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MicroRNA-30a contributes to pre-eclampsia through regulating the 
proliferation, apoptosis, and angiogenesis modulation potential of 
mesenchymal stem cells by targeting AVEN
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ABSTRACT
Pre-eclampsia (PE) is a pregnancy-associated disease related to an unprecedented hypertension 
attack. Mesenchymal stem cells (MSCs) play a crucial role in PE pathology. . Our research was 
designed to illustrate the functions of microRNA-30a (miR-30a) in proliferation, apoptosis, and the 
potential of regulating angiogenesis in MSCs, and to analyze its potential molecular mechanisms. 
TargetScan software and the luciferase reporter assay were used to forecast and verify the 
relationship between miR-30a and AVEN. MiR-30a and AVEN expression in the decidual tissue 
and decidua (d)MSCs of healthy pregnant women and PE patients were assessed using quantita-
tive reverse transcription-polymerase chain reaction (qRT-PCR). Cell proliferation, 
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2 H-tetrazolium bromide (MTT), flow cytometry, and 
transwell assays were used to evaluate cell proliferation, growth, the cell cycle, apoptosis, and 
migration. Furthermore, the tube formation ability was evaluated using the human umbilical vein 
endothelial cell (HUVEC) tube formation assay. AVEN is the target gene of miR-30a. MiR-30a was 
upregulated in decidual tissues and dMSCs of PE patients. However, AVEN was weakly expressed, 
and AVEN expression was negatively related to miR-30a levels in decidual tissues and dMSCs of PE 
patients. Compared to the mimic control group, upregulation of miR-30a inhibited dMSC prolif-
eration and cell growth, promoted G0/G1 phase arrest, and induced apoptosis. Furthermore, the 
miR-30a mimic transfected dMSC culture supernatant suppressed HTR-8/SVneo cell migration 
ability and HUVEC tube formation ability. However, AVEN reversed these changes. In conclusion, 
miR-30a/AVEN may serve as a new axis for PE treatment.
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Introduction

Pre-eclampsia (PE) is a pregnancy-related disease 
characterized by new-onset hypertension and pro-
teinuria at ≥20 weeks of gestation [1–3]. After 
20 weeks of gestation, the patient experiences 
new hypertension and proteinuria, as well as mul-
tiple organ dysfunction, including the liver, kid-
ney, and brain [1,2,4]. PE is the principal cause of 
morbidity and death in pregnant women and new-
borns [3]. According to previous studies, insuffi-
cient angiogenesis may be one of the principal 
reasons for this [5]. Therefore, a good equilibrium 
between pro-angiogenesis and anti-angiogenesis is 
essential for the survival of maternal-fetal interface 
cells, which determines whether pregnancy can be 
successful [6,7].

Mesenchymal stem cells (MSCs) are multifunc-
tional stem cells derived from various tissues, 
including the decidua, umbilical cord, and bone 
marrow [8]. MSCs are characterized by continuous 
self-renewal, expansion, and multidirectional dif-
ferentiation into other cells [9,10]. Previous studies 
have shown that MSCs play a key role in immune 
regulation and angiogenesis [11–13]. MSCs can 
secrete a variety of biologically active molecules, 
such as vascular endothelial growth factor (VEGF), 
interleukin-6 (IL-6), and monocyte chemoattrac-
tant protein-1 (MCP-1) [12,14,15]. An important 
source of MSCs is the maternal-fetal interface [16– 
18]. It has been reported that MSCs at the mater-
nal-fetal interface can ensure successful preg-
nancy [11].

MicroRNAs (miRNAs) are a type of small non- 
coding RNA, with a length of approximately 20–22 
nucleotides, which differ from messenger RNA 
(mRNA) transcription proteins. MiRNAs do not 
encrypt proteins and restrain the expression of 
target genes [19–21]. Increasing evidence has 
shown that miRNAs participate in the develop-
ment and metastasis of various types of cancers 
[22,23]. MiRNAs can also serve as biomarkers for 
disease diagnosis [24]. In addition, a previous 
study showed that there is a divergence in the 
expression of different miRNAs in the MSCs and 
maternal plasma of PE patients [25–29]. MiR-30a, 
a member of the miR-30 family, was shown to 
contain five different types of miRNAs, namely, 
miR-30a, miR-30b, miR-30c, miR-30d, and miR- 

30e [30,31]. According to previous studies, miR- 
30a acts as a biomarker for the development of 
various cancers [32,33]. Furthermore, miR-30a 
plays a key role in other diseases such as hepatic 
fibrosis, migraine, and endometritis. MiR-30a was 
over-expressed in decidua-derived MSCs (dMSCs) 
from patients with PE [34]. MiR-30a is also 
involved in the differentiation of osteoblasts and 
osteocytes of MSCs [35,36]. Niu et al. demon-
strated that miR-30a-3p was upregulated in the 
placenta of patients with PE, and miR-30a-3p 
may affect the apoptosis and invasion of tropho-
blast cells by inhibiting insulin-like growth factor- 
1 (IGF-1 expression [37]. However, the various 
biological effects of miR-30a on MSCs have not 
yet been completely elucidated.

AVEN is an apoptosis inhibitor that exerts an 
inhibitory effect on B-cell lymphoma-X long (Bcl- 
xL) and apoptosis protease activator-1 (Apaf-1) 
[38,39]. Han et al. indicated that AVEN helps 
increase cancer cell chemotherapy drugs resistance 
[40]. Long et al. showed that AVEN participates in 
diabetic nephropathy development [41]. However, 
the expression and role of AVEN in PE remain 
unclear.

Through bioinformatics analysis, we found that 
AVEN may be a potential target gene of miR-30a. 
Thus, we hypothesized that miR-30a contributes to 
pre-eclampsia through regulating the proliferation, 
apoptosis, and angiogenesis modulation potential 
of MSCs by targeting AVEN. Therefore, this study 
explored the functions of miR-30a in proliferation, 
apoptosis, and the potential of regulating angio-
genesis in MSCs, and analyzed its potential mole-
cular mechanisms.

Materials and methods

Clinical samples

Human decidua tissue from patients with PE (PE: 
n = 15; gestational age at delivery 34–37 weeks) 
and age-matched uncomplicated pregnant women 
(healthy control: n = 15; gestational age at delivery 
37–41 weeks) were obtained aseptically during 
cesarean section at the Clinical Medical College 
of Yangzhou University, Northern Jiangsu 
People’s Hospital. This study was approved by 
the ethics committee of the Clinical Medical 
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College of Yangzhou University, Northern Jiangsu 
People’s Hospital. Written consent was obtained 
from the women before the surgery.

Cells acquired and culture

Human umbilical vein endothelial cells (HUVECs) 
and HTR-8/SVneo cells were obtained from the 
ATCC. HTR-8/SVneo cells are immortalized 
human trophoblast cell systems. The two cell 
lines were cultured in RPMI-1640 medium 
(Gibco, NY, USA) with 10% fetal bovine serum 
(FBS) (Gibco) and cultured at 37°C in a 5% CO2 
incubator.

Decidual mesenchymal stem cells (dMSCs) 
isolation and culture

dMSCs were separated from the decidual tissues of 
healthy pregnant women and patients with PE 
[42]. First, the decidual tissue was washed several 
times with 1 × PBS (Gibco), then the machine was 
used to break the decidual tissue, incubate it in the 
enzyme mixture, and stir it gently at 37°C for 1 h. 
The enzyme mixture was washed with 1 × PBS and 
with Dulbecco’s Modified Eagle Medium/F12 
(DMEM/F12) medium (Gibco). Finally, the cells 
were resuspended in fresh DMEM/F12 medium 
containing 20% FBS+1% antibiotics. The cells 
were cultivated in a 37°C, 5% CO2 incubator. 
After 2 d, the small digestive residues were 
removed and the culture was continued. Trypsin/ 
EDTA (0.25%, Gibco) was used to separate the 
cells when a large number of colonies were 
observed, and transfer them to a new culture 
plate containing 10% FBS. After passage 2 to 4, 
flow cytometry (FCM) was used to detect the 
specific phenotypic surface antigens of MSCs.

Cell transfection

dMSCs (5 × 104 cells/well) were induced by the 
inhibitor control, miR-30a inhibitor, mimic con-
trol, miR-30a mimic, control-plasmid, or AVEN- 
plasmid using Lipofectamine® 3000 reagent 
(Thermo) for 48 h at 37°C, following the manu-
facturer’s instructions. Cell transfection efficiency 
was determined using quantitative reverse tran-
scription-polymerase chain reaction (qRT-PCR).

Quantitative reverse transcription-polymerase 
chain reaction (qRT-PCR) assay

Total RNA was collected using TRIzol reagent 
(TaKara, Shiga, Japan), according to the manufac-
turer’s protocol. RNA was detected using 
NanoDrop (Thermo Scientific, USA). When RNA 
collection was successful, RNA was transformed 
into complementary DNA (cDNA) using the 
PrimeScript RT Reagent Kit (TaKara). 
Subsequently, qPCR was performed using the 
SYBR Green PCR Kit (Vazyme, Nanjing, 
Jiangsu), according to the protocol of the refer-
ence. Gene expression was calculated using the 
2−ΔΔCt formula [43].

Cell proliferation assay

Cell proliferation of dMSCs was evaluated using 
plating appropriate numbers in 12-well plates 
(Corning, Lowell, MA, USA), cultivating for dif-
ferent times (12, 24, 36, and 48 h), followed by 
harvesting and counting [44].

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl- 
2 H-tetrazolium bromide (MTT) assay

Cell viability was determined usiing MTT assay 
[45]. After treatment, 20 µL 3-(4,5-dimethylthia-
zol-2-yl)-2,5-diphenyl-2 H-tetrazolium bromide 
(MTT, 5 mg/mL, Sigma) was added to the wells, 
and the cells were continuously incubated for an 
additional 4 h. Next, the culture medium was dis-
lodged, and 200 µL dimethyl sulfoxide (DMSO) 
was added to the wells. The optical density (OD) 
at a wavelength of 570 nm was measured using 
a microplate reader.

Flow cytometry (FCM) assay

For the cell cycle assay, after the cells were trans-
fected for 48 h, they were fixed in pre-cooled 70% 
ethanol and incubated overnight at 4°C. Next, the 
cells were washed twice with 1 × PBS and then 
with 50 µg/mL propidium iodide (PI) (BD 
Bioscience), and 20 µg/mL RNase A was added 
to the cells, followed by cultivation at room tem-
perature for 30 min, and detection using FAC [46]. 
For the cell apoptosis assay, transfected cells were 
assessed using the Annexin V/propidium iodide 
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(PI) Apoptosis Detection Kit [47]. Briefly, cells 
were washed twice with pre-cooled 1 × PBS before 
collecting cells, and then a cell suspension of 
1 × 106 cells/mL was prepared using FITC- 
binding buffer. An amount of 100 μL of the cell 
suspension was added to EP tubes. Subsequently, 
an appropriate amount of Annexin V-FITC and PI 
was added to the cells according to standard pro-
cedures. The cells were mixed gently and culti-
vated for 20 min at room temperature in the 
dark. Annexin V-FITC and PI fluorescence were 
detected using a BD FACSCalibur flow cytometer 
(BD Technologies).

Western blot assay

Protein expression was detected by western blot 
assay in this study [48]. Cells were lysed using 
RIPA buffer for 30 min on ice (Solarbio, Beijing, 
China). Protein consistency was obtained using 
NanoDrop. Proteins were resolved using 12% SDS- 
PAGE and transferred onto PVDF membranes. The 
membranes were blocked with 5% skimmed milk for 
2 h to avoid nonspecific binding, and then incubated 
with primary antibodies against anti-AVEN or anti- 
GAPDH (1:1000, Abcam) at 4°C overnight. Next, 
they were washed three times and cultivated with 
a secondary antibody for 2 h. The protein signals 
were assessed using the ECL method (Applygen 
Technologies, Inc.).

Dual luciferase reporter analysis

To verify the binding sites of miR-30a and AVEN, 
dual luciferase reporter analysis was performed 
[49]. We then constructed AVEN-WT and AVEN- 
MUT 3’-UTR luciferase reporter gene plasmids. 
293 T cells were transfected with Renilla luciferase, 
luciferase reporter gene plasmids, and miR-30a 
mimic or mimic control for 48 h. Luciferase activ-
ity was assessed using a dual-luciferase reporter 
assay system (Promega), following the manufac-
turer’s instructions.

HUVEC tube formation assay

We mixed Matrigel and serum-free medium at 
a ratio of 1:1, and then added the diluted 

Matrigel to a 24-well plate and allowed it to soli-
dify. dMSCs were exposed to the mimic control, 
miR-30a mimic, control-plasmid, or AVEN- 
plasmid for 48 h, and the culture supernatant 
was collected from each group of dMSCs. 
HUVEC cells (1 × 105) with an equal volume of 
the cell supernatant collected previously were 
inoculated on the coagulated Matrigel and incu-
bated for 8 h. Five fields were randomly selected 
for analysis using Image Pro Plus software. The 
mean number of complete tubes formed by 
HUVECs was counted [50].

HTR-8/SVneo migration assay

For the migration assay [50], a transwell cham-
ber (8-μm pore size, Millipore) was placed in 
a 24-well plate. dMSCs were transfected with 
the mimic control, miR-30a mimic, control- 
plasmid, or AVEN-plasmid for 48 h, and the 
culture supernatant was collected from each 
group of dMSCs. HTR-8/SVneo cells (1 × 105) 
were resuspended with 500 μL DMEM/F12 med-
ium with 10% FBS, and the cells were seeded in 
the upper chamber. Subsequently, 500 μL of 
dMSC culture supernatant was added to the 
bottom chamber. The 24-well plate was plated 
at 37°C in a 5% CO2 incubator for 8 h. Next, the 
cells were fastened with 4% polyoxymethylene 
(Solarbio, Beijing, China) and stained with 
0.1% crystal violet solution (Solarbio) for 
20 min at room temperature. Cotton swabs 
were used to remove cells that had not migrated. 
The stochastically selected area was photo-
graphed using an optical microscope to count 
the number of migrated cells.

Statistical analysis

SPSS11 software was used for the statistical ana-
lysis. The statistical significance of the difference 
between groups was determined using Student’s 
t-test or one-way Analysis of Variance 
(ANOVA). Data are shown as the mean ± stan-
dard deviation (SD) from three independent 
experiments. Statistical significance was set at 
p < 0.05.
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Results

MiR-30a was upregulated in the decidua tissue 
and dMSCs of patients with PE

First, decidua tissue and dMSCs were acquired 
from 15 healthy pregnancies and 15 patients 
with PE. qRT-PCR analysis was performed to 
assess miR-30a expression in decidua tissue and 
dMSCs. Our results showed that compared to 
healthy pregnancies, miR-30a was highly 
expressed in the decidua tissue (Figure 1a) 
and in dMSCs (Figure 1b) of patients with PE.

AVEN was a direct target of miR-30a

To predict the downstream target gene of miR- 
30a, we used TargetScan analysis software to pre-
dict target genes, and a dual-luciferase assay was 
used to confirm the correlation between miR-30a 
and the target gene. In this study, the TargetScan 
assay predicted that there was a binding site for 
miR-30a and AVEN (Figure 2a). It was then con-
firmed that upregulation of miR-30a significantly 
enhanced miR-30a expression in 293 T cells 
(Figure 2b). 293 T cells were treated with AVEN- 

Figure 1. MiR-30a levels were increased in the decidua tissue and decidua MSCs (dMSCs) of patients with pre-eclampsia 
(PE) Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis of miR-30a levels in decidua tissue (a) and 
dMSCs (b) from healthy pregnancies and patients with PE. **P < 0.01.

Figure 2. AVEN directly targeted miR-30a (a). Binding site between miR-30a and AVEN was predicted using TargetScan. (b) 
Determination of miR-30a in 293 T cells after mimic control or miR-30a mimic transfection. (c). Dual-luciferase assay was performed 
to verify the relationship. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis determined AVEN expres-
sion in the decidua tissue (d) and decidua MSCs (dMSCs) (e) of healthy pregnancies and patients with PE. **P < 0.01 vs. mimic 
control group; ##P < 0.01 vs. Healthy control.
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WT or AVEN-MUT luciferase reporter plasmid, 
miR-30a mimic, and Renilla luciferase reporter 
plasmid for 48 h. Dual-luciferase reporter analysis 
suggested that the miR-30a mimic suppressed 
AVEN-WT activity. However, the activity of 
AVEN-MUT showed no obvious changes 
(Figure 2c). Next, qRT-PCR assay demonstrated 
that AVEN was downregulated in the decidua 
tissue (Figure 2d) and dMSCs (Figure 2e) of 
patients with PE compared to the healthy control 
group.

MiR-30a negatively regulated AVEN 
expression in dMSCs

To further illustrate the effects of miR-30a on 
AVEN expression in dMSCs, inhibitor control, 
miR-30a inhibitor, mimic control or miR-30a 
mimic was transfected into dMSCs for 48 h. As 
shown in Figure 3a, miR-30a inhibitor signifi-
cantly reduced miR-30a expression compared to 
the inhibitor control group. Meanwhile, compared 
with the inhibitor control group, the mRNA level 
of AVEN was significantly enhanced in miR-30a 
inhibitor transfected dMSCs (Figure 3b). As pre-
sented in Figure 3c, upregulation of miR-30a 
improved miR-30a expression compared to the 
mimic control group. In addition, after control- 
plasmid or AVEN-plasmid transfection, AVEN 
expression was increased (Figure 3d). Further 
qRT-PCR and western blot assays indicated that 
compared to the mimic control group, the miR- 
30a mimic reduced AVEN levels, and this decrease 
was reversed by the AVEN-plasmid (Figure 3 e 
and f).

MiR-30a suppressed dMSCs proliferation and 
induced cell cycle arrest and cell apoptosis

Subsequently, the role of miR-30a in dMSC viabi-
lity was investigated. The mimic control, miR-30a 
mimic, control-plasmid, or AVEN-plasmid were 
transfected into dMSCs for 12, 24, 36, or 48 h. 
MTT assay revealed that compared to the mimic 
control group, the miR-30a mimic inhibited cell 
proliferation and viability, while this inhibition 
was reversed by the AVEN-plasmid (Figure 4 a 
and b). Moreover, FCM analysis demonstrated 
that the miR-30a mimic promoted cell cycle arrest 

in the G0/G1 phase (Figure 4c) and induced apop-
tosis (Figure 4 d and e). However, these findings 
were eliminated by the AVEN plasmid.

MiR-30a overexpressed dMSCs regulated 
angiogenesis by targeting AVEN

Finally, we explored the effects of miR-30a over-
expressed dMSCs on HTR-8/SVneo cell migration 
and HUVEC tube formation. We performed 
a transwell assay to explore HTR-8/SVneo cell 
migration. Compared to the mimic control, miR- 
30a overexpressed dMSC culture supernatant sig-
nificantly inhibited HTR-8/SVneo migration abil-
ity. However, the AVEN-plasmid reversed the 
inhibitory effect (Figure 5 a and b). The HUVEC 
tube formation assay demonstrated that the miR- 
30a mimic transfected dMSC culture supernatant 
significantly suppressed HUVEC tube formation, 
and this change was reversed by the AVEN- 
plasmid (Figure 6 a and b).

Discussion

PE is a relatively common pregnancy disorder 
that can threaten the survival of both mother 
and baby [1–3]. Some evidence suggests that PE 
is a systemic vascular disease that may suggest 
later cardiovascular disease in the mother 
[51,52]. Previous studies have highlighted the 
role of disturbances in the balance of angiogen-
esis as one of the main features of this disease 
[53]. MSCs are capable of self-renewal and have 
the potential to differentiate into mesenchymal 
and non-mesenchymal tissues, thus, they have 
great potential to treat various diseases [54]. 
The role of MSCs in angiogenesis and their 
medical application value have been extensively 
studied [55]. Furthermore, it has been recently 
reported that placenta-derived MSCs contribute 
to vascular maturation and stabilization [56]. In 
addition, MSCs can secrete factors that promote 
the formation of endogenous blood vessels and 
nerves [57]. Currently, the roles of dMSCs in 
PE remain largely unknown. Multiple studies 
have illustrated that miRNAs are related to 
pathogenesis of PE [58–61]. Hu et al. showed 
that miR-30a was upregulated in the umbilical 
cord tissue and dMSCs of patients with PE. Our 
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results are consistent with previous research 
findings [61] that miR-30a is highly expressed 
in decidual tissue and dMSCs from patients 

with PE. A previous study indicated that miR- 
16 and miR-136 are also upregulated in dMSCs 
[59,60].

Figure 3. MiR-30a negatively regulated AVEN expression(a). Quantitative reverse transcription-polymerase chain reaction (qRT- 
PCR) analysis of miR-30a levels in inhibitor control or miR-30a inhibitor transfected decidua MSCs (dMSCs). (b). Detection of AVEN 
expression in inhibitor control or miR-30a inhibitor transfected dMSCs using qRT-PCR. (c). qRT-PCR analysis of miR-30a levels in 
mimic control or miR-30a mimic transfected dMSCs. (d). Detection of AVEN expression in control-plasmid or AVEN-plasmid 
transfected dMSCs using qRT-PCR. Expression of AVEN in the mimic control, miR-30a mimic, control-plasmid, or AVEN-plasmid 
transfected dMSCs using qRT-PCR (e) and western blot assay (f). $$P < 0.01 vs. inhibitor control group; **P < 0.01 vs. mimic control 
group; ##P < 0.01 vs. control-plasmid group; &&P < 0.01 vs. miR-30a mimic+control-plasmid group.
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Next, a dual luciferase reporter gene assay con-
firmed that AVEN was a direct target of miR-30a. 
In PE patients, AVEN was downregulated and 
negatively correlated with miR-30a level.

In addition, we observed that miR-30a sup-
pressed dMSC proliferation and induced apoptosis 

through down-regulating AVEN expression. 
Similar to our results, Ji et al. revealed that miR- 
136 suppresses MSC ability and induces cell apop-
tosis [59]. A report by Wang et al. showed that 
miR-16 overexpression suppressed cell growth and 
resulted in the accumulation of dMSCs in the G0/ 

Figure 4. MiR-30a suppressed decidua MSCs (dMSCs) proliferation, induced cell cycle arrest, and apoptosis by targeting 
AVEN (a) Cell proliferation was assessed using cell proliferation assay. (b). The growth of dMSCs was determined using the 
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2 H-tetrazolium bromide (MTT) assay. (c). Flow cytometry (FCM) was used to analyze cell 
numbers in different stages of cell division and the cell cycle data was shown using Graphpad 6.0. (d). FCM analysis of apoptotic 
cells. (e). Cell apoptosis rate was shown using Graphpad 6.0. **P < 0.01 vs. mimic control group; ##P < 0.01 vs. miR-30a mimic 
+control-plasmid group.

Figure 5. Decidua MSCs (dMSCs) overexpressed miR-30a suppressed HTR-8/SVneo migration. (a). HTR-8/SVneo cells migration 
was evaluated using transwell assay. (b). Number of migratory HTR-8/SVneo cells were presented. **P < 0.01 vs. mimic control 
group; ##P < 0.01 vs. miR-30a mimic+control-plasmid group.
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G1 phase [60]. In our study, miR-30a induced cell 
cycle arrest in the G0/G1 phase. These changes 
were reversed by the application of AVEN.

The progression of severe PE is highly associated 
with a decline in trophoblast cell invasion ability 
and is an obstacle to uterine spiral arteriole remo-
deling [62]. In this study, we found that miR-30a 
overexpressed dMSC culture supernatant sup-
pressed HTR-8/SVneo cell migration ability by tar-
geting AVEN. Moreover, the findings revealed that 
miR-30a overexpressed dMSC culture supernatant 
significantly reduced HUVEC tube formation abil-
ity, indicating that miR-30a significantly reduced 
the angiogenesis modulation potential of MSCs.

Conclusion

The findings revealed for the first time that miRNA-30a 
regulates the viability, apoptosis, and angiogenesis- 
regulating potential of MSCs by targeting AVEN and accel-
erates the occurrence and progression of eclampsia.
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