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Abstract: Immunotherapy is a promising cancer treatment because of its ability to sustainably enhance the natural immune response. 
However, the effects of multiple immunotherapies, including ICIs, are limited by resistance to these agents, immune-related adverse 
events, and a lack of reasonable therapeutic targets available at the right time and place. The tumor microenvironment (TME), which 
features tumor-associated macrophages (TAMs), plays a significant role in resistance owing to its hypoxic microenvironment and lack 
of blood vessels, resulting in cancer immune evasion. To enhance immunotherapy, photodynamic therapy (PDT) can increase innate 
and adaptive immune responses through immunogenic cell death (ICD) and improve the TME. Traditional photosensitizers (PSs) also 
include novel nanomedicines to precisely target tumor cells or TAMs. Here, we reviewed and summarized current strategies and 
possible influencing factors for nanomedicines for cancer photoimmunotherapy. 
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Introduction
Cancer is a disease of the genome that is initiated by somatic instability and progresses through the accumulation of 
numerous point mutations and structural alterations.1,2 In the process of tumorigenesis, these diverse alterations can lead 
to the development of progressively more aggressive and invasive phenotypes, leading to the impairment and exhaustion 
of essential physical functions.3 To prohibit tumorigenesis, the immune system can recognize genomic variation, which 
could give rise to characterized tumor antigens and further elicit humoral and cellular immune responses.4 However, 
cancer cells have evolved multiple mechanisms, such as defects in antigen presentation mechanisms, the upregulation of 
negative regulatory pathways, and the recruitment of immunosuppressive cell populations, to evade immune surveillance, 
leading to impaired effector function of immune cells and elimination of antitumor immune responses.5–9 For these 
reasons, the tumor microenvironment (TME), which involves the infiltration of specialized immune cells, also plays 
a significant role in cancer immune evasion, indicating that cancer immunity needs more intervention.

Various cells compose the TME and have extremely complicated relationships with cancer cells, especially immune 
cells that mediate innate and adaptive immune responses. Since the adaptive immune system, which is usually activated 
by innate immune cells, can undergo immune surveillance and tumor eradication, macrophages and dendritic cells, which 
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are innate immune cells, exhibit tumorigenic effects owing to complex cross-talk and different chemokines in the TME. 
To this end, the modulation of innate immune cells has attracted much attention, and targeting tumor-associated 
macrophages (TAMs) may be a potential way to enhance the positive innate immune system.

Considering the importance of antitumor immunity, immunotherapy has become a major focus among tumor 
treatments because it can increase natural immune defenses to eliminate malignant cells and do less harm to normal 
cells.10 With diverse traditional methods, including monoclonal antibodies and immune system modulators, which are 
already valuable for immunotherapy, the clinical utilization of cancer vaccines and immune checkpoint inhibitors (ICIs) 
has achieved notable benefits as a breakthrough in new treatments.11–13However, the effects of multiple immunothera-
pies, including ICIs, are limited by resistance to these agents, immune-related adverse events, and a lack of reasonable 
therapeutic targets available at the right time and place.14,15 In recent years, many studies have attempted to develop new 
immunotherapies or combination therapies to increase the proportion of beneficiaries, of which therapeutic targeting via 
immunotherapy with nanomedicine and photodynamic therapy might constitute another breakthrough.15

Current Strategies for Enhancing Immunotherapy
Owing to the mechanism that drives the somatic immune system, immunotherapy is associated with high expectations of 
durable responses, whereas only a minority of patients treated with immune checkpoint inhibitors (ICIs) respond stably 
and constantly to these agents.16,17 Resistance to immunotherapy results in 70% of patients being classified as 
nonresponders or progressing after the initial response to ICIs.18 To increase the response rate and safety of immu-
notherapy, strategies such as therapeutic targeting and combination therapies have made breakthroughs in clinical 
practice. Several types of immunotherapies, including adoptive cell transfer and ICIs, have achieved durable clinical 
responses, but their efficacy varies, and only subsets of cancer patients can benefit from them.19 Thus, the underlying 
mechanisms and additional therapeutic strategies need to be addressed.

According to one recent study, the issue of immune therapy resistance can be resolved by two factors: intrinsic factors 
of tumors and the dynamic nature of the TME.20 With respect to tumor immunotherapy, we have focused on how to 
target tumor cells, such as PD-L1 expression,21 mutational burden,22 and deficiencies in antigen presentation,23 instead of 
overlooking the modulation of the TME. TME modifiers can indirectly facilitate tumor immunogenicity and antitumor 
immunity, as components of the TME can influence sensitivity to immunotherapy both individually and in combination.

While the components of the TME include various cells, the extracellular matrix (ECM), the vasculature, and 
chemokines, all kinds of theoretical and rational combination therapies that enhance efficacy by adjusting the TME 
have been studied. To optimize the tumor microenvironment, we first need to determine which mediators play key 
determining roles in pro- or antitumorigenic effects. Thus, we can directly improve the antitumorigenic immune response 
by blocking inhibitory checkpoints, activating stimulatory pathways, and utilizing adoptive cell transfer therapy (includ-
ing CAR-T-cell therapy) or vaccines as modulators of the immune microenvironment.24–27 On the other hand, hampering 
immune tolerance is the key to reversing resistance to immunotherapy by targeting cellular tumorigenic mediators of 
tumor immune tolerance, such as MDSCs, Tregs, TAMs, and defective APCs.28

In addition, combining immune therapy with conventional treatment modalities, such as targeted ionizing radiation, 
can improve response rates. It is the radiational mechanism of causing focused cancer cell death and releasing tumor 
antigens that substantially activate immune cell responses.29 Like radiation, which is a local choice for combination with 
immunotherapy, novel photodynamic therapy (PDT) can also cause immunogenic cell death (ICD), a cell death modality 
that increases innate and adaptive immune responses with the generation of long-term immunological memory.30 

Compared with radiotherapy, PDT benefits from less damage to normal tissue and minimal acquired resistance and is 
thus regarded as a useful adjunct to local cancer treatment.31

Novel Nanomedicines for Photodynamic Therapy Combined with Immunotherapy
As a novel cancer treatment, PDT has gained great attention in recent years. Photosensitizers (PSs), which can be stimulated 
by light at a specific wavelength, generate high levels of reactive oxygen species (ROS), leading to vascular injury and tumor 
cell death.32 To ensure the ability of local tumor ablation, a two-step mechanism to react with oxygen and three determining 
factors is involved: high-efficiency PSs, laser irradiation at the optimal wavelength, and a sufficient supply of oxygen in the 
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TME.33 In addition to destroying tumor tissue directly, PDT-driven cancer immunotherapy involves various mechanisms, such 
as the secretion of damage-associated molecular patterns (DAMPs);34 the recruitment of neutrophils or macrophages;35 and 
the upregulation of transcription factor expression (NF-κB), heat shock protein 70 (HSP 70)36 or cytokines (IFN-γ, IFN-α).37 

PDT can increase tumor immunogenicity via ICD to induce an immune response.
However, the antitumorigenic immune response caused by PDT is usually mild. To take advantage of its limited 

immune effects, we reviewed and summarized current progress (Table 1) in photodynamic therapy combined with 
immunotherapy, revealing diverse novel nanomedicines that perform essential ligation functions. The use of specific 
nanoparticles can prolong retention time in tumor sites and achieve targeted delivery, thus reducing toxicity.38 In 
combination with multimodality therapy, nanoplatforms can also mediate the optimal immune response, with all kinds 
of immunomodulators working together.

PDT in Combination with Immunotherapy
PDT combined with ICIs such as anti-PD-1/PD-L1 antibodies or IDO inhibitors and other immunotherapeutic agents to 
modulate the tumor microenvironment could be a potential approach to amplify the immune response induced by PDT in 
combination with immunotherapy (Table 1).

PDT in Combination with Anti-PD-1/PD-L1 Agents 
Although blocking the PD-1/PD-L1 pathway is effective, its durable response rate remains low, which leads to resistance 
to PD-1/PD-L1 blockade therapy. Recent studies have shown that PDT can increase PD-L1 expression on tumors and 
thus augment PD-L1 blockade therapy.59 Zinc pyrophosphate (ZnP) nanoparticles imbued with the photosensitizer 
pyrolipid (ZnP@pyro), which ensures longer circulation in the blood and greater accumulation in tumor cells than free 
pyrolipid does, can activate apoptosis and necrosis in tumor cells when they are exposed to light.39 The study found that 
both the CLSM images and flow cytometry data confirmed that ZnP@pyro only caused CRT exposure when exposed to 
radiation, suggesting that photodynamic therapy (PDT), and not pyrolipid itself, is responsible for inducing immunogenic 
characteristics in 4T1 tumor cells. With the dual purpose of concurrently enhancing intracellular ROS production via 
PDT and ICD, an organic‒inorganic scaffold was devised to load a honey bee venom melittin (MLT) peptide and chlorin 
e6 (Ce6), designated Ce6/MLT@SAB.45 Compared with free MLT, this system could reduce hemolysis and improve Ce6 
penetration of cancer cells compared with single Ce6. However, immune-related adverse events were found to be 
a potential risk with the overloading of anti-PD-L1 antibodies in nanomedicine.40 To precisely regulate the amount of 
anti-PD-L1 agent used in nanomedicine, a molecular engineering approach involving the use of an anti-PD-L1 peptide 
(APP) in place of an anti-PD-L1 antibody was developed. The molecular structure was used to estimate the exact APP 
loading (48.4 wt%), and the resulting molecule, IR780-M-APP, was able to self-assemble into nanoparticles (NPs). 
Owing to its inherent aggregation-caused quenching (ACQ) effect, PdPc (OBu)8 in the water phase causes H-aggregate 
production and FUCL quenching. The upconversion luminescent phthalocyanine photosensitizer PdPc(OBu)8 into the 
lipid bilayer was designed to reduce aggregation-induced quenching and improve water solubility and biocompatibility, 
promoting the development of immunotherapy combined with upconversion-based PDT for precision tumor therapy.55

A milieu of hypoxia within the tumor reduces the effectiveness of photodynamic therapy because of insufficient 
bioreaction with oxygen for the generation of ROS. Advanced nanomedicines can address tumor hypoxia by integrating 
different self-sustaining oxygen approaches. As an innovative nanophotosensitizer, Fe-TBP, a metal‒organic framework 
operating at the nanoscale, can sensitize cells to effective PDT and overcome tumor hypoxia, thereby priming nonin-
flamed tumors for cancer immunotherapy.41 Under both normoxic and hypoxic conditions, Fe-TBP, which is composed 
of iron-oxoclusters and porphyrin ligands, promoted PDT. Considering the lack of blood vessels in the TME, a dual 
“unlocking” strategy was proposed to address hypoxia by combining engineered hybrid nanoparticles (named 
ZnPc@FOM-Pt) with dexamethasone (DXM).53 The novel nanoparticle was composed of disulfide bond-doped orga-
nosilica hybrid F127 micelles (named FOM), Pt nanoparticles added to the surface of FOM, and a hydrophobic ZnPc 
photosensitizer. In addition, the prodrug of bromodomain-containing protein 4 inhibitor (BRD4i) JQ1, which is intended 
to inhibit the expression of c-Myc and PD-L1, is a crucial regulator of tumor glycolysis and immune evasion. A novel 
approach using JQ1 was proposed to improve photoimmunotherapy for pancreatic cancer through the inhibition of both 
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Table 1 Photodynamic Nanomedicine in Combination with Immunotherapies

Photosensitizer and Immunotherapeutic Agents Delivery System Therapeutic Target Characteristics Model Ref.

Photosensitizer pyrolipid + anti-PD-L1 antibodies Zn-pyrophosphate NPs Tumor and PD-L1 Long Circulation and High Tumor Accumulation 4T1 and TUBO murine breast 
cancer (Balb/c mice)

[39]

IR780 + anti-PD-L1 peptide NPs Tumor and PD-L1 Precise control of the loading content of anti-PD-L1 agent B16F10 (C57BL/6) [40]

Nanophotosensitizer (Fe-TBP) + anti-PD-L1 antibodies nMOFs Tumor and PD-L1 Overcoming tumor hypoxia Bilateral CT26 (Balb/c mice) [41]

Ppa + JQ1 Supramolecular prodrug 
nanoplatform

Tumor and BRD4i Inhibiting PDT-mediated immune evasion through down- 
regulating expression of c-Myc and PD-L1

Panc02 cell (C57BL/6) [42]

PEGylated Ppa + reduction-sensitive IDO inhibitor (NLG919) Prodrug vesicle MMP-2 in TME and 
IDO

Designing a tumor-microenvironment-sheddable prodrug 
vesicle

CT26 and 4T1 (Balb/c mice) [43]

HPPH + IDO inhibitor indoximod pH-responsive 
nanovesicles

Endoplasmic reticulum 
in tumor and IDO

Achieving endosomal escape to release cargos in the 
cytoplasm

B16F10 (C57BL/6) [44]

Photosensitizer chlorin e6 (Ce6) + honey beevenom melittin (MLT) 
peptide + anti-PD-1 antibodies

Organic–inorganic 
nanocarrier

Tumor and PD-1 Inducing ICD and activating DCs by MLT to enhance the 
ICD effect

4T1 (Balb/c mice) [45]

Ppa + IDO inhibitor (NLG919) Redox-activatable 
liposome

Tumor and IDO Inducing ICD and reversing of suppressive tumor 
microenvironment

4T1 (Balb/c mice) [46]

Chlorin derivative + IDO inhibitor (INCB24360) Chlorin-based nMOFs Tumor and IDO Increased T cell infiltration in the tumor 
microenvironment

CT26 (Balb/c mice) and 
MC38 (C57BL/6)

[47]

Photosensitizer PpIX + IDO inhibitor (1MT) Chimeric peptide NPs TME and IDO Releasing 1MT in response to caspase-3 CT26 (Balb/c mice) [48]

Photosensitizer ICy-NH2 + IDO inhibitor (NLG919) NPs Tumor and IDO Good biosafety and biocompatibility 4T1 (Balb/c mice) [49]

Photosensitizer tetrakis (4-carboxyphenyl) porphyrin (TCPP) + TLR7 
agonist (L-7)

NPs Tumor and TLR7 Activating host antitumor immune responses through the 
co-delivery of adjuvant and tumor antigen.

B16F10 (C57BL/6) [50]

Photosensitizer chlorin e6 (Ce6) + IDO inhibitor (1MT) MSUCN-based 
nanocarriers

Tumor and IDO Able to emit light at multiple wavelengths and actively 
target tumor cells

HeLa and A549 (Vitro) [51]

Photosensitizer tetrakis (4-carboxyphenyl) porphyrin (TCPP) + 
STING agonists (ADU-S100)

3D NPs Tumor and STING Preparing STING agonist (ADU-S100)-functionalized 
porphyrin-based nanoparticles (NP-AS)

4T1 (Balb/c mice) [52]

Photosensitizer zinc phthalocyanine (ZnPc) + anti-PD-L1 antibodies Engineered hybrid 
nanoparticles

Tumor and PD-L1 Enhancing nanomedicine delivery efficacy and hypoxia 
relief

4T1 (Balb/c mice) [53]

Photosensitizer MDK Nb-PCP NPs + anti-PD-1 antibodies Novel light-activated 
nanoparticles

TME and PD-1 Achieving multimodal imaging and remodeling the 
immunosuppressive TME

KPC and AsPC-1 (C57BL/6) [54]

Frequency upconversion luminescence (FUCL) phthalocyanine nano- 
photosensitizers PdPc (OBu)8 + anti-PD-L1 antibodies

The nano-photosensitizer 
platform PdPc NPs

Tumor and PD-L1 Reducing the aggregation-caused quenching and improving 
water solubility and biocompatibility

4T1 (Balb/c mice) [55]

Photosensitizer chlorin e6 (Ce6) + M1 exosomes NPs TME and TAMs Enhancing the photodynamic performance of Ce6 and 
reprogramming M2 macrophages at tumor site

C26 (FVB/N female mice) [56]

Photosensitizer TPA-BD + anti-PD-L1 antibodies Combo-NP TME and PD-L1 Addressing the issue of tumor hypoxia by normalizing the 
tumor vasculature

OCM1 and B16F10 (C57BL/6) [57]

Photosensitizer tetrakis (4-carboxyphenyl) porphyrin (TCPP) + 
STING agonists (SR-717)

nMOFs Tumor and STING Reversing immunosuppressive tumor microenvironment 
and enhancing endogenous STING activation

4T1 (Balb/c mice) [62]
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cancer glycolysis and adaptive immune resistance.42 Pretreatment of tumors with DXM has been shown to increase the 
density of microvessels within the tumor microenvironment, thereby improving the tumor delivery efficiency of 
ZnPc@FOM-Pt and reducing HIF-1α expression.

In recent years, novel nanomedicines targeting the TME have been devised to reverse resistance to chemotherapy and 
immunotherapy because of the immunosuppressive nature of the TME. By utilizing tumor-specific midline nanobodies 
(Nbs) to target the tumor microenvironment (TME) of PDAC, researchers have developed novel light-responsive 
nanoplatforms capable of delivering semiconducting polymeric nanoparticles (NPs) to the TME of PDAC and generating 
abundant reactive oxygen species (ROS) locally for precise photoimmunotherapy.54 Another TME-targeting nanomedi-
cine called Combo-NPs, which include a biodegradable ROS-sensitive polymer together with DSPE-PEG2000 and 
lenvatinib, can effectively mitigate tumor hypoxia through the restoration of normal tumor vasculature.57 This normal-
ization process not only improved the effectiveness of PDT but also promoted greater infiltration of CTLs into the tumor 
microenvironment, enhancing the photodynamic and immunotherapeutic characteristics of the nanoparticles.

PDT in Combination with IDO Inhibitors 
As the kynurenine (Kyn) pathway is involved in tumor-associated immunosuppression,60 heme-containing enzymes, 
including indoleamine 2,3-dioxygenase 1 (IDO1), are pivotal immunotherapeutic targets. Kynurenine metabolites that 
result from IDO1 catalysis of the initial oxidation of L-tryptophan (L-Trp) accumulate,61 ultimately inhibiting T-cell 
activity and enabling tumor cells to evade immune surveillance and clearance.62 Hence, IDO functions as a substantial 
mediator, akin to PD-1/PD-L1 and CTLA-4, which aids in the suppression of peripheral immune responses. Combination 
therapies utilizing IDO inhibitors, such as NLG919, indoximod, INCB24360, and 1-MT, have been investigated as 
a means to regulate the immunosuppressive microenvironment.43,44,46–49,51

Owing to the appropriate size of the nanoparticle, a redox-activated liposome was developed, featuring prolonged 
blood circulation and enhanced tumor accumulation.46 Through self-assembly of the porphyrin‒phospholipid conjugate 
and coencapsulation of an indoleamine 2.3-dioxygenase (IDO) inhibitor (NLG919) into the interior lumen, these 
liposomes can induce immunogenic cell death (ICD) and reverse the suppressive effect on the tumor microenvironment. 
The use of another nanomedicine, ICy-NLG, has been found to be an effective strategy for addressing uncontrollable side 
effects caused by the uncontrolled distribution of normal tissue. This activatable photodynamic immunotherapeutic agent 
was created by linking the photosensitizer ICy-NH2 with NLG919 via a glutathione (GSH)-cleavable linker, which can 
only be activated at tumor sites.49 The IDO inhibitor INCB24360 was also enclosed in nMOF channels to stimulate 
a widespread antitumor immune response, with effective local and distant tumor rejection in CT26 colorectal cancer 
models.47 This synergistic combination confirmed that nMOF can also induce systemic antitumor immunity. Multishell- 
structured upconversion nanoparticles (MSUCNs) were created to have strong photoluminescence. These nanoparticles 
were designed for a therapy combining near-infrared light-induced photodynamic therapy with an IDO inhibitor (1MT), 
leading to cancer cell apoptosis and CD8(+) T-cell infiltration.51

In addition to targeting tumor cells, cell organelles such as the endoplasmic reticulum could also be specifically 
targeted to cause calreticulin exposure for the ICD effect. pH-responsive nanovesicles (pRNVs) formed by the self- 
assembly of the block copolymer polyethylene glycol-b-cationic polypeptide can act as nanocarriers and achieve 
endosomal escape to release cargos in the cytoplasm.44 These findings indicate that the subcellular distribution of PSs 
should be investigated to optimize their efficiency. The TME is another target, with many studies contributing to the 
identification of precise and effective strategies. Among them, matrix metalloproteinase-2 (MMP-2) has been used to 
design a tumor microenvironment-sheddable prodrug vesicle by combining a PEGylated PS with a reduction-sensitive 
prodrug of an IDO-1 inhibitor (indoximod).43 The prodrug vesicles remained inactive in the bloodstream but functioned 
in the TME, as MMP-2 could cleave the modified PEG corona. Notably, the PpIX-1MT peptide, which combines the 
photosensitizer PpIX with the IDO-1 inhibitor 1MT via a caspase-responsive peptide sequence, can also accumulate in 
tumor areas via enhanced penetration retention despite its weak targeting effect.48

PDT in Combination with Other Immunotherapeutic Agents 
Immunologic adjuvants are chemicals that often increase the intensity and longevity of the immune response to certain 
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antigens when they are administered together. For immunotherapy, vaccine formulations, including TLR7 agonists, 
STING agonists, and M1 exosomes, usually use immunologic adjuvants to increase the immune response and effective-
ness of immunizations. However, these immunotherapeutic agents could also drive cancer immunotherapy and promote 
a favorable TME for PDT treatment.63

First, a combination of Toll-like receptor 7 agonists, photodynamic therapy agents, and tumor antigens was created as 
a nanoplatform coated with cancer cell membranes, also called biomimetic nanoparticles (CCMVs/LTNPs).50 After 
destroying tumor cells via PDT, the immune system can be stimulated to eradicate any remaining tumor cells with the 
assistance of immune adjuvants and tumor antigens from the cancer cell membrane. STING agonists for immunotherapy 
are highly promising and are now undergoing clinical studies. Two studies have used STING agonist-mediated (ADU- 
S100 and SR-717) immunotherapy with photodynamic therapy to treat breast cancer.52,58 Despite the use of different 
delivery nanoplatforms, this rational combination was shown to activate the innate immune response and exhibit useful 
antitumor effects. Exosomes are extracellular vesicles that exist in the TME and are usually used as ideal drug delivery 
vectors. Notably, M1 exosomes derived from M1 macrophages may convert M2 macrophages into M1 macrophages, 
showing significant potential for cancer immunotherapy. Thus, synergistic therapy using M1 exosome-based nanoplat-
forms could not only achieve TNM-targeted accumulation but also reprogram immunosuppressive M2 macrophages into 
antitumor M1 macrophages for cancer immunotherapy.56

Multimodality Therapy Involving PDT for Enhancing Immunotherapy
To enhance the anticancer impact, multimodality treatment strategies have been created by integrating chemotherapy, 
PDT/PTT, and immunotherapy (Figure 1). Traditional chemotherapeutic medications do not have a specific method to 
target tumors, leading to increased toxicity and side effects in the body.64 Like immunotherapy, resistance to chemother-
apy also necessitates spatiotemporal precision and noninvasive properties, making PDT the most promising approach for 

Figure 1 Multimodality therapy for photoimmunotherapy with nanoplatforms. Photodynamic therapy can also induce a native immune response via immunogenic cell death. 
In combination with nanoplatforms, multimodality treatment strategies can target cancer tissue with enhanced therapeutic effects by integrating chemotherapy, PDT/PTT, 
and immunotherapy.
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addressing chemoresistant malignancies and enhancing therapeutic impact when combined with chemotherapy.65 With 
immunogenic cancer cell death or other immunogenic effects, anticancer chemotherapy shares treatment aims with PDT 
so that the enhanced immune response can further eradicate other chemotherapy-resistant cancer cells.66 For example, 
a biocompatible nanomedicine called PCL-NPs, which combines a chemiluminescence agent (luminol), a photosensitizer 
(Ce6), and a reactive oxygen species (ROS)-activatable thioketal-based paclitaxel (PTX) prodrug, was developed to 
simultaneously enhance chemotherapy and PDT in combination therapy.67 To ensure a sufficient oxygen supply, this 
nanomedicine could produce excess hydrogen peroxide within the tumor, resulting in the oxidation of the luminol 
component and the production of light for photodynamic therapy via chemiluminescence resonance energy transfer 
(CRET). Moreover, the singlet oxygen ((1)O(2)) generated in this mechanism both directly eliminates tumor cells and 
enhances oxidative stress to accelerate the activation of the PTX prodrug. In combination with IDO inhibitors, an 
albumin-based nanoplatform was developed to further boost synergistic cancer treatment that simultaneously delivers 
IR780, the NLG919 dimer, and the hypoxia-activated prodrug tirapazamine (TPZ).68 TPZ, a stimuli-activatable che-
motherapeutic prodrug, can mediate chemotherapy to enhance PDT-induced tumor ICD and stimulate more potent 
antitumor immunity, which is activated only by the hypoxic TME. Although NLG919, an IDO inhibitor, reduces the 
immunosuppressive TME and increases the infiltration of CTLs, the presence of memory T cells also prevents tumor 
recurrence and metastasis almost completely, indicating that this is a successful strategy for treating hypoxic and 
immunosuppressive malignant tumors.

Photothermal therapy (PTT) destroys cancer cells by inducing high temperatures in tumor tissues via the conversion 
of light into heat in a minimally invasive manner. However, PTT compounds have not undergone significant clinical 
studies to determine their effectiveness in enhancing localized light-based heating and ablation of tumor tissues.69 The 
PDT/PTT modality has usually been used in combination for skin cancer treatment. Similarly, PTT can use reactive 
oxygen species (ROS) and regulate local hyperthermia through mediators to disrupt the intracellular redox balance, 
causing DNA damage in the mitochondria and nucleus and ultimately triggering antitumor immune responses.70 For 
example, a nanomedicine was designed to carry both IR780 and 2.2’-azobis[2-(2-imidazolin-2-yl)propane]- 
dihydrochloride (AIPH) to achieve combined treatment activated by photothermal therapy.71 By targeting the MMP 
and modifying the anti-PD-L1-pep sequence on the surface of nanocarriers, this nanomedicine blocked immune 
checkpoints and the infiltration and activation of T cells (CTLs).

The Potential of PDT Nanoparticles to Target TAMs
Macrophages are specialized cells of the mononuclear phagocyte system that are crucial for maintaining balance in the 
body, healing wounds, regenerating tissues, and providing immunity. Derived from the myeloid cell lineage, they are 
distributed mainly on the first line of innate defense against invading pathogens through the phagocytosis of foreign 
substances or antigen presentation to T cells.72 Following exposure to various signals, these primary macrophages 
undergo polarized activation and exhibit distinct characteristics. TAMs, which are representative polarized macrophages, 
can be divided into two subtypes: classically activated macrophages (M1) and alternatively activated macrophages 
(M2).73 Specifically, M1 polarization is influenced by exposure to IFN-γ and lipopolysaccharide (LPS), and substantial 
amounts of IL-12 are released, which hinders tumor growth. In contrast, M2 polarization is influenced by exposure to IL- 
4 or IL-13, with IL-10 released to support tissue repair, wound healing, and tumor development. During tumorigenesis, 
TAMs switch from M1 to M2 polarization in response to alterations in the TME, such as hypoxia.38 Moreover, TAMs, 
mainly M2 macrophages, also contribute to tumor advancement through mutual communication with malignant T cells. 
Therefore, reshaping TAM polarization is essential for successful TAM-directed cancer immunotherapy.74 We describe 
the roles of TAMs and strategies for TAM reprogramming below. (Figure 2)

Role of TAMs in Promoting Tumorigenesis
As major components of the TME, TAMs play crucial roles in the cancer-related inflammatory milieu by secreting 
various cytokines, chemokines, and growth factors, leading to the maintenance of the activation status of various immune 
cells.75 Although TAMs present mainly M1 macrophages in the first stages of tumor growth, most of the protumor 
inflammatory factors classified as “M1 cytokines” can also initiate tumorigenesis. For example, TNF-α produced by M1 
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macrophages or other immune cells can cause the accumulation of ROS in precancerous cells, resulting in changes due to 
oxidative damage to several oncogenes and tumor suppressor genes, such as p53.76 It also activates NF-κB transcription 
factors, which stimulate the proliferation and survival of cancer cells.77 These diverse cytokines tend to induce the 
accumulation of oncogenes and tumor suppressor genes, ultimately promoting tumor initiation.

Although DNA damage caused by M1 macrophages can promote tumorigenesis, M2 macrophages are involved after 
a tumor progresses and grows. M2 macrophages are characterized by the release of anti-inflammatory substances such as 
transforming growth factor b (TGF-β1) and IL-10, which are involved in tumor angiogenesis, malignant invasion, and 
immunosuppression.78 In contrast, M1 macrophages can be relatively antitumorigenic since they help eradicate foreign 
substances such as precancerous cells. The presence of many TAMs and immunological checkpoints (ICs) has been 
reported to be a significant immunosuppressive feature in the TME. Proteins in ICs have been the primary focus of 
cancer immunotherapy, with current FDA-approved checkpoint inhibitors targeting CTLA4, PD-1, and PD-L1. However, 
multiple immune checkpoint molecules, such as SIRPa, Fcr, and Siglec-10, are commonly found on M2 macrophages to 
prevent their antitumorigenic effects.79 Recent studies have shown that nanotechnology for drug delivery to target tumor- 
associated macrophages could enhance immunoadjuvant treatment for cancer.

Advantages of PDT Nanomedicines for TAM Reprogramming
There is growing evidence that targeting TAMs or inhibiting the tumorigenic function of TAMs with nanomedicines might 
increase the effectiveness of traditional cancer treatments. Nanomaterials have a variety of physical and chemical features that 
allow them to act as delivery vehicles and immunomodulators, showing potential for enhancing the immunosuppressive 
conditions within tumors.80 Among these features, nanomedicine-based targeting, which is the determining factor, could 
achieve low toxicity, better pharmacokinetics, and increased bioavailability and therapeutic efficacy.81 By targeting cancer 
cells or TME components, PDT nanomedicines can influence antitumor immune responses, in addition to destroying cancer 
cells directly.82 Given that the immunosuppressive TME is mediated mainly by M2-type macrophages, reprogramming TAMs 

Figure 2 Polarization state characteristics of M1 and M2 macrophages and strategies for reprogramming. 
Abbreviations: TLR, toll-like receptor; CSF2, colony stimulating factor 2; iNOS, inducible nitric oxide synthase; pSTAT1, phospho-signal transducer and activator of 
transcription 1; PGE2, prostaglandin E2; VEGF, vascular endothelial growth factor; cMAF, transcription factor; GLS, glutaminase.
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to M1-type macrophages is important, as PDT nanomedicines enhance therapeutic effects via ICD. Some PDT nanomedicines 
have been designed in combination with specific molecules that reprogram TAMs, including hyaluronic acid (HA) 
biopolymer,83,84 a Toll-like receptor 7 and 8 (TLR7/8) agonist (R837),85,86 the glutaminase (GLS) inhibitor compound 968 
(C968),87 and atovaquone (ATO).88

As a natural glycosaminoglycan, HA can modulate the activation of protumor M2-type and antitumor M1-type 
macrophages by increasing IL4 and IL10 gene expression.89 A novel photosensitizer-loaded nanoconjugate (PUN) was 
created by combining manganese dioxide (MnO(2)) nanosheets with an HA biopolymer to increase the effectiveness of 
NIR light-mediated PDT by reducing hypoxia and remodeling TAMs simultaneously.83 After delivery into the acidic 
TME, MnO(2) nanosheets can be degraded to produce sufficient oxygen for PDT, while the bioinspired polymer HA can 
mediate TAM reprogramming, which effectively prevents tumor relapse after PDT treatment. A further advanced 
nanomedicine combining PDT and PTT was also modified with PEGylated HA. It not only achieves TAM reprogram-
ming but also induces the maturation of dendritic cells (DCs) and activated effector cells to enhance antitumor immune 
responses.84 Owing to their strong anticancer and immune-boosting effects, TLR7/8 agonists, such as resiquimod (R848), 
are usually used as immunological adjuvants. Notably, R848-loaded nanoparticles have also been shown to effectively 
reprogram TAMs from supporting tumors (M2-type) to fight against them (M1-type) via a chimeric peptide-engineered 
self-delivery system (ChiP-CeR) in a breast cancer model.85 In addition to this nanoplatform modified by a tumor matrix- 
targeting peptide, a cell membrane-based delivery system based on cyclodextrin-based host‒guest molecular interactions 
could repair errors caused by chemical and genetic alterations in cell membranes while providing R848 as a 
TAM-reprogramming agent.86 GLS inhibitors have been found to convert M2-type TAMs into M1-type TAMs by 
inhibiting glutamine metabolism. With a carrier-free immunotherapeutic nanocarrier, the combination of C968 and the 
photosensitizer chlorin e6 could result in dual synergistic effects.87 As tumor hypoxia is involved in the immunosup-
pressive TME, ATO could significantly improve the hypoxic microenvironment by inducing the maturation of DCs and 
the polarization of M2-type macrophages.88 Like ATO, regorafenib (Reg), which is a vascular normalization agent that 
targets many kinases related to angiogenesis, can also improve the TME by normalizing the tumor vasculature. It was 
also reported to be used in a photodynamic polymer, showing the ability to reprogram TAM polarization.

Indirect reprogramming of TAMs is another strategy via the specialized property of novel nanoparticles loaded with 
only active PSs. First, the ROS generated by the type I photosensitizer can transform M2 macrophages into M1 
macrophages and inhibit immunological checkpoints. This was confirmed by a photosensitizer-loaded lipidic nanosystem 
in which the immune checkpoint inhibitor Siglec-10 was modified to further boost the antitumor immune response of M1 
macrophages.90 In addition, oxidative damage to mitochondrial DNA reportedly modulates TAM polarization through 
PDT-induced ICD and impaired mitochondrial Ca(2+) overload.91 Specialized nanoparticles, such as iron oxide nano-
particles (IONs), can decrease the level of M2-associated arginase-1 in macrophages, causing them to shift toward 
M1-type macrophages by increasing the activity of the interferon regulatory factor 5 signaling pathway.92

The Application of PDT Nanoparticles Targeting TAMs
Nanomedicine for tumor targeting is usually accomplished via passive and active targeting techniques. While passive targeting 
is based on the enhanced permeability and retention effect (EPR effect), active targeting involves attaching targeting ligands, 
such as antibodies or peptides, to nanoparticles. These ligands are designed to bind precisely to receptors that are over-
expressed during disease, indicating that an appropriate targeting molecule is endowed with high efficiency and low toxicity.82 

For example, NP-PDT@Reg delivered by passive targeting was observed mainly in tumors as well as in the liver and kidney. 
Here, we have summarized the current strategies for nanoparticle targeting of TAMs and classified them as direct targeting, 
dual targeting, or TME targeting strategies according to their targeting mechanisms. (Table 2)

Direct targeting refers to specific receptors on TAMs, such as CD206 receptors, which are expressed on M2-like 
macrophages.101 CD206, a mannose receptor, induces receptor internalization by endocytosis and phagocytosis of the 
attached ligands in macrophages upon binding mannose-rich glycoconjugates. One study described novel immunopho-
todynamic nanoparticles by combining TAM self-targeting acrylic acid-grafted mannan (a polysaccharide that is a highly 
branched polymer of mannose) with a photosensitizer (Ce6) and then incorporating a TLR7/8 agonist (R848).99 

Ultimately, it effectively targeted TAMs, modulated the immunosuppressive TME, and prevented tumor metastasis by 
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Table 2 The Strategies on Photodynamic Nanomedicine for Targeting TAMs

Photosensitizer and Targeting 
Molecule

Delivery System Targeting Strategy Characteristics Model Ref.

Photosensitizer chlorin e6 (Ce6) + 

PKγ inhibitor IPI-549

Liposome TME (MDSCs, by 

PI3Kγ-AKT)

Facilitating the dendritic cell maturation and tumor infiltration of CD8(+) 

T cells while decreasing the tumor infiltration of immunosuppressive 
regulatory T cells, MDSCs, and M2-like TAMs.

CT26 (male 

balb/c mice)

[93]

Indocyanine green (ICG) + ALE/Man- 

g-HA conjugate

Mesoporous calcium silicate 

nanocomposites (MCNs)

Dual (tumor cell and 

TAMs, by CD44 and 
CD206 receptors)

Facilitating the delivery of chemotherapeutic agents to the tumor 

microenvironment

4T1 (female 

balb/c mice)

[94]

Red-emissive AIE photosensitizer +α- 

mannosides

A cost-effective theranostic 

probe (TPE-Man)

Direct (by CD206) First small molecular theranostic probe for TAMs Macrophages 

(in vitro)

[95]

NaYF4: Yb, Er@NaYF4 conjugated 

with Rose Bengal (NPR)

TAM membrane (TAMM) Dual (tumor cell and 

TAMs, by CSF1 

−CSF1R)

4T1 (balb/c 

mice)

[96]

Hydrophobic photosensitizer (IR780) 

+ zoledronic acid (Zol)

Lipo Zol/IR NPs Dual (tumor cell and 

TAMs, by 

microcalcifications)

Enable precise spatiotemporal targeting of different types of cells in the TME 4T1 (female 

balb/c mice)

[97]

Aggregation-induced emission 

luminogens (AIEgens)+ CRV (amino 

acid sequence, CRVLRSGSC)

NPs Dual (tumor cell and 

TAMs, by retinoid 

X receptor beta)

Eliminating both lung cancer cells and TAMs and remodeling the TME LLC (male 

C57BL/6 

male mice)

[98]

Photosensitizer chlorin e6 (Ce6) + 

mannan

NPs Direct (by CD206) Repolarizing anti-inflammatory M2-like cells to pro-inflammatory M1-like 

cells

CT26 (male 

balb/c mice)

[99]

Photosensitizer chlorin e6 (Ce6) + 
mannose

A mannosylated 
macrophage-membrane 

coated upconverting 

nanoparticles

Direct (by CD206) Targeting by macrophage cell membrane–coating and surface mannose 
modification

4T1 (female 
balb/c mice)

[96]
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reprogramming TAMs and increasing the infiltration of T immune cells. In addition, the first small-molecule theranostic 
probe for TAMs based on a targeting strategy was constructed with a red-emissive aggregation-induced emission (AIE) 
photosensitizer core and two flanking TAM-targeting α-mannosides. This method has demonstrated benefits such as cost- 
effectiveness, precise targeting, fluorescent light-up imaging, and effective photodynamic ablation.95 In addition, TAM- 
like upconversion nano-PSs were designed for binding specific immunoregulatory molecules related to TAMs on the 
surface. For example, the combination of TAM-like upconversion nano-PSs and mannose was used to strongly target 
TAMs via two approaches, (i) a macrophage membrane coating and (ii) surface mannose modification, to generate our 
UCNPs@mSiO2-PFC/Ce6.100

Dual-targeting nanomedicines that target both TAMs and tumor cells should use at least two different targeting ligands. By 
targeting CSF1−CSF1R, NPR@TAMM was constructed with a tumor-associated macrophage membrane derived from the 
primary tumor, modified by macrophage colony-stimulating factor 1 receptor (CSF1R), although it was found to be tumor- 
targeted by binding to CSF1 secreted by tumor cells.96 To prepare the TAM-coated NPR@TAMMs, the TAM membrane 
(TAMM) was derived from purified primary TAMs sorted by anti-F4/80 and CD206 beads and coated onto NPR 
(NPR@TAMM), implying that the ability of NPR@TAMMs to bind CSF1 was conferred by their TAM membrane coating 
due to the high CSF1R content of the TAM membrane. Notably, HA and mannose, which are known to target different types of 
tumor cells and TAMs, were used in combination with PDT to promote cell apoptosis both in vitro and in vivo via precise 
localization to tumor cells and TAMs.94 In addition, a zwitterion-type near-infrared (NIR) AIE luminogen (AIEgen) compound 
was used for lung cancer treatment after undergoing biomimetic alteration.98 The dual-targeting potential of the CRV peptide for 
both LLC cells and M2 macrophages was mediated through CRV peptide binding with retinoid X receptor beta and CRV- 
engineered exosomes targeting LLC cells. Nitrogen-containing bisphosphonates (N-BPs), such as zoledronic acid (Zol), are also 
hydrophilic compounds utilized to reverse the immunosuppressive properties of TAMs.102 However, it is a potential molecule for 
only breast cancer treatment because of its distinct ability to attach to microcalcifications present in breast tumors. Thus, one 
study designed a dual-targeting nanomedicine in a 4T1 breast cancer model. Once Zol is loaded on a nanomedicine arriving at 
a breast tumor, it achieves precise spatiotemporal TAM targeting and causes the death or repolarization of TAMs through the 
pinocytosis or phagocytosis of TAMs in combination with a hydrophobic photosensitizer (IR780).97

TME targeting involves a broad spectrum of signaling pathways, such as the PI3K-γ-AKT pathway. PI3Kγ, a member 
of the PI3K family, is prominent in myeloid cells and has a specific role in controlling their immunosuppressive actions. 
With immunotherapy targeting MDSCs to effectively suppress tumor growth, a liposome-based nanomedicine could 
induce the maturation of DCs and the infiltration of CD8(+) T cells into tumors while reducing the infiltration of 
regulatory T cells, MDSCs, and M2-type TAMs.93

Factors Influencing the Therapeutic Efficacy of PDT Nanomedicines
Various variables greatly restrict the effectiveness of PDT, hence diminishing its potential to stimulate an immunological 
response. Although advanced nanomedicines have created new opportunities to increase and optimize the effectiveness 
of PDT, resulting in a stronger immunological response, some influencing factors need to be focused on, such as the size 
and shape of nanomedicines, precise targeting, the aggregation-caused quenching (ACQ) effect, and biocompatibility 
with low toxicity.

Size, shape, and surface chemistry will be crucial factors when researchers begin to build multifunctional nanostructures, 
which endow photodynamic nanomedicines to be able to use the enhanced permeability and retention effect (EPR).103 A study 
demonstrated the significance of nanoparticle size and shape, as well as the non-specific adsorption of proteins, in achieving 
optimal intracellular absorption.104 It indicated that the size and shape of nanometer-scale structures can be manipulated to 
control the administration of proteins, medicines, and oligonucleotides utilizing nanoparticles for diagnostic and therapeutic 
purposes. Recently, some studies have explored different photodynamic nanoparticles with optimal size and shape in 
combination with checkpoint blockade for cascade synergetic treatment of cancer.105,106 However, there are still many 
areas that can be improved, such as reducing the size of the construct, strengthening the efficiency of upconversion, improving 
stability in photosensitizer loading, optimizing settings for photodynamic therapy (PDT), and ultimately increasing the 
effectiveness of PDT.107

International Journal of Nanomedicine 2024:19                                                                                   https://doi.org/10.2147/IJN.S466315                                                                                                                                                                                                                       

DovePress                                                                                                                      
10139

Dovepress                                                                                                                                                              Wei et al

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


With respect to targeting strategies, active targeting with targeting ligands has the potential for precise targeting, 
but there are many disadvantages to be debated and addressed, such as overall targeting efficiency, particular cell 
delivery, formulation complexity, and translational potential.108 The ACQ effect is a phenomenon in which 
a fluorophore exhibits strong luminescence in solution but loses its luminescence when aggregated, leading to 
a reduction in the amount of PSs. To avoid the ACQ effect, AIEgens are a promising choice for developing versatile 
phototheranostic agents. Owing to their unique aggregation-induced emission and aggregation-induced production of 
ROS, these specific PDT nanomedicines exhibit strong aggregation-enhanced theranostics (AET) properties, which are 
different from those of their counterparts with aggregation-induced quenching (ACQ) characteristics.109 When 
nanomedicines function as targets, the degree of absorption by the body effectively increases with bioavailability, 
which challenges the solubility and permeability of pharmaceuticals. Recent studies have shown that drug nanocrystals 
have increased solubility, particle dissolution and a greater affinity for biological mucosa than drug nanocarrier 
systems do, leading to an improved EPR effect and bioavailability.110 In addition to enhancing the effectiveness of 
PDT, the safety of nanomedicines is so important that we need to be seriously concerned about the biocompatibility 
and toxicity of nanomaterials.111

Conclusions and Future Perspectives
As previous findings have demonstrated, TAMs are critical in many pathophysiological processes of cancers, such as 
tumorigenesis and the immunosuppressive TME, leading to tumor initiation and metastasis. However, there are several 
limits to PDT and PTT.112 Local therapy with an optical fiber in PDT or PTT has difficulty destroying tumor cells outside 
the focus region or affecting therapeutic results in patients with advanced-stage cancer. Light irradiation has limited 
penetration effectiveness into deep tissue because endogenous biomolecules absorb light. It is difficult to efficiently 
stimulate photosensitizers located more than 1 cm below the tumor surface.113 Second, most anticancer nanomedicines 
accumulate heterogeneously in tumors, resulting in limited therapeutic results because of a failure to overcome realistic 
physiological transport obstacles and interpatient variability.114 Despite breakthroughs in technology for directing 
therapeutic nanoparticles to tumor tissue, less than 1% of nanoparticles administered intravenously reach the tumor. 
Nanomedicines that target particular chemicals that are overexpressed on the surface of cancer cells or in the TME have 
yet to reach the market owing to the complexity and heterogeneity of malignancies in the body.115 As a result, it is 
becoming clear that current nanomedicines for PDT must overcome the constraints of old nanomedicines, such as limited 
delivery effectiveness and poor clinical results, via creative methodologies. Finally, the immunotherapeutic effect of PDT 
should be verified by its extensive use in clinical trials.

In recent years, an increasing number of new strategies have been developed, suggesting that nanomedicines that 
target TAMs have effects similar to those of nanomedicines that target tumor cells. Through targeting TAMs, nanome-
dicine can directly reprogram immunosuppressive M2 macrophages into antitumor M1 macrophages for cancer immu-
notherapy, resulting in the modulation of the immunosuppressive TME and prevention of tumor metastasis. Although 
there is a lack of clinical trials evaluating mature nanomedicines, the development of more nanomedicines with direct- 
targeting or dual-targeting TAMs for cancer photoimmunotherapy is promising.
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