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Abstract
Technology advances have immensely accelerated large-scale mapping of biological net-

works, which necessitates the development of accurate and powerful network-based algo-

rithms to make functional inferences. A prevailing approach is to leverage functions of

neighboring nodes to predict unknown molecular function. However, existing neighbor-

based algorithms have ignored the scale-free property hidden in many biological networks.

By assuming that neighbor sharing is constrained by the preferential attachment property,

we developed a Preferential Attachment based common Neighbor Distribution (PAND) to

calculate the probability of the neighbor-sharing event between any two nodes in scale-free

networks, which nearly perfectly matched the observed probability in simulations. By apply-

ing PAND to a human protein-protein interaction (PPI) network, we showed that smaller

probabilities represented closer functional linkages between proteins. With the PAND-

derive linkages, we were able to build new networks where the links are more functionally

reliable than those of the human PPI network. We then applied simple annotation schemes

to a PAND-derived network to make reliable functional predictions for proteins. We also

developed an R package called PANDA (PAND-derived functional Associations) to imple-

ment the methods proposed in this study. In conclusion, PAND is a useful distribution to cal-

culate the probability of the neighbor-sharing events in scale-free networks. With PAND, we

are able to extract reliable functional linkages from real biological networks and builds new

networks that are better bases for further functional inference.
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Introduction
High-throughput screenings have been generating massive amount of biological data at an
unprecedented speed. From genomic sequence to epigenetic modification, from gene expres-
sion to protein-protein interaction (PPI), the accumulation of various types of data leads to the
rapid discovery of new cellular components, such as new proteins and non-coding RNAs
(ncRNAs). However, a considerable portion of these components has yet to be functionally
characterized. For example, even for the well-studied model organism Schizosaccharomyces
pombe, the functions of over 900 genes remain unknown [1]. The situation is more severe in
mammals because they have more genes and many genes have multiple functions. Fortunately,
recent development of computational methods based on the characteristics of large biological
networks has made it possible to infer the biological functions of network components on a
global scale [2–8]. For example, the neighbor-based methods infer a protein’s function based
on its immediate neighborhood [9–15], while the graph theoretic methods use the global topol-
ogy of a network to make functional inference [2,4,16].

Biological networks can be abstracted using simplified graphs with nodes representing cellu-
lar components and links representing interactions between them. Based on the assumption
that neighboring nodes in networks tend to share similar biological functions, previous works
have developed various statistical techniques to make functional predictions for cellular com-
ponents [7]. In PPI networks, for example, Schwikowski et al (2000) annotated a protein
according to the most prevalent function(s) among its direct neighbors in the network; Hishi-
gaki et al (2001) proposed a χ2 statistic to predict protein functions based on that of neighbors
lying within a certain radius; and Li and Liang (2009) used information on common neighbors
to perform functional annotation and clustering. Although these neighbor-based studies have
shown excellent performance and yielded a handful of predictions, none of them has incorpo-
rated the topological property of scale-free network that has been well established for many
biological networks, social networks, the Internet, etc. [17]. Inspired by the Barabasi-Albert
model [18–19], we assume that a scale-free network has the following preferential attachment
(PA) property: a node with a larger degree (degree is the number of links attached to any node
in a network) is more likely to be connected by other nodes in the network. This assumed PA
property reflects the difference between nodes in scale-free networks [3,17], and necessitates
treating nodes unequally when developing neighbor-based statistical models. For example, in
Samanta and Liang (2003), the probability of the neighbor-sharing events needs to be re-esti-
mated since the basic assumption (i.e., each node has the same probability to be picked by a
given node as its neighbor) is not appropriate in a network with the PA property.

In this study, we developed a Preferential Attachment based common Neighbor Distribu-
tion (PAND) to calculate the probability of two nodes sharing a certain number of common
neighbors in scale-free networks. When deriving PAND, we weighted each node based on the
assumption that the probability of connecting an existing node is linearly proportional to its
degree. Compared with a previous work without PA assumption [11], PAND immensely
improved the probability estimation of the neighbor-sharing events in randomized scale-free
networks. As each link in a biological network (defined as a direct link) is also informative on
the functional association between two nodes, we further incorporated this information into
PAND by converting a direct link into λ common neighbors (λ� 0). Based on a real human
PPI network, we showed that PAND revealed higher-quality functional links between proteins
than the previous work [11] (We used the Gene Ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) databases to assess the quality of the derived links [20–21]).
Based on these links, we were able to build a new network and employ existing direct and mod-
ule-assisted annotation schemes to make reliable functional predictions [7]. In addition, we
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developed an R package called PANDA (PAND-derived functional Associations) to easily
apply the PAND distribution for functional inference.

Results

Preferential Attachment based common Neighbor Distribution (PAND)
Samanta and Liang (2003) developed a statistical model to calculate the probability of the
neighbor-sharing events and showed that a very small probability indicates a close functional
relationship between two nodes [11]. Here we develop a new model as follows to calculate the
probability of the same events in scale-free networks. In a network with a total of n nodes, sup-
pose we add two new nodes: A and B, with kA as the degree of node A and kB as the degree of
node B. Assuming that the preferential attachment (PA) probability of connecting an existing
node is linearly proportional to its degree, we derived the following formula for calculating the
probability that two nodes (A and B) sharem common neighbors in scale-free networks (see
Materials and Methods for details):
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In formula (1), subscript “S” denotes preferential attachment, K denotes the degree, E(K) is
the average degree of the network [it is considered as a constant in formula (1)] and ϕ is the
normalizing constant. Thus, E(K2) − [E(K)]2 = Var(K). In a scale-free network, because of the
relative commonness of high-degree (i.e., hubs) and low-degree nodes, Var(K) is large enough
to make a difference between E(K2) and [E(K)]2. Therefore, asm increases, [E(K2)]m becomes
much larger than [E(K)]2m. However, in the simple random network proposed by Erdos and
Renyi [22], it is rare to observe nodes with degrees that are much larger or smaller than the
average degree of the network. As a result, Var(K)� E(K2), E(K2)� [E(K)]2, and [E(K2)]m �
[E(K)]2m. Moreover, if kA�kB� n, ϕ will be close to 1. Therefore, in a simple network with [E
(K)]2 � n, formula (1) approximates the one proposed by Samanta and Liang (2003) [11]:
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Compared with formula (2), formula (1) integrates the information of the degree variance
in the network. The additional terms of formula (1) indicate that the events of sharing a large
number of common neighbors are more readily observed in scale-free networks than in simple
random networks, which is in accordance with our simulation results in the following para-
graph. A flowchart of our work is shown in S1 Fig to describe the important steps in this study
and the logical relationship between them.
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Simulation-based analysis of PAND
We performed Monte Carlo simulations to compare the probabilities from formulas (1) and
(2). Our simulation was based on a human PPI network with 11,524 nodes and 51,840 links
(see Materials and Methods). The degree distribution of the network followed a power-law dis-
tribution: P(k)*k−γ (k is the degree; and γ is the degree exponent [18]), with γ equaling 1.925
for the power-law tail of k� 5 (Fig 1A). Thus, this PPI network is a scale-free network, which
is in accordance with previous publications [3,17]. Based on this network, we used two meth-
ods to generate suitable random networks [15]. The method (i) is that, under the condition
that all the nodes had an equal probability of being connected, we randomly added 51,840 links
between 11,524 nodes. This method yielded simple random networks of which the degrees fol-
lowed the Poisson distribution [22]. The method (ii) is that, based on the human PPI network,
we randomly switched the neighbors of all nodes so that the degree of each node remained the
same but the neighbors were randomly picked. This yielded (randomized) scale-free networks
with the same degree distribution as our human PPI network (Fig 1A). Method (ii) fulfilled our
assumption on the PA property. By counting the number (m) of common neighbors for vari-
ous combinations of kA and kB in networks generated by the two methods, we found that for-
mula (1) yielded probabilities that almost matched the observations in simple random
networks (Fig 1B) and nearly perfectly matched the observations in scale-free networks (Fig 1C
and 1D). By contrast, although probabilities from formula (2) well matched the observations in
simple random networks (Fig 1B), they differed significantly from the observations in scale-
free networks: asm increased, the yielded probabilities (after log transformation) became
much smaller than the observed probabilities (Fig 1C). Therefore, formula (1) can be consid-
ered as a generalization of formula (2) that fits both simple random network and scale-free
network.

Incorporation of direct links into PAND
Since each link in a biological network (defined as a direct link) directly shows the functional
association between two nodes, we incorporated this information into PAND by converting a
direct link into λ common neighbors (λ� 0):

PSI ¼ PSðmþ l � I jn; kA þ l � I; kB þ l � IÞ ð3Þ

Here I is a binary variable: I = 1 if there is a direct link between A and B; otherwise, I = 0.
The integer λ (λ� 0) is a weight we placed on the direct link and has different biological mean-
ings with different values. λ = 0 indicates that a direct link gives no information on the func-
tional association (thus PSI is the same as PS); λ = 1 indicates that a direct link is as informative
as sharing one common neighbor (defined as an indirect link) on the functional association; λ
� 2 indicates that a direct link is more informative than an indirect link. The effect of varying λ
on PSI is shown in S2 Fig. Since a direct link is usually derived from experiments, it represents a
stronger evidence of the functional association than an indirect link. Specifically, in the real
human PPI network, we proved this point by showing that protein pairs with only direct inter-
actions (links) are more functionally associated than those with only indirect interactions of
sharing less than five common neighbors (Fig 2). Therefore, λ should be greater than 1 to
reflect this fact, and we arbitrarily chose λ = 2 in this study. We use “PAND” hereafter to refer
to formula (3) with λ = 2, unless otherwise specified.
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Real data-based assessment of PAND
As shown by Samanta and Liang (2003), those neighbor-sharing events with very small proba-
bilities from formula (1) predicted functional associations between proteins in the PPI network
of budding yeast. Here we applied formulas (1), (2) and (3) to the human PPI network and
compared the quality of their derived top-ranked functional associations. Each protein pair
with at least one common neighbor had three probabilities (i.e., P, PS and PSI), which we used
to rank the protein pairs in three different lists (i.e., each formula yielded one rank). We also
used the corresponding p-values to rank the protein pairs and found that, in the human PPI
network, the generated ranks were very similar to the above three ranked by P, PS and PSI (see
Materials and Methods). As shown by Li and Liang (2009), a better formula would yield a list
in which higher ranked protein pairs corresponded to better functional associations. We used
GO and KEGG annotations as benchmarks to determine the functional association: if two

Fig 1. Comparison between the observed probabilities and the theoretical probabilities. (a) A human PPI network with n = 11,524 nodes and average
degree of 9.0. The dashed line (fitted after log-log transformation) has a slope of -1.925 (the 95% confidence interval: [1.834, 2.016]) for the power-law tail
(i.e., degree (k)�5). (b), (c) Performance comparison between formulas (1) and (2) in simple random networks (1000-time simulations) and scale-free
networks (100-time simulations). The Black triangles represent the observed probabilities for the shared number of common neighbors, and the black dashed
triangle represents the expected observation becausem = 4 was not observed in (b). The red and blue points (lines) represent the theoretical probabilities
calculated from formulas (1) and (2), respectively. Both (b) and (c) are examples with kA = 15 and kB = 16 as the degrees of protein A and B. (d) is also an
example for scale-free networks, with kA = 77 and kB = 71 as the degrees of protein A and B, but without log-transformation of the probabilities (y-axis).

doi:10.1371/journal.pone.0127968.g001
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proteins had any GO or KEGG annotation overlap, this protein pair was considered to be func-
tionally associated. Based on this, we defined the GO annotation overlap rate (Qg) and the

Fig 2. Comparison between direct interactions and indirect interactions. The x-axes are the number of common neighbors shared by proteins with only
indirect interactions. The y-axes are the annotation overlap rates of GO (a) and KEGG (b). Dashed lines in both plots represent GO (a) and KEGG (b)
annotation overlap rates for direct interactions. The annotation overlap rate (Qg for GO andQk for KEGG) was used to assess the functional associations of
protein pairs (see Materials and Methods for the definition).

doi:10.1371/journal.pone.0127968.g002

Fig 3. Comparison of the performance between P, PS and PSI. In both plots, x-axes are the number (r) of top-ranked protein pairs (ranked by their
probabilities: P, PS and PSI); y-axes are the KEGG (a) and the GO (b) annotation overlap rates–Qk(r) andQg(r) for the top-ranked r protein pairs. Line colors
represent the three formulas: green for (1), blue for (2) and red for (3). Dotted black lines (between green and blue lines) represent formula (2) with direct links
integrated (with λ = 2). Vertical dashed lines (r = 8,583) represent the cut-off for significantly associated protein pairs. Fig.3 is based on the top-ranked 30,000
protein pairs from the three lists (each consists of over 1.5 million protein pairs).

doi:10.1371/journal.pone.0127968.g003
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KEGG annotation overlap rate (Qk) to assess the functional associations of the top-ranked pro-
tein pairs (Materials and Methods). After comparing Qg and Qk between the three lists (Fig 3),
we confirmed that, formula (1) yielded top-ranked protein pairs with better functional associa-
tions than formula (2), and formula (3) yielded top-ranked protein pairs with the best func-
tional associations. Thus, for the same amount of top-ranked protein pairs, formula (3) yielded
the best precision and recall rate in the human PPI network. (More comparison between P, PS
and PSI can be found in S3 Fig) We also assessed the performance improvement of formulas
(1) and (3) based on the top 30,000 protein pairs of Fig 3: compared with formula (2), formula
(1) improved Qg by 21% and Qk by 6%; formula (3) further improved Qg by 6% and Qk by 4%
when compared with formula (1). More importantly, even if direct links were incorporated
into formula (2) in the same way as in formula (3) (with λ = 2), the subsequent Qg and Qk (dot-
ted black curves in Fig 3) were still lower than that from formula (1), showing that the integra-
tion of PA assumption into formula (2) led to more performance improvement than simply
integrating the information of direct links into formula (2). The above results show that, in
scale-free networks, PAND-derived functional associations are more reliable than those from
formula (2) that was developed without PA assumption [11].

Comparison between the PPI network and the PAND-derived network
We further built three new networks with the top-ranked 51,840 functional links (associations)
derived from each formula and calculated Qg and Qk for all the 51,840 links in each network
(51,840 is the size of the human PPI network). For formula (3) (i.e., PAND), Qg = 25% and Qk

= 61%; for formula (1), Qg = 23% and Qk = 58%; for formula (2), Qg = 20% and Qk = 56%. For
the 51,840 links in the human PPI network, Qg = 17% and Qk = 51%, which were significantly
lower than Qg and Qk for the PAND-derived network (p-value<10−10 by equal proportion test
in R). This comparison demonstrated that the PAND-derived network had more reliable func-
tional linkages than the human PPI network, thus should be a better source for further func-
tional inference. In addition, only 13,454 (26%) links were common between the PAND-
derived network and the human PPI network, showing that most of the PAND-derived links
were new information not revealed by the PPI network itself.

To further evaluate the usefulness of the PAND-derived network, we applied the classical
neighbor-counting approach proposed by Schwikowski et al. (2000) to the PAND-derived net-
work and compared the results with those from the PPI network. The approach identified the
most frequent function(s) among the direct neighbors of a protein and assigned the function(s)
to the protein as the predicted functions [9]. Here we required the minimum frequency to be
three and used the FDR (false discovery rate; see Materials and Methods) to assess the reliabil-
ity of the predicted functions. Based on the PPI network, 2,334 KEGG annotations and 1,811
GO annotations were predicted with estimated FDRs of 41% and 78%, respectively. By con-
trast, with the PAND-derived network, 2,108 KEGG annotations and 1,658 GO annotations
were predicted with estimated FDRs of 25% and 70%, respectively (the high FDR was attrib-
uted to the subset of GO terms used in this study; see Materials and Methods). The comparison
between the FDRs showed that, with the same prediction approach, the PAND-derived net-
work yielded higher-quality predictions, which supports the statement that the PAND-derived
network is a better source for further functional inference.
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Functional inference based on a PAND-derived network

Since PSI could be calculated for all
n

2

 !
possible combinations of node pairs in a network of

size n, the cut-off for PSI could be calculated in a way similar to the Bonferroni correction for
p-values: Pcut ¼ 0:05

n

2

 !. Specifically, Pcut equals 7.53 × 10−10 for our human PPI network with

n = 11,524. Using this stringent Pcut, PAND yielded 8,583 significant protein pairs (i.e., protein
pairs with PSI < Pcut; see S1 Table; biological meaning of these significant PSI was discussed in
Appendix A of S1 File and S4 Fig), of which strong functional associations have been observed
(dashed lines in Fig 3). These protein pairs constituted a new network containing 2,796 nodes
and 8,583 links. With this network, we first applied a direct annotation scheme (see Materials
and Methods; [7]) and predicted 52 KEGG annotations for 52 proteins and 132 GO annota-
tions for 132 proteins with estimated FDRs of 11% and 26%, respectively (see S5 Fig). By man-
ual inspection (see Materials and Methods), we confirmed that ~46% of the predicted 184
annotations could be supported by existing evidence (see S2 Table), and we listed 34 predicted
annotations in Table 1 that are worth further validation. We then applied a module-assisted
scheme (see Materials and Methods; [7]) to cluster the nodes based on the PSI of each link (see
S6 Fig) and used a 3-step method (see Materials and Methods) to identify 11 informative sub-
clusters (Fig 4). Each of the 11 subclusters was highly enriched in one KEGG pathway with p-
value< 10−20, and we could further suggest possible KEGG annotations for these subcluster
members (see S3 Table).

Robustness analysis of PAND
Based on the human PPI network, we showed that PAND is robust: it is sensitive neither to a
high false positive rate of PPI data, nor to a high error rate of gene annotations. After we added
25,920 false PPIs (50% of original PPIs) into our human PPI network, PAND still recovered
~87% of the 8,583 significant protein pairs within its own top-ranked 8,583 protein pairs. After
we added 6,878 false GO annotations and 6,466 false KEGG annotations, PAND was still able
to yield almost the same results on predicted annotations (~95% of predicted GO annotations
and ~96% of predicted KEGG annotations were the same). Therefore, PAND is quite suitable
for noisy data where the links and annotations suffer a high false positive rate.

R package: PANDA
For easy implementation of the methods used above, we have provided an R package called
PANDA (PAND-derived functional Associations). Given a biological network (in the format of
binary interactions), PANDA will be able to perform the following tasks: (1) use PAND to cal-
culate the PSI (or p-value) for each pair of nodes and identify significantly associated nodes; (2)
perform agglomerative hierarchical clustering based on the significantly associated nodes and
generate a plot of the whole cluster; (3) predict GO terms and KEGG pathways for nodes; (4)
identify subclusters whose members are enriched in KEGG pathways [(3) and (4) are per-
formed only for PPI networks; fore more details, refer to S2 File (the Vignette)]. All functions
in this package are implemented with the same methods as stated in the section of “Materials
and Methods”. This PANDA package is provided as S3 File and has been deposited in CRAN
(http://cran.r-project.org/) for future updates.
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Discussion
In this study, we developed an analytical method (PAND) to compute probabilities of com-
mon-neighbor sharing events and derived novel and reliable functional links between nodes
within a large scale-free network. Our work has made at least two important contributions:
first, formula (1) has proven to be an appropriate null distribution for accurately calculating
probabilities of the neighbor-sharing events in biological networks with the PA probability lin-
early proportional to the node degree. Determining the probabilities of such events occurring
in a random network requires high-resolution result where an analytical solution is preferred.

Table 1. Predicted GO and KEGG annotations that are worth further validation.

Protein GO ID GO term p-value

JAK2 GO:0005159 insulin-like growth factor receptor binding 2.28E-12

PLCG1 GO:0005070 SH3/SH2 adaptor activity 1.23E-19

MSN GO:0008633 activation of pro-apoptotic gene products 6.36E-17

MKRN3 GO:0051865 protein autoubiquitination 2.83E-11

DTX3L GO:0051865 protein autoubiquitination 1.98E-11

UBOX5 GO:0051865 protein autoubiquitination 1.05E-11

RNF114 GO:0051865 protein autoubiquitination 1.36E-11

MID1 GO:0051865 protein autoubiquitination 1.36E-11

RASA1 GO:0042169 SH2 domain binding 1.39E-12

ARHGDIA GO:0008633 activation of pro-apoptotic gene products 6.36E-17

RNF185 GO:0051865 protein autoubiquitination 2.24E-11

MAP2K7 GO:0005078 MAP-kinase scaffold activity 1.98E-11

IRS2 GO:0005159 insulin-like growth factor receptor binding 8.91E-11

UBE2U GO:0070936 protein K48-linked ubiquitination 5.23E-23

KRT1 GO:0001533 cornified envelope 3.59E-11

PTPN1 GO:0005158 insulin receptor binding 6.41E-11

PI3 GO:0001533 cornified envelope 3.59E-11

GATAD2B GO:0016581 NuRD complex 4.63E-11

Protein KEGG ID KEGG pathway name p-value

PTPN6 hsa04664 Fc epsilon RI signaling pathway 1.13E-15

LYN hsa04650 Natural killer cell mediated cytotoxicity 4.71E-15

MSN hsa04210 Apoptosis 2.12E-14

LCP2 hsa04662 B cell receptor signaling pathway 6.36E-18

KIT hsa05220 Chronic myeloid leukemia 1.90E-15

RASA1 hsa04650 Natural killer cell mediated cytotoxicity 4.09E-12

ARHGDIA hsa04210 Apoptosis 2.12E-14

GIYD2 hsa03050 Proteasome 1.89E-16

INPP5D hsa05220 Chronic myeloid leukemia 1.17E-11

GAB1 hsa05220 Chronic myeloid leukemia 5.25E-17

BLNK hsa04664 Fc epsilon RI signaling pathway 1.41E-12

PAG1 hsa04650 Natural killer cell mediated cytotoxicity 4.18E-17

CHTF18 hsa03430 Mismatch repair 1.38E-15

PTK2B hsa04012 ErbB signaling pathway 6.36E-13

PTPN1 hsa04722 Neurotrophin signaling pathway 6.94E-11

MAP4K1 hsa04664 Fc epsilon RI signaling pathway 2.58E-11

P-values were calculated by Fisher’s exact test based on the annotations of all significant partners for each protein. All these predictions are marked with

“likely” in S2 Table. For more discussion on the prediction of GO and KEGG annotations, please refer to Appendix B of S1 File.

doi:10.1371/journal.pone.0127968.t001
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This is because the probability we are interested in observing is typically on the order of 10−10,
which is computing-intensive for Monte Carlo simulation methods where an impractical large
number of sampling is required. Second, PAND is able to derive a new network with more reli-
able functional linkages than the human PPI network. This means the PAND-derived network
is a better source for further functional inference. Based on this network, the FDR of functional
predictions using existing annotation schemes can be improved. As shown in our example,
both the direct and module-assisted approaches made high-quality functional predictions
based on the PAND-derived network. Thus, PAND can also be considered as a valuable addi-
tion to the existing prediction schemes that are based on the links of scale-free networks.

Although PAND is based on the PA assumption that the connection probability is linearly

proportional to the node degree (i.e., Pi ¼ kiPn

l¼1
kl
, see Materials and Methods), its application is

not limited to the type of networks where this assumption holds. For example, PAND also
gives nearly perfect estimation of the neighbor-sharing probabilities for the generated simple
random networks [22], as long as the average degree is much smaller than the network size (so
that ϕ will be close to 1). Since there is no PA property in simple random networks, the PA

Fig 4. Subclusters significantly enriched in KEGG pathways with p-value < 10−20. The left bar in each plot shows the height of the subcluster in the
whole cluster of 2,698 proteins. The name above each plot is the KEGG pathway ID corresponding to the most significant p-value. The bottom right panel
maps the pathway IDs to the pathway names.

doi:10.1371/journal.pone.0127968.g004
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probability is the same for all nodes: Pi ¼ 1
n
¼ ki

0Pn

l¼1
kl
0
. Thus, PANDA has excellent perfor-

mance in networks with Pi ¼ kiPn

l¼1
kl
or Pi ¼ ki

0Pn

l¼1
kl
0
. Based on this, we speculate that PAND

may also have a good performance in networks with PA probabilities between ki
0Pn

l¼1
kl
0
and

kiPn

l¼1
kl
, such as Pi ¼ logðkiþ1ÞPn

l¼1
logðklþ1Þ and Pi ¼ ki

0:5Pn

l¼1
kl
0:5
. However, for networks with PA probabilities

stronger than kiPn

l¼1
kl
, such as Pi ¼ ekiPn

l¼1
ekl
, PAND may not perform well because nodes added

to the network will always be connected to hub nodes, which makes sharing a large number of
common neighbors much easier. A further study to access the performance of PAND in net-
works with various PA probabilities would be quite interesting.

As shown in the literature [3,15,17,23], hub nodes play a very important role in scale-free
networks. Here we preliminarily assessed the influence of hub nodes on functional predictions
in the human PPI network. A hub protein can be as powerful as a non-hub protein in predict-
ing the function of its direct interacting neighbors (data not shown). Therefore, there is no
need to distinguish hub proteins from others when predicting functions from direct neighbors,
such as in Schwikowski et al (2000). For indirect neighbor-based functional inference, however,

it becomes a different story. For a protein with d neighbors, there were
d

2

 !
combinations of

any 2 neighbors, and we calculated the number (Td) of combinations that shared GO annota-
tions. For all proteins of the same degree d, we defined a GO annotation overlap rate:

OgðdÞ ¼
P

k¼d Td=
P

k¼d

d

2

 !
. (k denotes the degree). We found that, as d increased, Og(d)

generally became smaller (see S7 Fig). For KEGG annotation, we defined Ok(d) in the same
way and observed overlap rates similar to GO (see S7 Fig). As shown in S7 Fig, a hub protein
becomes less potent for claiming the functional association of any two proteins that share this
hub protein. In fact, for a common neighbor, there is a negative correlation between its degree
and the predictive power it owns in the common neighbor-based functional predictions, which
justifies the needs to reduce the influence of hub proteins. A pioneering research on this issue
has been performed in Li and Liang (2009), but the proposed method of using two algorithms
together is inconvenient to implement. Therefore, how to incorporate the information of hub
proteins into PAND will certainly be an interesting part of our future work.

Materials and Methods

Derivation of formula (1)
Samanta and Liang (2003) developed a statistical model to calculate the probability of two
nodes sharing a certain number of common neighbors in a PPI network. They showed that a
very small probability corresponds to two nodes sharing more neighbors than expected by
chance, which indicates a close functional relationship between the two nodes. Although the
PPI network is a scale-free network, the scale-free property was not taken into account when
their model was developed. Here we develop a new model as follows to calculate the probability
of the same events in scale-free network due to its prevalence in biological networks. For a
scale-free network of size n, we used O = {1,2, . . ., n} to denote all the nodes and used ki to
denote the degree of node i (i 2 O). Suppose we add two new nodes here: A and B, with kA as
the degree of node A, kB as the degree of node B, andm as the number of common neighbors.
To make the model derivation simple, we make the following suppositions: (i) node A has
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three neighbors {a, b, c} and node B has four neighbors {a, b, d, e}, thusm = 2, kA = 3 and kB =
4 (A, B 2 O); and (ii) the degrees of {a, b, c, d, e} are {ka, kb, kc, kd, ke} (a,b,c,d,e 2 O and
a6¼b 6¼c6¼d 6¼e). We also assume that the preferential attachment probability follows the Bara-

basi-Albert (BA) model [18] − Pi ¼ kiPn

l¼1
kl
, (i, l 2 O). Based on this assumption, we can derive

the following probabilities:

Pabc ¼ PrðA picks fa; b; cgÞ ¼ kakbkcPn
i1¼1

Pn
i2¼i1þ1

Pn
i3¼i2þ1ki1ki2ki3

ð4Þ

Pabde ¼ PrðB picks fa; b; d; egÞ ¼ kakbkdkePn
l1¼1

Pn
l2¼l1þ1

Pn
l3¼l2þ1

Pn
l4¼l3þ1kl1kl2kl3kl4

ð5Þ

The reason for the restriction on the summation indices in (4) and (5) is that we count each
configuration only once. By further assuming that (4) and (5) are independent of each other,
we have:

PrðA picks fa; b; cg&B picks fa; b; d; egÞ ¼ Pabc � Pabde

Here, the total number of unique ways of A and B sharing 2 common neighbors is
n
2

� �
n�2
1

� �
n�3
2

� �
. The first term n

2

� �
is the number of ways to choose node a and b from all n nodes;

the second term is the number of ways to choose node c from the left n-2 nodes; the third term
is the number of ways to choose node d and e from the left n-3 nodes. Therefore, the total prob-
ability of A and B sharingm = 2 nodes can be written as follows:

⇨ Probðm ¼ 2jkA; kB; nÞ ¼
Pn

a¼1

Pn
b¼aþ1

Pn
c¼1

Pn
d¼1

Pn
e¼dþ1Pabc � Pabde ð6Þ

¼
Pn

a¼1

Pn
b¼aþ1

Pn
c¼1

Pn
d¼1

Pn
e¼dþ1 k

2
ak

2
bkckdkePn

i1¼1

Pn
i2¼i1þ1

Pn
i3¼i2þ1 ki1ki2ki3

Pn
l1¼1

Pn
l2¼l1þ1

Pn
l3¼l2þ1

Pn
l4¼l3þ1 kl1kl2kl3kl4

The constraint (a 6¼b6¼c6¼d6¼e) still exists in (6) although it is not shown for simplicity.

Under the constraint, the total number of terms in the numerator is n
2

� �
n�2
1

� �
n�3
2

� �
. We further

define S1, S2 and S as follows:

S ¼
Xn

a¼1

Xn

b¼aþ1

Xn

c¼1

Xn

d¼1

Xn

e¼dþ1
k2ak

2
bkckdke

¼
Xn

a¼1

Xn

b¼aþ1
k2ak

2
b

Xn

c¼1
kc
Xn

d¼1

Xn

e¼dþ1
kdke

¼
 
n

2

!
k2ak

2
b

 
n� 2

1

!zfflfflfflfflfflffl}|fflfflfflfflfflffl{∵c 6¼a;b

kc

 
n� 3

2

!zfflfflfflfflfflffl}|fflfflfflfflfflffl{∵d;e6¼a;b;c

kdke

(a 6¼b 6¼c6¼d6¼e)

S1 ¼Pn
i1¼1

Pn
i2¼i1þ1

Pn
i3¼i2þ1ki1ki2ki3 ¼

 
n

3

!
ki1ki2ki3
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(i1 6¼i2 6¼i3)

S2 ¼Pn
l1¼1

Pn
l2¼l1þ1

Pn
l3¼l2þ1

Pn
l4¼l3þ1kl1kl2kl3kl4 ¼

 
n

4

!
kl1kl2kl3kl4

(l1 6¼l2 6¼l3 6¼l4)

“ABC” denotes the arithmetic mean. In human PPI networks, because n is always very large
(typically, n�10,000), we can have the following approximations by removing the constraints
(a 6¼b 6¼c6¼d6¼e, i1 6¼i2 6¼i3 and l1 6¼l2 6¼l3 6¼l4) in S1, S2 and S:

S � n

2

 !
k2a

k2bb

n� 2

1

 !
kc

n� 3

2

 !
kdke

¼ n

2

 !
E K2ð ÞE K2ð Þ n� 2

1

 !
EðKÞ n� 3

2

 !
EðKÞEðKÞ

¼ n

2

 !
n� 2

1

 !
n� 3

2

 !
½EðK2Þ�2 ½EðKÞ�3

S1 � n

3

 !
½EðKÞ�3; S2 � n

4

 !
½EðKÞ�4

Here, E(K) is the arithmetic mean of the degrees of all nodes in the network.

⇨ Prðm ¼ 2 j kA ¼ 3; kB ¼ 4; nÞ ¼ S

S1� S2
¼

 
n

2

! 
n � 2

1

! n � 3

2

!
½EðK 2Þ�2

n

3

0
B@

1
CA

n

4

0
B@

1
CA½EðKÞ�2�2

ð7Þ

More generally, the numerator (S) of Eq (6) can be derived as follows:

S ¼
XN
l1¼1

XN
l2¼l1þ1

	 	 	
XN

lm¼lm�1þ1

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{m

k2l1k
2
l2
	 	 	 k2lm

XN
j1¼1

XN
j2¼j1þ1

	 	 	
XN

jnA�m¼jnA�m�1þ1

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{nA�m

kj1kj2 	 	 	 kjnA�m

XN
i1¼1

XN
i2¼i1þ1

	 	 	
XN

inB�m¼inB�m�1þ1

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{nB�m

ki1
ki2 	 	 	 kinB�m

� n

m

 !
½E K2ð Þ�m n�m

kA �m

 !
½EðKÞ�kA�m n� kA

kB �m

 !
½EðKÞ�kB�m
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The denominator (D) of Eq (6) is derived as follows:

D ¼ S1� S2

¼
Xn
j1¼1

Xn
j2¼j1þ1

	 	 	
Xn

jkA¼jkA�1þ1

kj1kj2 	 	 	 kjkA
Xn
i1¼1

Xn
i2¼i1þ1

	 	 	
Xn

ikB¼ikB�1þ1

ki1ki2 	 	 	 kikB

� n

kA

 !
½EðKÞ�kA n

kB

 !
½EðKÞ�kB

Therefore, in large scale-free networks:

PS0ðmjkA; kB; nÞ ¼
S
D
¼

 
n

m

!
½EðK2Þ�m

 
n�m

kA �m

!
½EðKÞ�kA�m

n� kA

kB �m

0
@

1
A½EðKÞ�kB�m

n

kA

0
@

1
A½EðKÞ�kA

n

kB

0
@

1
A½EðKÞ�kB

¼

n

m

 !
n�m

kA �m

 !
n� kA

kB �m

 !
½EðK2Þ�m

n

kA

 !
n

kB

 !
½EðKÞ�2m

ð8Þ

Since there are some approximation steps,
Pmin ðkA ; kBÞ

m¼0 PS0ðmjkA; kB; nÞ is not equal to 1.
Thus, a normalizing constant � ¼ Pmin kA ; kBð Þ

m¼0 PS0 mjkA; kB; nð Þ
� ��1

is needed so thatPmin ðkA ; kBÞ
m¼0 �PS0ðmjkA; kB; nÞ ¼ 1. Since PS0(m|kA,kB,n) is calculable for eachm, ϕ is also calcu-

lable. Therefore, in large scale-free networks, we have:

PSðmjkA; kB; nÞ ¼ �PS0ðmjkA; kB; nÞ ¼
�

n

m

 !
n�m

kA �m

 !
n� kA

kB �m

 !
½EðK2Þ�m

n

kA

 !
n

kB

 !
½EðKÞ�2m

ð1Þ

For this distribution, the one-tailed p-value is
Pmin ðkA ; kBÞ

x¼m PSðxjkA; kB; nÞ.
In our human PPI network with network size n = 11,524, using one-tailed p-value to rank

the associations between proteins yielded a result very similar to that by simply using PS with ϕ
= 1 (this led to ~2% difference for the top-ranked 10,000 associations; see S8 Fig), which was
also true for PSI (see S8 Fig) and P (see Ref [11]). This makes computation faster since only one
probability for the observedm needs to be calculated to assess functional associations in the
human PPI network, and we simply used P, PS and PSI to rank the functional association of
each protein pair in this study (in our developed R package, there is an option to rank protein
pairs by p-values).

The human PPI network
We downloaded PPI data from two databases. We obtained 32,030 non-redundant PPIs for
9,445 unique proteins from the Biological General Repository for Interaction Datasets
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(BioGRID; Release 3.0.68; http://www.thebiogrid.org/) and 37,039 non-redundant PPIs for
9,465 unique proteins from the Human Protein Reference Database (HPRD; Release 9; http://
www.hprd.org/). By combining these two databases, we obtained a PPI network with 51,840
non-redundant interactions between 11,524 proteins, of which< 900 are non-human proteins.

Annotation databases
KEGG pathway annotations were downloaded from the KEGG website on August 21, 2009
(http://www.genome.jp/). The KEGG pathway maps proteins to the manually drawn pathways
that represent the molecular interaction and reaction networks in various biological processes
(such as metabolism and cellular processes) [21]. GO annotations were downloaded from the
Gene Ontology website (submission data: 10/4/2010; http://www.geneontology.org/). The GO
annotations (GO terms) map proteins to their associated biological processes, cellular compo-
nents and molecular functions [20]. We used GO and KEGG pathway annotations to assess
the functional associations between proteins and assign new annotations to proteins. To reduce
the error rate of annotations, we removed GO annotations with evidence code “IEA” from the
downloaded data. To improve the quality of functional inference, we only used the most spe-
cific GO terms (i.e., GO terms without any GO “offspring” terms) to perform GO-related anal-
ysis in this study.

We considered the KEGG annotation database to be independent of the PPI database
because the two shared very few supporting literature (see Appendix C of S1 File). The GO
annotation database shared a small fraction (~19%) of its supporting publications with the PPI
database, but whether or not we removed the GO terms based on the overlapped publications
from all analyses yielded the same conclusions as shown in above sections. As an example, we
regenerated Fig 2a and Fig 3b in S9 Fig using only the GO annotations independent of the PPI
database and reached the same conclusions.

Definition of annotation overlap rate and FDR
Annotation overlap rate and FDR were calculated on the basis of the GO and KEGG databases
described above. For r protein pairs, we defined their KEGG annotation overlap rate as follows:

Qk rð Þ ¼ TsðrÞ
TaðrÞ. Here k denotes KEGG, Ta(r) is the number of protein pairs of which both pro-

teins have KEGG annotation, and Ts(r) is the number of protein pairs that share at least one

KEGG annotation. We defined the GO annotation overlap rate in the same way: Qg rð Þ ¼ TsðrÞ
TaðrÞ.

For assigned GO or KEGG annotations, we defined FDR as follows: FDR = QT/QA. QT is the
total number of falsely assigned annotations for proteins with known annotations (any
assigned annotation that did not match the existing annotations was considered false); QA is
the total number of assigned annotations for proteins with known annotations. Since GO and
KEGG annotations may be far from complete, the FDRs were probably overestimated. As only
the most specific GO terms were used in this study, the Qg became relatively low and the GO-
based FDR became relatively high compared with those from using more general GO terms
(data not shown).

Direct annotation scheme
We defined the partnership between two proteins to be significant if they were one of the 8,583
significant pairs. To assign new GO and KEGG annotations to a protein, we performed func-
tional enrichment analysis (p-values were calculated by Fisher’s exact test) among a protein’s
significant partners. We would assign an annotation if: (1) the p-value of this GO (or KEGG)
annotation was the smallest among all enriched GO (or KEGG) annotations; and (2) the
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smallest p-value was also below a certain cut-off we had predetermined. By trying different
cut-offs, we also estimated the corresponding FDRs (see the paragraph above) of the assigned
annotations (see S5 Fig). To make our prediction more reliable, we picked 10−10 as the cut-off
for the p-value, which yielded 52 KEGG annotations for 52 proteins and 132 GO annotations
for 132 proteins with estimated FDRs of 11% and 26%, respectively (see S5 Fig). We have listed
these predictions in S2 Table.

Manual inspection for predicted GO and KEGG annotations
We used the following sources (in July 2011) to validate our predictions: (i) check the GO web-
site to see if the human protein had any exact or more specific GO terms already assigned, (ii)
check UniProt entry to see if there is curated information to support the predictions, (iii) check
PubMed (i.e., read literature) to see if additional information can be obtained to support the
predictions. For those unsupported predictions, if an assigned function could be reasonably
inferred from existing literatures (or at least not contradictory to existing literatures), we
marked them with “likely”; otherwise marked with “unlikely”. Examples of “supported”:
“ligand-dependent nuclear receptor binding” for NCOA1 supported by an existing GO annota-
tion, “SH3/SH2” for CBL supported by UniProtKB entry, and “SMAD protein signal transduc-
tion” for GDF5 supported by PMID: 20117381. An example of “likely”: “negative regulation of
cholesterol storage” for RARA was inferred from PMID: 19886770. An example of “unlikely”:
Med19 is a subunit of the mediator complex (PMID: 12584197), thus unlikely to be a part of
RNA polymerase. However, it is known that mediator complex is involved in recruiting RNA
polymerase [24], mediator complex co-localizes partially with RNA polymerase from ChIP-Seq
assay [25]. Therefore in this case, the link between Med18 and RNA polymerase is biologically
plausible.

Module-assisted annotation scheme
After calculating the empirical cumulative distribution function (ECDF) from the PSI of 8,127
significant protein pairs, we assigned each pair a score (between 0 and 1) from the ECDF in
terms of its PSI. We then built a 2,698×2,698 dissimilarity matrix with the scores filled in as the
distances between proteins. We further assigned “10” to the remaining (majority) blank slots of
the matrix with the purpose of minimizing the background noise. With this matrix, we per-
formed agglomerative hierarchical clustering, based on the unweighted group average. We
showed a cluster of 2,698 members in S6 Fig. We proposed a 3-step method (see S10 Fig) as fol-
lows (taking pathway Z as an example here): Step 1: Pick a reasonable cut-off (height of the
graph in S10 Fig) as a starting point to cut the whole cluster and identify base-level subclusters
with members significantly enriched in Z (p-values were calculated by Fisher’s exact test); Step
2: Gradually move the cut-off towards a higher endpoint and calculate p-values iteratively on
the subclusters that contain the identified base-level subclusters; Step 3: A subcluster with the
most significant (smallest) p-value will be selected as the best subcluster for Z. Based on the
structure of the whole cluster, we decided to use 1 as the starting point and 9.7 as the endpoint.

Supporting Information
S1 Fig. The flowchart that describes the important steps in this study and the logical rela-
tionship between them. The major conclusions of this study are also briefly described here.
(PNG)

S2 Fig. The effect of varying λ on PSI. Different colors of points (lines) represent different λ
(0, 1, 2, or 3) in formula (3), as described in the plot. In this example, kA = 15 and kB = 16 are
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the degrees of protein A and B. The y-axis (probability) has been log-transformed.
(TIF)

S3 Fig. Distribution of the probabilities calculated by formulas (1), (2) and (3).We com-
pared P, PS and PSI within 3 types of networks: (a) the human PPI network; (b) randomized
scale-free networks; (c) simple random networks. [The generation of (b) and (c) was detailed in
the section of simulation analysis of PAND]. The distributions of PS and PSI overlapped, mak-
ing the curves yellow. These figures showed that, in scale-free networks (including the human
PPI network), PS and PSI differed substantially from P; while in simple random networks, PS
and PSI were almost identical to P.
(TIF)

S4 Fig. GO-based evaluation of functional associations of significant pairs. BP: biological
process; CC: cellular component; MF: molecular function. (a) GO annotation overlap rate (Qg)
of significant pairs within each ontology. Ts is the number of protein pairs that share at least
one GO term within the same GO ontology; Ta is the number of significant pairs that are both
annotated within the same GO ontology. (b) Intersections between the 466 BP-shared, 674
CC-shared and 617 MF-shared protein pairs in (a). These results were obtained using the top
8,583 protein pairs.
(TIF)

S5 Fig. FDR vs. p-value and FDR vs. number of predictions. (a), (b) The x-axes are the cut-
offs of p-value below which we could assign annotations; the y-axes are the corresponding
FDRs of those assigned annotations. (c), (d) The x-axes are the number of predictions of GO
and KEGG annotations; the y-axes are the corresponding FDRs of the predictions. (a) and (c)
are for GO, while (b) and (d) are for KEGG.
(TIF)

S6 Fig. The cluster of 2,698 human proteins. The bar on the left side indicates the height in
the cluster.
(PDF)

S7 Fig. Common neighbors with larger degrees are less informative when predicting func-
tional associations. For both plots, x-axes are the degrees of common neighbors; y-axes are
corresponding annotation overlap rates for protein pairs that share the common neighbors
with the degrees on the x-axes.
(TIF)

S8 Fig. Comparison between using probabilities (PS and PSI) and using p-values on ranking
protein pairs. The protein pairs are ranked either by their probabilities or by their p-values
yielded by formulas (1) or (3). The y-axis stands for the proportion of protein pairs shared by
two groups of top-ranked protein pairs (x-axis)–one ranked by the probability and the other by
the p-value yielded by the same formula. The red solid line compares the top-ranked protein
pairs ranked by PSI and the p-value yielded by formula (3), and the green dashed line compares
PS and the p-value yielded by formula (1). The vertical solid black line (x = 8,583) stands for
the cut-off for significantly associated protein pairs, which corresponds to ~98% protein-pair
overlap rate for both red and green lines.
(TIF)

S9 Fig. Re-plotting Fig 3B and Fig 2A based on the GO annotations independent of the
human PPI data. (a) Comparison of the performance between P, PS and PSI. (b) Comparison
between direct interactions and indirect interactions. The methods for plotting (a) and (b)
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(including the figure notations) are the same as for Fig 3B and Fig 2A, respectively.
(TIF)

S10 Fig. The 3-step method to find informative subclusters.We first cut the cluster at a start-
ing point (height of 1), then gradually moved the cut-off to higher levels with an interval of 0.1,
toward an endpoint at the height of 9.7. With each cut-off, we performed enrichment analysis
of each subcluster and compared them with those obtained from previous cut-offs.
(TIF)

S1 File. Supporting Text. This text includes three parts: Appendix A: “Analysis of GO-term
predictions”, Appendix B: “Possible biological meanings of the significant PSI derived from
PAND”, and Appendix C: “Analysis on the independence between the PPI dataset and the
annotation datasets (GO and KEGG).
(PDF)

S2 File. The Vignette for PANDA.
(PDF)

S3 File. The R package PANDA.
(GZ)

S1 Table. The 8,583 significant protein pairs derived by PAND. In this table, Column 3 is
the natural log-transformed probability [i.e., log(PSI)] from PAND; Column 4 is the number of
common neighbors of Column 1 and 2; Column 5 indicates if Column 1 and 2 have a direct
interaction (1- yes, 0-no).
(TXT)

S2 Table. Predictions of GO and KEGG pathway annotations. For each protein, the ratio
shows the number of significant partners (denominator) and the number of significant part-
ners with the assigned GO/KEGG annotation (numerator). P-values were calculated by Fisher’s
exact test based on the annotations of all significant partners for each protein.
(DOCX)

S3 Table. Functional inferences based on our clustering scheme. Each row corresponds to a
subcluster in Fig 3 with the same KEGG ID. The 1st column (Protein) lists the proteins without
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obtained. P-values were calculated with Fisher’s exact test for each subcluster.
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