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Neuropathic pain (NP) is caused by damage to the nervous system, resulting in
dysfunction and aberrant pain. The cellular functions (e.g., peripheral neuron spinal cord
innervation, neuronal excitability) associated with NP often develop over time and are
likely associated with gene expression changes. Gene expression studies on the cells
involved in NP (e.g., sensory dorsal root ganglion neurons) are publically available; the
mining of these studies may enable the identification of novel targets and the subsequent
development of therapies that are essential for improving quality of life for the millions of
individuals suffering with NP. Here we analyzed a publically available microarray dataset
(GSE30165) in order to identify new RNAs (e.g., messenger RNA (mRNA) isoforms
and non-coding RNAs) underlying NP. GSE30165 profiled gene expression in dorsal root
ganglion neurons (DRG) and in sciatic nerve (SN) after resection, a NP model. Gene
ontological analysis shows enrichment for sensory and neuronal processes. Protein
network analysis demonstrates DRG upregulated genes typical to an injury and NP
response. Of the top changing genes, 34 and 36% are associated with more than one
protein coding isoform in the DRG and SN, respectively. The majority of genes are receptor
and enzymes. We identified 15 long non-coding RNAs (lncRNAs) targeting these genes in
LNCipedia.org, an online comprehensive lncRNA database. These RNAs represent new
therapeutic targets for preventing NP development and this approach demonstrates the
feasibility of data reanalysis for their identification.
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INTRODUCTION
The majority of patients with spinal cord injury (SCI) experi-
ence chronic pain, with a high percentage experiencing neuro-
pathic pain (NP) (Siddall et al., 1999). NP develops concurrently
with anatomical and physiological changes in the peripheral and
central nervous system (PNS and CNS). For example, periph-
eral neuron innervation into the spinal dorsal horn (Nakamura
and Myers, 2000) as well as both peripheral and central neuro-
transmitter expression and excitability change following injury
(Chaplan et al., 1997; Fukuoka et al., 1998; Alexander et al.,
2012). Identifying gene expression patterns in sensory neurons
(i.e., dorsal root ganglion, DRG neurons) under normal and NP
conditions is essential to understanding the genetic mechanisms
behind the development of NP. Importantly, as the cells involved
in NP are still alive, they are viable targets for small molecule or
gene therapy approaches aimed at restoring normal function.

RNAs that do not code for a protein, or non-coding RNAs
(ncRNAs; e.g., microRNAs: miRNAs and long ncRNAs: lncR-
NAs), are implicated in many biological and pathological pro-
cesses such as cancer development, progression, and metastasis
(Calin and Croce, 2006; Zhong et al., 2009; Gutschner and
Diederichs, 2012; Ziats and Rennert, 2013), and genetic variations
within ncRNA loci are increasingly associated with developmental

disorders and disease states (Pasmant et al., 2011; Richardson
et al., 2011; Zhang et al., 2012). Since RNA-regulated gene expres-
sion is increasingly involved in pathological conditions we wanted
to understand RNA expression and diversity in the context of
NP. Indeed evidence for the involvement of lnc and miRNAs
in the development of NP is emerging although in its infancy.
For example, Kcna2 antisense lncRNA is expressed in DRG neu-
rons and causes or reduces NP through its ability to regulate
the voltage-dependent potassium channel, Kcna2, impacting neu-
ronal excitability (Zhao et al., 2013). A recent study examined
miRNA expression along with gene expression in a sciatic nerve
(SN) ligation model of NP (von Schack et al., 2011). The authors
found 63 miRNAs changing expression; interestingly the major-
ity (59) of miRNAs were down-regulated in the ipsilateral DRG
one level above the injury (von Schack et al., 2011). It is likely that
additional ncRNAs contribute to NP development after SCI but
identification of these RNAs has remained challenging.

In addition to ncRNAs, messenger RNA (mRNA) isoforms
drive distinct biological functions (Hong et al., 2008) and may
underlie pathological conditions (Gerstin et al., 1998; Pertin
et al., 2005; Dina et al., 2008; Kanzaki et al., 2012). For example,
neuregulin-1 has three isoforms that undergo alternative expres-
sion regulation (Nrg1 I and II increase and Nrg1 III decreases)
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after spinal nerve ligation in the rat, changes associated with
mechanical sensitivity of the ipsilateral hind paw (Kanzaki et al.,
2012). Protein kinase C isoform delta is linked to L-type calcium
channel upregulation and may contribute to alcohol-induced
peripheral neuropathy (Gerstin et al., 1998; Dina et al., 2008).
These findings demonstrate that mRNA isoforms play an impor-
tant biological role but the paucity of evidence for mRNA iso-
forms in critical biological roles may in part be due to lack of their
complete identification.

Here we sought to identify additional mRNA isoforms and reg-
ulatory RNAs contributing to NP development. Multiple methods
are available for understanding gene expression (e.g., microar-
ray, RNA-seq) and many laboratories are applying these methods
to various pathologies such as SCI and NP. The majority of SCI
research is performed in Rattus norvegicus (rat) because the injury
response and lesion formation are similar to human (Sroga et al.,
2003). A search of the Gene Expression Omnibus (GEO) (Edgar
et al., 2002; Barrett et al., 2005) database using “drg pain” or
“drg NP” as terms produced over 200 results, with the majority
of studies in rat using microarrays. We examined several datasets
and chose GSE30165 because it examined global gene expression
changes after SN resection in both the DRG and SN. We identi-
fied the differentially expressed rat genes and then converted them
to their mouse homologs using a sequence based strategy, allow-
ing us to identify the associated mRNA isoforms and regulatory
RNAs. This strategy globally identifies possible new RNAs for tar-
geting and provides a roadmap for the re-evaluation of already
existing datasets.

MATERIALS AND METHODS
SCIATIC NERVE INJURY
This following procedural guideline was kindly provided by Dr.
Bin Yu, Jiangsu Key Laboratory of Neuroregeneration, Nantong
University, Nantong, China, the investigator who uploaded the
results to the NCBI GEO Database. Briefly, male Sprague-Dawley
rats (180–220 g), were anesthetized by an intraperitoneal injec-
tion of complex narcotics (85 mg/kg trichloroacetaldehyde mono-
hydrate, 42 mg/kg magnesium sulfate, 17 mg/kg sodium pento-
barbital), and the SN was exposed and lifted through an incision
on the lateral aspect of the mid-thigh of the left hind limb. A 1 cm
long segment of SN was then resected at the site just proximal
to the division of tibial and common peroneal nerves, and the
incision sites were then closed. To minimize discomfort and pos-
sible painful mechanical stimulation, the rats were housed in large
cages with sawdust bedding after surgery. L4-6 DRG tissues and
SN tissues (0.5 cm) were collected at different time points after
injury, respectively. All the experimental procedures involving
animals were conducted in accordance with Institutional Animal
Care guidelines and ethically approved by the Administration
Committee of Experimental Animals, Jiangsu Province, China.

GENE EXPRESSION ANALYSIS
Gene expression data and analysis was obtained from the NCBI
NIH GEO, dataset GSE30165. Sample preparation was described
in the dataset design description. Briefly, gene expression levels
from L4-6 DRG tissues and proximal SN tissues (0.5 cm) were
examined at 0 days, 1 day, 4 days, 7 days, and 14 days after SN

resection. This dataset consisted of three samples each for the
DRG and SN tissues, and gene expression data was available for
all samples at each of the 5 times points. GEO2R was used to
compare expression between sham and 1 day post-injury (dpi);
sham and 4 dpi; sham and 7 dpi; and finally sham and 14 dpi for
both the DRG and SN. GEO2R analyzes gene expression using
GEOquery and the Linear Models of Microarray Analysis R pack-
age (limma) (Edgar et al., 2002; Gentleman et al., 2004; Smyth,
2004, 2005; Barrett et al., 2005; Davis and Meltzer, 2007). First,
GEOquery formats the data into tables for R and then limma R
applies the Benjamini and Hochberg False Discovery Rate (FDR)
correction for multiple comparisons testing to determine the
adjusted p-value, p-value, moderate t-statistic, log fold change,
and the moderate F-statistic (Edgar et al., 2002; Barrett et al.,
2005; Gentleman et al., 2004; Smyth, 2004; Davis and Meltzer,
2007). We determined the top 250 genes that changed signifi-
cantly at each time point compared to baseline with an adjusted
p-value of <0.05 in order to identify the genes that changed over
the time-course following injury, and not to identify the most dif-
ferentially expressed genes across the experiment. We looked at
the top 250 differentially expressed genes in each comparison to
focus our results to only the genes that changed the most at each
time point. The final subset of genes from each comparison was
restricted to only those with a fold change in either direction that
was greater than 2 for the DRG and SN tissues separately. The final
list of genes consisted of all that had at least one time point that
showed a change with an adjusted p < 0.05 and a fold change of
2, resulting in the identification of 246 genes for the DRG dataset
and 549 for the SN dataset. The values at each time point were
normalized with respect to the average expression value over all
time points for each gene. Heatmaps were generated using the
bioinformatics toolbox in Matlab.

GENE ONTOLOGY ANALYSES
The final gene list after applying the cutoffs (adj. p < 0.05
and fold change of 2) was input into the DAVID Functional
Annotation interface and submitted as a gene list selecting species
Rattus norvegicus (Huang da et al., 2009a,b). Gene Ontology (GO)
charts were created using the following options: thresholds: count
2, EASE 0.1; Benjamini correction, Number of records = 1000.

RAT TO MOUSE CONVERSION
The microarray probe sequences for the differentially expressed
genes at different time points following nerve injury were
extracted for both DRG and proximal SN tissues from the GEO,
Agilent-014879 Whole Rat Genome Microarray 4x44K G4131F.
The extracted sequences were then aligned against mouse ref-
erence (Ensembl), Mus_musculus.GRCm38.74.cdna.all.fa (Flicek
et al., 2013, 2014) using BLAT (Kent, 2002), a fast spliced align-
ment program. BLAT was executed with blast8 as output and all
other parameters set at default values. The alignment was done
against mouse reference to identify the homologous sequences
between the two rodent species. The aligned rat sequences were
then annotated using mouse, Mus_musculus.GRCm38.74.gtf to
associate the rat genes from the microarray data against the cor-
responding mouse homologs based on the alignment results,
and then the gene biotypes were assigned based on the mouse

Frontiers in Genetics | Systems Biology May 2014 | Volume 5 | Article 131 | 2

http://www.frontiersin.org/Systems_Biology
http://www.frontiersin.org/Systems_Biology
http://www.frontiersin.org/Systems_Biology/archive


Raju et al. Identifying novel neuropathic pain targets

annotation provided by Ensembl (Hubbard et al., 2002). Since
the rat annotations are not defined as thoroughly as the mouse
(Table 1), mouse annotation was chosen to classify the gene
biotypes that includes protein-coding and specific type of non-
coding.

NETWORK ANALYSES
Protein interactions (Figure 2)
A very popular tool named STRING (V. 9.1, http://string-db.

org/) was used for visualizing interactomes starting from iden-
tified differentially expressed entities (genes and transcripts) in
both species. In particular the confidence and evidence STRING
protein–protein interaction modes were applied.

In confidence view, stronger associations are represented by
thicker lines, while in evidence view; different line colors repre-
sent the types of evidence for specific associations: expression,
binding catalysis, and post-translational modification.

Expression interactions (Figure 3)
Mouse gene symbols returned from the rat to mouse con-
version were uploaded to Ingenuity® Systems (www.ingenuity.
com). Interactions were added using the Connect Tool. Molecules
involved in depolarization and nociception were identified using
the Overlay Tool. The RNAs with greater than 1 CDS and associ-
ated ncRNAs were added by hand.

RESULTS
IDENTIFICATION OF DIFFERENTIALLY EXPRESSED GENES
We identified the top 250 IDs from the microarray dataset that
met our cutoffs for a significant expression change (adjusted
p < 0.05 and fold change >2; Figures 1A,B). There were 549
unique IDs corresponding to 366 rat genes with gene sym-
bols in the SN and 246 unique IDs corresponding to 158 rat
genes with gene symbols in the DRG (Figure 1C; Supplementary
Tables 1, 2). 25 of the top changing were found in both sam-
ples, 18 of which had associated gene symbols (Supplementary
Table 3). In the SN, a subset of genes decreased expression
(Group 1, Figure 1A; Supplementary Table 1), while the bulk
increased in expression (Group 2, Figure 1A; Supplementary
Table 1). In the DRG, the majority of genes increased in expres-
sion (Group2, Figure 1B; Supplementary Table 2). These data
indicate major gene expression changes in the SN and in the DRG
after injury.

GENE ONTOLOGY ANALYSIS
A GO term enrichment analysis (Huang da et al., 2009a,b) was
subsequently performed to gain a deeper understanding of these
genes. GO enrichment analysis assigns general descriptions based

on biological function, cellular component, and molecular func-
tion, to groups of genes. We isolated the up or down regulated
genes (SN: Group 1–3, Supplementary Table 1; DRG: Group
1 and 2, Supplementary Table 2) and performed GO analysis
using DAVID Bioinformatics Resource v6.7 (Huang da et al.,
2009a,b). GO analysis on the down-regulated genes in the SN
sample show the majority of biological processes are biosynthetic
and catabolic functions while the majority of the up-regulated
processes are related to the detection of stimuli and signaling
responses (Supplementary Table 4). Not surprisingly, the major-
ity of cellular components up- or down-regulated are associated
with the cytoplasm and cellular membrane (Supplementary Table
4). The majority of molecular functions switch from ion binding
(downregulated) to chemokine and enzymatic activities (upregu-
lated; Supplementary Table 5). These data suggest a switch from
neurotransmission and normal sensory functioning to immune
response detection and receptor activation, consistent with a
switch from normal sensory neurotransmission to an injury
response in the SN. In the DRG sample, the majority of genes
were upregulated after injury (Figure 1B). Most biological pro-
cesses in the DRG upregulated genes fall into signaling pathways
(e.g., G-protein, neuropeptide) or detection and reaction to stim-
uli (e.g., sensory perception of chemical stimulus, inflammatory
response; Supplementary Table 5). In cellular component, the
majority associated with the membrane, extracellular space, and

FIGURE 1 | Hierarchical clustering of normalized expression values at

various days post-sciatic nerve resection in the sciatic nerve and in the

DRG. The heatmaps reflect gene expression values normalized to the mean
across all time points (day 0, 1, 4, 7, and 14 post-injury) for genes that met
the cutoff in at least one time point (p < 0.05 and fold change >2). (A) In
the SN there are two distinct groups, 1 and 2, which decrease (green) or
increase (red) in expression, Supplementary Table 2. (B) In the DRG the
majority of genes decrease in expression. (C) Some genes overlap (25)
between SN and DRG but the majorities of changing genes were unique to
each tissue.

Table 1 | The rat genome has fewer RNA annotations in all categories.

Protein coding Micro Long non-coding Small-nucleolar Small-nuclear Antisense

Mus musculus 22,740 2010 1795 1556 1387 1476

Rattus norvegicus 19,878 419 0 0 0 0

The number of protein coding, micro, long non-coding, small nucleolar, small nuclear, and antisense RNAs found in the Mus_musculus.GRCm38.74.gtf and

Rattus_norvegicus.Rnor_5.0.74.gtf from the Ensemble Database.
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nerve terminal (cellular component, Supplementary Table 6) and
the molecular functions are associated with receptors, cytokines,
or hormone activity (molecular function, Supplementary Table
5). These data suggest a major change in DRG gene expression
in areas directly associated with NP development such as neu-
rotransmission and receptor expression (Xu et al., 1993, 2007;
Fukuoka et al., 1998; Sah et al., 2003; Pertin et al., 2005; Mika
et al., 2008; Miller et al., 2009).

IDENTIFICATION OF ISOFORMS
During the analysis it was observed that many rat UniqueIDs
were not associated with a gene name or symbol (Supplementary
Tables 2, 3). Indeed the rat genome contains far fewer elements
compared to the mouse (Table 1). This suggests that using the
rat for gene array and/or RNA-seq experiments is problematic
and could severely limit gene expression analysis interpretation.
To address this problem and gain insight into gene expression
and regulation we converted the rat genes (Figure 1) to their
mouse homologs using a sequence based strategy (Methods;
Supplementary Tables 6, 7). BLAT finds similar sequences of
length 25 base pairs or greater. We set a homology threshold
of 84% and higher to extract the potential homologs from the
BLAT output using the default parameters. We retrieved the cor-
responding target mouse gene names from the BLAT output and
used them for downstream analysis. Using this homology-based
strategy we identified 455 corresponding mouse genes in SN
and 167 in the DRG (Supplementary Tables 6, 7). These genes
give rise to hundreds of isoforms and produce multiple pro-
tein isoforms (Table 2). Isoform switching [aka: alternative open
reading frame (ORF) utilization], is one mechanism driving neu-
ral development (Ruusuvuori et al., 2004; Bani-Yaghoub et al.,
2007) and contributing to disease states in the body (Periasamy
and Kalyanasundaram, 2007). It could be a potential mechanism
underlying NP development. We identified numerous differen-
tially expressed genes whose isoforms differ at the level of the cod-
ing DNA sequence (CDS) leading to alternative ORFs (Table 2).
Protein coding differences were most abundant in enzymes,
ion-channels, transcription regulators, and G-protein coupled
receptors (Table 3), all highly associated and implicated in NP.

NETWORK ANALYSIS AND ncRNA REGULATION PREDICTION
In large datasets relationships between differentially expressed
genes are uncovered by examining protein-protein interactions.
We used STRING (Franceschini et al., 2013), which utilizes
both known and predicted protein associations to generate

Table 2 | Differentially expressed genes have abundant transcript

diversity.

SN DRG

Genes 445 167

Transcripts 1451 409

Transcripts with different CDS 162 36

Mouse transcript information was obtained from the Ensemble

Mus_musculus.GRCm38.74.gtf. The number of genes, transcripts and

transcript harboring changes in the coding DNA sequence (CDS) was identified.

protein interaction networks. In DRG up-regulated genes, sev-
eral direct protein interactions among molecules known to
change expression after DRG neuron injury were uncovered.
The most prominent group of interactions in this analysis was
between the neuropeptides vasoactive intestinal peptide (VIP),
its receptors (VIPR1/2), pituitary adenylate cyclase-activating
polypeptide (ADCYAP1 aka PACAP), its receptor (ADCYAP1R1),
and cholecystokinin (CCK) and its receptors (CCKAR, CCKBR;
Figure 2). VIP, ADCYAP1, and CCK are upregulated in DRG after
injury and are associated with NP (Nielsch and Keen, 1989; Xu
et al., 1993; Ma and Bisby, 1998; Ohsawa et al., 2002). These
observations support the involvement of these neuropeptides
in NP development and support that this dataset is reflecting
gene expression changes regulating NP. Interestingly, these neu-
ropeptide receptors have multiple isoforms (Bokaei et al., 2006;
Nachtergael et al., 2006), but to date no studies have examined
their function in NP models.

The role of RNA isoforms and their contributions to neuronal
development and pathology is slowly being elucidated (Gerstin

Table 3 | Enzymes and transcription regulators are associated with

the most protein coding isoforms in the SN and DRG, respectively.

SN DRG

Enzyme 49 3

G-protein coupled receptor 6 5

Ion channel 12 1

Kinase 5 1

Peptidase 7 2

Transcription regulator 2 8

Translation regulator 1 1

Transmembrane regulator 5 2

Transporter 1 1

Categories were assigned using the molecular annotations feature in Ingenuity®

Systems, www.ingenuity.com.

FIGURE 2 | Protein interaction network using LINC identifies

neuropeptide interactions after injury in the DRG. (A) A confidence view
of protein interactions. Thicker lines represent stronger associations. (B) An
evidence view of protein interactions. Both observations support previous
studies demonstrating increased expression of neuropeptides after injury.
In particular, it is noticed the modular connectivity centered on VIP,
ADCYAP1, and CCK, all appearing up-regulated in DRG after injury and
associated with NP. Evidence is taken from reports in the literature. Yellow:
expression; blue: binding; lilac: violet: catalysis; and post-translation
modification. This observation supports previous studies demonstrating
increased expression of neuropeptides after injury.
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et al., 1998; Pertin et al., 2005; Dina et al., 2008; Hong et al.,
2008; Kanzaki et al., 2012; Lerch et al., 2012b) but a full under-
standing of RNA isoform diversity is broadly lacking. To identify
mRNAs with alternative CDS’s with the potential to impact NP
development we created a network of DRG enriched genes with
the ability to directly regulate each other’s expression (Figure 3).
As expected, many genes have a role in neuronal depolarization
(Jarvis et al., 1995; Beaudet et al., 2000) and nociception (Jeftinija
et al., 1982; Mika et al., 2008; Belcheva et al., 2009), two prop-
erties of sensory neurons altered in NP states (Chaplan et al.,
1997; Fukuoka et al., 1998; Alexander et al., 2012). We highlight
genes with more than one CDS because alternative CDS’s leads
to changes in functional protein domains which alter cellular
function.

LncRNAs have recently been demonstrated to regulate sen-
sory neuronal excitability and NP (Zhao et al., 2013). To identify
potential additional gene targets for regulation we searched a
database of lncRNAs (Volders et al., 2013). The nomenclature
for lncRNAs in this database makes searching straightforward.
Transcripts overlapping one or more exons are named with

the same gene symbol and therefore considered the same gene
(Volders et al., 2013). Searching gene symbols identifies associated
lncRNAs. We found 15 lncRNAs conserved between human and
mouse in our dataset that corresponded to significantly chang-
ing genes (Supplementary Table 8). There were an additional 11
lncRNAs not identified as conserved across species (http://www.

lncipedia.org/db/search). Given that lncRNAs have a high degree
of evolutionary conservation (Qu and Adelson, 2012); it is possi-
ble these additional genes are regulated similarly in rats and mice
(Figure 3). The genes identified with a potential lncRNAs fall into
many categories such as enzymes (HSD3B2 and PDE6B), growth
factors (FGF2), transmembrane receptors (CHRNA1, HLA-DRA,
HLA-DRB1, IL1R2, and SEMA6A), and transcriptional regu-
lators (NKZ6.2, SOX11, and STAT4). This demonstrates that
lncRNA regulation of gene expression is likely not limited to
one particular gene category or class of protein. These strate-
gies highlight a way to reanalyze existing data and extend it to
identify novel mRNA isoforms and regulatory RNAs to further
our understanding of NP and can be extended to other disease
datasets.

FIGURE 3 | Upregulated DRG neuronal network is associated with mRNA

isoforms and ncRNAs. The list of mouse homolog DRG upregulated genes
(Group 2, Supplementary Table 2) was put into a direct interaction network
(Ingenuity® Systems, www.ingenuity.com). Genes having more than one CDS
(blue line), an associated ncRNA (yellow line), involved in depolarization (red
line), and/or nociception (gray line) are indicated. Black lines with arrows
indicate expression activation. Straight black lines indicate protein-protein
interaction. ADCYAP1, adenylate cyclase activating polypeptide 1; CCK,
cholecystokinin; CD74, CD74 molecule, major histocompatibility complex, class
II invariant chain; ELF3, E74-like factor 3; FGF2, fibroblast growth factor 2;

GADD45A, growth arrest and DNA-damage-inducible, alpha; Hamp/Hamp2,
hepcidin antimicrobial peptide; HLA-DQB1, major histocompatibility complex,
class II, DQ beta 1; HLA-DRB1, major histocompatibility complex, class II, DR
beta 1; IL1A, interleukin 1, alpha; IL1R2, interleukin 1 receptor, type II; IL24,
interleukin 24; KLK3, kallikrein-related peptidase 3; MMP12, matrix
metallopeptidase 12; RNF138, ring finger protein 138; E3 ubiquitin protein
ligase,: syndecan 1; SERPINA3, serpin peptidase inhibitor, clade A, member 3;
STAT4, signal transducer and activator of transcription 4; TGM1,
transglutaminase 1; TMPRSS6, transmembrane protease, serine 6; TSLP,
thymic stromal lymphopoietin; VIP, vasoactive intestinal peptide.
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DISCUSSION
Millions of people worldwide, including the majority of SCI
patients, experience NP. The prevalence of NP and the minimal
availability of effective treatment options make the identifica-
tion of the molecular pathways leading to NP development a
high priority. The majority of studies examining gene expression
changes in NP models use a microarray approach (except one
study, GSE53768, released 01/07/2014 which used RNA-seq and
was unpublished at the time paper submission). Therefore, the
identification of all expressed RNAs (e.g., isoforms and regulatory
RNAs) is lacking, omitting numerous potential therapeutic tar-
gets. To identify RNA isoforms and regulatory RNAs relevant to
NP we examined differentially expressed genes from a publically
available microarray study using a rat NP model (GSE30165). We
identified over 200 genes significantly changing in DRG neurons
and over 400 in the SN (Figure 1; Supplementary Tables 1–3).
Differentially expressed genes in this dataset show GO enrichment
for inflammatory processes, critical regulators and contributors
to NP (Supplementary Tables 4, 5; Hulsebosch, 2008; Kigerl et al.,
2009; Alexander et al., 2012).

One challenge of this dataset was the use of a rat model sys-
tem. We suggest that genetic studies should be performed in
mice given that the rat genome annotation is vastly incomplete
(Table 1). Given the lack of annotation, our ability to identify
mRNA isoforms and ncRNAs from the rat database was lim-
ited. Therefore, we retrieved differentially expressed rat RNA
sequences (Supplementary Tables 1, 2), and took mouse RNAs
with an 84% and greater homology to the rat sequences and then
examined these sequences for RNA isoforms and potential regu-
latory RNAs. We identified 455 mouse genes in SN, 167 in DRG,
and thousands of RNA isoforms for each gene (Supplementary
Tables 6, 7). We created a network of the interacting up-regulated
genes from the DRG dataset. Interestingly, in this dataset we iden-
tified 15 conserved lncRNAs that could regulate these transcripts
in the rat or mouse (Figure 3, Supplementary Table 8). LncRNAs
regulate protein coding gene expression by affecting DNA orga-
nization (e.g., defining chromatin domains; Rinn et al., 2007),
transcription (Zhao et al., 2013), and/or post-transcription pro-
cessing (Mercer et al., 2009). Most lncRNAs are associated with
a decrease in their target’s expression [e.g., HOTAIR’s repression
of the HoxD locus (Rinn et al., 2007); Kcna3 antisense repres-
sion of Kcna3 (Zhao et al., 2013)]. There is a single compelling
example of an lncRNA regulating NP development. Kcna3 anti-
sense expression increased after peripheral nerve injury, increased
neuronal excitability, and when overexpressed induced NP pain
symptoms (Zhao et al., 2013), a remarkable effect for a single
lncRNA. One area of future investigation is to determine global
lncRNA expression changes after SCI, because while Kcnc3 anti-
sense expression increased, it is just as likely that some lncRNAs
expression would decrease. In this study we found that SNI in the
DRG led to a majority of genes increasing expression (Figure 1).
Therefore, it is possible that SNI causes a reduction in the lncR-
NAs we identified (Figure 3) that contributed to their target gene
expression increase (Figure 1). In addition, we hypothesize that
these lncRNAs represent therapeutic targets since overexpressing
them would repress their target genes and potentially reduce NP
symptoms. For example, the increases in interleukin 1 receptor

(IL1R), adenylate cyclase activating polypeptide 1 (ADCYAP1),
and cholecystokinin (CCK) may be associated with a decrease in
their associated lncRNAs (Figure 3). This interaction, if occur-
ring, may contribute to their roles in nociception (Figure 3; IL1R
through binding to IL1A and ADCYAP1 through VIP binding;
Jeftinija et al., 1982; Xu et al., 1993; Mika et al., 2008). We
acknowledge that while these are intriguing possibilities, all of
these isoforms and lncRNAs require functional studies to test if
they are viable candidates, but note that identification is the first
step toward determining functional relevance.

NP is debilitating and in need of better therapeutic strategies.
A multitude of well-controlled publically available data exists in
the GEO database. We identified isoform diversity and potential
ncRNAs through a data reanalysis using a straightforward bioin-
formatic approach. There is growing evidence that RNA isoforms
and lncRNAs are important regulators of cellular function and
contribute to pathological processes (Gerstin et al., 1998; Hong
et al., 2008; Kanzaki et al., 2012; Lerch et al., 2012b). Future stud-
ies will employ RNA-seq enabling full scale detection of all RNAs
within a cell type (Faghihi and Wahlestedt, 2009; Lerch et al.,
2012a,b) giving a complete picture of gene expression but here
we demonstrate a fast and economical way to find new targets
underlying NP development.
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