effect of candidate 

gene copy number status on common prognostic markers including proliferation (PAM50 

proliferation signature), molecular subtype (PAM50), tumor stage, node status, ER status, 

HER2 status, or age at diagnosis, a multivariate Cox model was used.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Patterns of genomic signature pathway activity in breast cancer
(A) Patterns of pathway activity (n=52) were determined for each sample in the published 

TCGA Breast Cancer cohort (n=476). Expression signature scores (y-axis) are median 

centered and clustered by complete linkage hierarchical clustering. (B) An ANOVA 

(P<0.0001) for all signatures according to PAM50 subtype followed by a Tukey test for 

pair-wise comparison demonstrates statistically significant differences in the levels of 

pathway expression between molecular subtypes. Box color indicates level of significance 

between subtypes as indicated by the legend.
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Figure 2. Identification of genomic pathway-specific copy number alterations
(A) Schematic outlining strategy used to identify CNA associated with pathway activity. (B) 

For each signature, significant copy number gains and losses were calculated. The plot 

identifies those genes that had a positive Spearman rank correlation and have increased 

amplification frequency (q<0.01) (red), or that have a negative Spearman rank correlation 

and show an increased frequency of copy number losses in the top scoring (top quartile) 

samples with pathway activity (q<0.01) (blue). (C–E) A Spearman rank correlation was used 

to identify genes positively (black line) or negatively (dark blue) associated with pathway 
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activity and a Fisher’s exact test was used to compare the frequency of copy number gains 

(red) or losses (light blue) for the (C) Her2 Amp (D) Her1-C2 signature, and (E) RB-LOH 

signature. Yellow arrows indicate known pathway drivers with q<0.01 for each analysis; 

black arrow indicates q<0.01 for a single analysis. In each figure, chromosomal boundaries 

are indicated by vertical black lines.
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Figure 3. Identification of DNA copy number alterations in highly proliferative breast tumors
(A) Distribution of proliferation scores across all tumors and (B) by subtype. (B) Box and 

whisker plots indicate median score and the upper and lower quartile. Basal-like (n=88), 

HER2E (n=55), LumA (n=214) and LumB (n=119). (C) Highly proliferative tumors (top 

quartile) are comprised of Basal-like (49.6%), LumB (33.6%) and HER2E (16.8%). (D) 

Highly proliferative luminal tumors are restricted to LumB (68.0%) and HER2E (32.0%) 

samples. (E) Frequency of CNA in highly proliferative (black line) and all other samples 

(gray line). (F) Statistical analyses of CNA: positive correlation (black) and negative (dark 
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blue) Spearman rank correlation and Fisher’s exact test of amplification (red) or deletion 

(light blue) frequency. (G) Frequency of CNA in highly proliferative luminal tumors; color 

key same as (E). (H) Statistical analyses of CNA in proliferative luminal tumors; color key 

same as (F). Chromosomal boundaries in (E–H) are defined by vertical black lines.
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Figure 4. Identification of genomic pathway-associated essential genes in cell lines
(A) Schematic outlining strategy used to identify pathway-specific genetic dependencies. 

(B) A panel of 27 breast cancer cell lines with both expression data and data from a genome-

wide RNAi screen was used to identify pathway-specific genes required for cell viability 

using a negative Spearman rank correlation (-log10 P-values plotted); significant genes 

(P<0.05) are shown according to chromosome location. Vertical black lines indicate 

chromosomal boundaries. (C) ESR1 (D) ERBB2 and (E) STAT1 or JAK3 shRNA levels are 

inversely associated with the ER, Her2 or Stat1pathway scores.
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Figure 5. Identification of essential genes amplified in highly proliferative luminal tumors
(A) Schematic outlining the integrated genomic strategy to identify essential genes amplified 

in highly proliferative luminal breast tumors. (B) Identification of 21 genes in amplified loci 

that are unique to highly proliferative luminal tumors and are specifically required for 

luminal cell line proliferation in vitro. mRNA expression of genes in red and blue were 

significantly associated with CNA status, with the subset highlighted in red being further 

validated in the METABRIC dataset; genes in black do not show a significant mRNA-DNA 

correlation. Candidate genes demarcated by (*) are located at cusp of a CNA segment and 
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were originally excluded, but mentioned here. Genes identified by (#) were not included on 

mRNA expression microarrays, and the correlation between DNA and mRNA expression 

was not assessed.
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Figure 6. Candidate gene amplification correlates with a poor prognosis
Amplification of (A) FGD5 (NAMP=51, NNoAMP=337), (B) METTL6 (NAMP=51, 

NNoAMP=337), (C) DTX3 (NAMP=71, NNoAMP=317) and (D) MRSP23 (NAMP=127, 

NNoAMP=261) correlated with poor disease-specific outcome in the luminal breast cancer 

patients in the TCGA dataset (n=388) while (E) CPT1A (NAMP=111, NNoAMP=277) 

amplification had no effect on prognosis. Consistent results were observed in the 

METABRIC dataset (n=1,333) for (F) FGD5 (NAMP=42, NNoAMP=1,218), (G) METTL6 

(NAMP=44, NNoAMP=1,278), (H) DTX3 (NAMP=67, NNoAMP=1,266), (I) MRPS23 

Gatza et al. Page 24

Nat Genet. Author manuscript; available in PMC 2015 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(NAMP=266, NNoAMP=1,062) and (J) CPT1A (NAMP=241, NNoAMP=1,029). Samples in the 

METABRIC dataset missing CNA calls were excluded. For each analysis, P-value 

determined by log-rank test and Hazard Ratio (HR) are reported.
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