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Numerous preclinical studies have provided solid evidence supporting adoptive transfer of
regulatory T cells (Tregs) to induce organ tolerance. As a result, there are 7 currently active
Treg cell-based clinical trials in solid organ transplantation worldwide, all of which are early
phase I or phase I/II trials. Although the results of these trials are optimistic and support
both safety and feasibility, many experimental and clinical unanswered questions are
slowing the progression of this new therapeutic alternative. In this review, we bring to the
forefront the major challenges that Treg cell transplant investigators are currently facing,
including the phenotypic and functional diversity of Treg cells, lineage stability, non-
standardized ex vivo Treg cell manufacturing process, adequacy of administration route,
inability of monitoring and tracking infused cells, and lack of biomarkers or validated
surrogate endpoints of efficacy in clinical trials. With this plethora of interrogation marks,
we are at a challenging and exciting crossroad where properly addressing these questions
will determine the successful implementation of Treg cell-based immunotherapy in
clinical transplantation.
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INTRODUCTION

Since the inception of transplant programs, the discovery and use of immunosuppressive drugs have
played a critical role in preserving allograft function. After several decades of implementation, these
immunosuppressive regimens have efficiently decreased the incidence of acute graft loss. However,
long-term and chronic allograft rejection rates remain pervasive and, together with the severity of
side effects in the allograft recipient population, makes the pursuit of therapeutic alternatives a
medical necessity. A better understanding of self-tolerance mechanisms has facilitated different
approaches aiming at rebalancing alloantigen-reactive conventional T-cells (Tconv) and
immunosuppressive regulatory T cells (Tregs). This is a clear conceptual shift from the current
standard multidrug-based protocols focused on halting effector immune responses.

CD25hiFoxP3+ Treg cells represent 1-5% of circulating CD4+ T lymphocytes and are essential in
maintaining peripheral immune tolerance and homeostasis. After transplantation, the frequency of
circulating Tregs in tolerant recipients is higher compared to patients with acute allograft rejection
(1, 2). Increasing evidence also suggests that the balance between graft-reactive effector cells and
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https://www.frontiersin.org/articles/10.3389/fimmu.2022.883855/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.883855/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.883855/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:fmart3@uky.edu
https://doi.org/10.3389/fimmu.2022.883855
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2022.883855
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2022.883855&domain=pdf&date_stamp=2022-06-01


Orozco et al. Treg Therapy in Transplant Tolerance
graft-protective suppressor Tregs plays a role in organ
engraftment and long-term allograft survival (3, 4).

Despite a decade of major progress in Treg research, technical
limitations and significant gaps in our knowledge of Treg cell
biology continue to hinder our ability to harness the therapeutic
potential of these cells to induce allograft tolerance. This review
summarizes achievements, current status and future challenges
in the c l inica l implementat ion of Treg ce l l -based
immunotherapy in solid organ transplant (SOT) recipients.
ACHIEVEMENTS AND CURRENT STATUS
OF CLINICAL TRIALS

The ability to isolate and expand Treg cells under good
manufacturing practice (GMP)-compliant conditions paved the
way for the clinical use of adoptive Treg cell transfer to induce
allospecific tolerance in SOT patients. The first pilot study in
SOT was reported by Todo et al. (5) in 10 liver transplant
recipients using donor-specific Treg-enriched cell product in
combination with standard immunosuppressive drugs that were
gradually discontinued over a period of 18 months. All 10
recipients maintained stable graft function. Seven patients
successfully achieved weaning of drugs between 16 and 33
months. All three patients who developed mild rejection
during the immunosuppression weaning process underwent
transplantation for autoimmune liver disease, which original
autoimmune effector-regulatory unbalance may account for the
difficult long-term control of effector responses. Since Todo’s
report, five more original manuscripts have been published to
date in SOT, four of them in kidney transplant patients and
another in liver recipients (summarized in Table 1). Across all
studies with at least one-year follow-up, fifty-four SOT recipients
who received a single infusion of autologous Tregs had 100%
survival, no episodes of graft loss, no increased risk of infection,
and no report of de novo cancer (6–10). Only two patients
suffered mild adverse events: one experienced mild and transient
cytokine release syndrome (9), and another developed donor-
specific antibodies one-year-post transplant and primary disease
recurrence after a two-year follow-up (7). Furthermore, among
28 kidney transplant recipients receiving autologous transfer
therapy with Tregs, the ONE study reported a significant
decrease in the incidence of viral infections after transplant
(12). Like the Todo et al. study, the stability of transplant
function in Harden et al. study (10) also permitted
minimization of immunosuppression, revealing a significant
reduction of inflammatory cell populations in the transplanted
organ as a result of Treg transfer. Overall, the published results
support feasibility and safety of Treg infusion procedures in SOT
patients and disclosed promising early data on feasibility of drug
immunosuppressive minimization/discontinuation (Table 1).
They are also uncovering multiple challenges that may harness
the progression of immunotherapies in the clinic, including
phenotypic and functional diversity of Treg cells, lineage
stability, optimization of ex vivo Treg cell manufacturing
process, adequacy of administration route, inability of
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monitoring and tracking infused cells, absence of organ
specificity/trafficking markers in Treg cells, and lack of
biomarkers or validated surrogate endpoints of efficacy in
clinical trials. Importantly, measurements and report outcomes
are often not comparable among different trials or centers, which
makes it difficult to standardize methodologies and verify and
validate data for consistency.
PHENOTYPIC DIVERSITY

The efforts to characterize Tregs have revealed a broad spectrum
of phenotypes in cells capable of engaging different suppressive
mechanisms to control particular immune effector cell responses.
The initial identification of these suppressor cells as CD4+ CD25+

T cells was substantiated by mouse experiments where their
removal led to severe autoimmunity, which could be prevented
after reconstituting these cells back to circulation (13, 14). In
2003, the forkhead box transcription factor FoxP3 was identified
as an essential molecular marker of Treg cell development,
differentiation and function. Since then, FoxP3 been
considered as the defining Treg cell lineage “master-regulator”
(15) and CD4+ CD25+ FoxP3+ as the distinctive core Treg
phenotype. Expression of the interleukin-7 receptor (IL-7R) a
chain (CD127) on the surface of Treg cells inversely correlates
with FoxP3 expression and is another convenient marker for
Treg cells as it provides an additional distinction between
CD127high (FoxP3-/ low) and CD127-/ low (FoxP3high)
subpopulations. In combination with CD25 during flow
cytometry analysis, CD127 can be used as biomarker for
analysis and, because of the expression on the cell membrane,
for isolation of Tregs (16, 17).

Treg cells can be also categorized by the expression of another
membrane marker, CD45RA. Consequently, functionally
suppressive Treg population can be distinguished between
naïve resting Tregs, with high proliferative potential (FoxP3low

CD25low CD45RA+), and terminally differentiated, short-living
Treg cells with low proliferative potential (FoxP3high CD25high

CD45RA-) (18, 19). Accordingly, as proposed by Arroyo-
Hornero et al. (20) and supported by Canavan et al. in Crohn’s
disease patients (21), the segregation of the initial population of
Treg cells based on the expression of CD45RA should be taken
into consideration as CD45RA+ Tregs, but not CD45RA-,
maintain a stable Treg signature after expansion. In a similar
context, the expression of the Ikaros transcription factor family
member, Helios, has been associated with lineage-committed,
thymus-originated FoxP3+ Treg cell and, therefore, regarded as
potential biomarker for therapeutic competent Treg cells. In
mice, Helios+ and Helios− Treg subpopulations are
phenotypically and functionally distinct and express different
TCR repertoires (22, 23). However, similar studies in human
Tregs have not generated consistent results (24–27). A recent
report by Lam et al. (28) suggests that Helios expression in Treg
cells may be an important marker of lineage stability, although it
does not have a direct role in the maintenance of the lineage-
committed state. Co-expression of the surface markers T cell
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TABLE 1 | Published studies evaluating Treg transfer therapy after solid organ transplantation.

Study Clinical setting Manufacturing process Phenotype and purity of
infused Treg cells

Administration and
Tracking

Outcomes and safety

Todo et al.
(5)

• Post-liver transplant
patients.
• 10 patients, 3-5 year
follow up.
• Weaning from
immunosuppression 6
months after transplant

Isolation: No isolation.
Expansion: 2-weeks co-
culture recipient
lymphocytes with
irradiated donor cells with
anti-CD80/CD86.
Preservation: no
preservation

Infused lymphocytes.
58.6% CD4+, 16.9%
CD8+.
Tregs represented 24.8%
of infused CD4+ Tcells.

• Peripheral IV infusion.
• No tracking.[Monitored
differential lymphocytes
counts in peripheral blood,
including Tregs.]

• Cell infusion well tolerated by all
recipients.
• Seven patients successfully achieved
uneventful weaning and completed
cessation of immunosuppressive
therapy.
• Three patients showed acute cellular
rejection symptoms during weaning

Chandran
et al. (6)

• Three kidney
transplant recipients.
• Follow up biopsies
at 2 weeks and 6
months after infusion.
• Follow-up for one
year after infusion.

Isolation: FACS sorting of
CD4+ CD127low/-CD25+

from one unit of blood
Expansion: 14-day
culture with anti-CD3-
CD28 paramagnetic
beads, IL-2 and
deuterated glucose (No
Rapamycin).
Preservation: none.

1x109 Tregs with an
average of 95% purity for
FoxP3+ cells, >97% for
CD4, and viability >99%.
(Post-expansion)

• Peripheral IV infusion.
• Tracking: Deuterated
glucose.

• Cell infusion well tolerated by all
recipients.
• One patient developed
(spontaneously resolved) leukopenia.
• 100% patients and graft survival ater
1 year
• Tregs circulating concentration
peaked at one week. Deuterium signals
detected up to 3 months after infusion
ONLY in Treg cells

Mathew
et al. (7)

• Nine kidney
transplant recipients.
• Three tiers of cell
dosing (n = 3 per
group): 0.5 × 109,
1 × 109, and
5 × 109 Tregs/recipient.
• Control group:
historical cohort with
identical
immunosuppression

Isolation:
Immunomagnetic isolation
of CD4+, CD25+ cells
from cryopreserved
leukapheresis product.
Expansion: 21-day
culture with anti-CD3-
CD28 paramagnetic
beads, IL-2 TGFb and
Rapamycin.
Preservation :
Leukapheresis product
collected one month
before transplant.

>98% purity for CD4+

CD25+ cells and >80% for
FoxP3+ FoxP3+ cells
(Post-expansion)

• Peripheral IV infusion on
postoperative day 60.
• No tracking.
[Monitored differential
lymphocytes counts in
peripheral blood, including
Tregs.]
• 5–20 fold increase of Tregs
percentages in all Treg
infusion recipients. Increase
stable in most patients until
the one-year mark.

• Cell infusion well tolerated by all
recipients.
• 100% patients and graft survival after
2 years.
• Biopsy 3 months after cell infusion:
no signs of rejection. Biopsy 1 year
after cell infusion: one episode of
subclinical rejection associated with
immunosuppression non-compliance.
• One subject with lowest Treg dose
infusion developed donor-specific
antibodies 1-year post-transplant. In the
two-year follow-up, the patient
developed primary disease recurrence.

Roemhild
et al. (8)

• 11 kidney transplant
recipients received an
infusion of expanded
autologous Tregs.
Dosage design: three
escalating doses: 0 (c),
0.5, 1, 2.5-3 x 106

Treg/Kg (n = 3-4
patients/study group).
All groups received
drug
immunosuppression
Follow-up: three years.

Isolation: 2 step
immunomagnetic isolation
from 40-50 ml of
peripheral blood:
-1st: CD8 negative
selection.
-2nd: CD25 positive
selection.
Expansion: 21-day
culture with anti-CD3-
CD28 paramagnetic
beads, IL-2 and
Rapamycin.
Preservation: none.

>1x109 cells. 91.9% were
CD4+ CD25+ FoxP3+.
(Post-expansion)

Peripheral IV infusion
• Tracking TCR repertoire
Monitoring Tregs:
• Tregs group: significant
increase in Tregs counts and
favorable Tregs/Teffector ratio
for up to eight weeks after
infusion.
• Control group: Decreased
Treg levels compared to
baseline for up to 12 weeks
after kidney transplantation.

• Cell infusion well tolerated by all
recipients
• 100% patients and graft survival after
2 years.
• Treg therapy was significantly
associated with successful weaning of
drug therapy (p<0.001 at three years).
• 10 patients in Tregs therapy were
successfully weaned to low-dose
tacrolimus monotherapy within 48
weeks. 2 patients required temporal or
continuous reversal to triple
immunosuppression therapy.

Sanchez-
Fueyo
et al. (9)

9 liver transplant
recipients received an
infusion of expanded
autologous Tregs 3-16
months after
transplant. Patients
were assigned to one
of two escalating
doses: 1 x106 Tregs/
Kg (3pt) or 4.5 x106

Tregs/Kg (6 pt).
All patients received
standard
immunosuppression.
Follow-up: 12 months.

Isolation: 2 step
immunomagnetic isolation
from 40-50 ml of
peripheral blood:
-1st: CD8 negative
selection.
-2nd: CD25 positive
selection.
Expansion: 36-day
culture with anti-CD3-
CD28 paramagnetic
beads, IL-2 and
Rapamycin.
Preservation: Expanded
Treg product

61-92% of cells were
CD4+ CD25+ FoxP3+.
Viability after thawing: 58-
89% (Post-expansion).

• Peripheral IV infusion of
expanded Treg cells thawed
just before administration.
• No tracking.
• Monitoring: Six patients
who received 4.5 x106 Tregs/
Kg had an increase in
circulating Tregs noticeable
from day 3 to 1 month. This
increase was not observed in
patients receiving 1 x106

Tregs/Kg.

• No episodes of rejection during the
follow-up period.
• One patient receiving 4.5 x106 Tregs/
Kg developed mild temporary adverse
effects.

(Continued)
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immunoreceptor with Ig and ITIM domains (TIGIT) and Fc
Receptor-like 3 (FCRL3, CD307c) in Helios+ FoxP3 Treg cells
(29) could facilitate reliable identification and selection of
Helios+ Treg cells.

A shortcoming in the published literature of Treg cell-based
clinical trials is the inconsistency and poor definition of the
initial population of isolated Treg cells. Further phenotypic
characterization is needed to identify the most appropriate
population from which to expand FoxP3+ Tregs for use in
adoptive transfer approaches, which will also help to determine
whether a unique initial phenotypic Treg cell profile is well-
suited to fulfill the specific demands of different target tissues.
LINEAGE STABILITY

Lineage stability refers to the capability of a Treg cell to sustain
immunosuppressive function in different environments and
generate a progeny with similar characteristics after replication.
The stable expression of signature genes for Treg cell lineage
commitment should be considered as a critical parameter in the
clinical competent population of Treg cells. Epigenetic changes
such as DNAmethylation, histone modification, and non-coding
RNA synthesis regulate gene expression and cellular
differentiation (30). Despite the phenotypic variability of Tregs,
the epigenetic pattern can be used to identify a cell lineage with a
stable immunosuppressive function. Indeed, the type of Treg-
specific CpG hypomethylation pattern (TrHMP) is regarded as a
more specific biomarker of functionally stable Treg than
mere FoxP3 expression (31). The TrHMP includes
hypomethylation of signature genes such as FoxP3, CTLA,
GITR, and Helios (32), is heritable, independent of FoxP3
expression, and persists after TCR stimulation and in different
culture conditions (30, 32). TrHMP is also linked to the
suppressive strength of Treg cells as observed with in vitro
induced (iTregs) cells. Despite the expression of FoxP3, iTregs
Frontiers in Immunology | www.frontiersin.org 4
show a TrHMP similar to activated Tconv, are less suppressive
and demonstrate less lineage commitment than natural, thymus-
originated Tregs (nTregs) (32). The strong association between
Treg lineage stability and specific epigenetic imprinting supports
the use of TrHMP as biomarker for Treg lineage determination/
stability and the inclusion among the most reliable parameters
currently available as criterion for the identification of functional
Treg cells in experimental settings. However, the methylation
status pattern is not included in any reported clinical study as a
release criterion for clinically competent Treg cells (Table 1).
In zaddition, the capacity to track lineage stability of infused
Tregs in vivo in the clinic is limited (7). In Chandran et al. study,
the authors transferred deuterium-labeled Tregs into kidney
transplant recipients. The fact that deuterium signals were only
detected in the Treg population within three months post-
infusion suggests the lineage stability of infused cells (6).
MANUFACTURING PROCESS

While the Treg ability to inhibit the effector immune reactions
that trigger graft rejection has been demonstrated in numerous
pre-clinical studies, their low concentration in peripheral blood
has become a major obstacle to their clinical application (33).
However, refinements in the manufacturing process under Good
Manufacturing Practices (GMP)-compatible conditions now
facilitate escalating the cellular yield up to 2,000-fold (8). This
process includes three main steps: isolation, expansion,
and preservation.

Isolation
The two most common methods for Treg isolation are
Fluorescence-Activated Cell Sorting (FACS) and immuno-
magnetic cell separation. FACS has been primarily used for
research and analytical purposes, but recent adaptations to
comply with GMP legislation have allowed its clinical use.
TABLE 1 | Continued

Study Clinical setting Manufacturing process Phenotype and purity of
infused Treg cells

Administration and
Tracking

Outcomes and safety

Harden
et al. (10,
11)

12 kidney transplant
recipients received
autologous Tregs
infusion at post-
operative d5
Control group: 19
kidney transplant
recipients
Dosage design: 3 + 3
dose-escalation (three
patients at each dose).
Doses: 1, 3, 6 or 10 x
106 Treg/Kg
All patients received
standard
immunosuppression
Follow up: four years

Isolation:
immunomagnetic isolation.
2 steps:
-1st: CD8 negative
selection.
-2nd: CD25 positive
selection.
Expansion: 36-day
culture with anti-CD3-
CD28 paramagnetic
beads, IL-2 and
Rapamycin.
Preservation: Expanded
Treg product

91.6% ± 9.3% of total
cells were CD4+ CD25+
FoxP3+
After thawing, >70% of
cells were CD4+ CD25+

FoxP3+. Viability after
thawing: 58-89%.
(Post-expansion)

• Peripheral IV infusion.
Premedication with
acetaminophen and
antihistamine. Unfractionated
heparin for 48 hours
beginning on the day of
infusion.
No tracking.
• Monitoring: Two weeks
after transplant, observed
dose-dependent increase in
circulating number of Treg
cells.

• Cell infusion: well tolerated by all
recipients
• 100% patients and graft survival after
2 years in all groups.
• 100% patients and graft survival after
2 years in all groups.
• Lower incidence of composite
opportunistic infection with
polyomavirus or cytomegalovirus in the
Treg group.
• Four patients in the Treg therapy
cohort had successful minimization of
immunosuppression (100% of patients
attempted).
J

Tregs, regulatory T cells; FoxP3, forkhead box P3; IV, intravenous.
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FACS can distinguish very specific cellular subpopulations, sort
cells based on the degree of expression of particular markers and
discriminate several subpopulations simultaneously. However,
FACS-based isolation of Treg cells for human therapy relies only
on extracellular markers to identify the target population (34).
Another technical limitation of this method is that the sorting
efficiency is reduced when the population of interest is rare,
requiring lengthy processing times from a large initial cell
population (35). Still, some groups have successfully isolated
Treg cells for clinical interventions with FACS (6, 36, 37), and the
progress towards using more complex membrane marker
combinations to define the initial Treg population may help a
broader use of this technology as cell isolation procedure.

Immunomagnetic cell separation is the current method of
choice for Treg isolation in clinical trials. Biotechnology
companies have developed closed, automatic systems to
comply with GMP regulations. In this method, magnetized
particles are conjugated with antibodies, and consecutive steps
of negative and positive selection allow the isolation of a
specific Treg cell population. The purity of the isolation can
increase by selecting multiple markers during a single pass of
negative selection (e.g., CD8 and CD19) (11, 38). Most published
Treg-based clinical trials in SOT reported the use of
magnetic immunoselection isolation technique as a two-step
procedure with initial CD8 depletion and subsequent CD25
enrichment (7–10). A significant loss of targeted cells after
each selection step, the necessity of fine-tune optimization to
find the optimal balance between cell yield and purity, the lack of
discriminatory capacity between low or high expression of
cellular markers, and the elevated cost of the procedure
(specific equipment and supplies) are some of the
shortcomings associated with Treg isolation by magnetic
immunoselection. As such, more versatile GMP technologies
are needed to improve yield and purity of clinical-grade quality
Treg cell isolates and facilitate the standard implementation of
this technology in clinical practice.

Expansion
Tregs constitute 1-5% of the total circulating CD4+ T lymphocyte
population (39). These low numbers and favoring cell purity over
yield in the isolation process make ex vivo expansion a critical
step towards successful cell therapy implementation. The main
strategy for ex vivo expansion is establishing cell culture
conditions to preferentially activate and expand Treg cells
while preventing the replication of other potential contaminant
cell types. Expansion protocols can produce up to 2,000-fold
amplification of Treg cell numbers (36) and are based on the
concomitant engagement of the T cell receptor (TCR) and the
costimulatory receptor CD28, and high doses of the T cell growth
and survival factor IL-2. Addition of mTOR inhibitors (e.g.,
rapamycin, everolimus) promotes the selective expansion and
suppressive activity of Tregs (40, 41) while preventing Tconv
activation and growth. Mechanistic evidence supports that
mTOR signaling pathway is a critical regulator of effector
Tconv homeostasis and function but not of Tregs (42–44). In
fact, PI3K/Akt/mTOR activation represses Treg differentiation,
and the inhibition of the Akt pathway is crucial to promote the
Frontiers in Immunology | www.frontiersin.org 5
activation of FoxP3 (45–47). Metabolically, Tconv depends on
the mTOR-driven glycolytic pathway for a rapid supply of
energy and molecular precursors (48); in contrast, the energy
demand of Treg cells is fulfilled by the constant crosstalk between
glycolytic and oxidative mitochondrial metabolic arms (49–51).

Prolonged stimulation of Tregs triggers epigenetic changes
leading to suboptimal TCR signaling and progressive
hypermethylation of Treg-specific demethylated regions (52).
These epigenetic alterations can change the quality of the final
cell product by promoting Treg conversion to Tconv or reducing
their suppressive function (52, 53). Upon activation, Tregs may
undergo a progressive shift from CD45RA+ to CD45RA-

phenotype (54). Upon further expansion, the CD45RA-

fraction experiences a decline in both FoxP3 expression and
suppressive activity (54). As mentioned, adding an mTOR
inhibitor such as rapamycin sustains the expansion and
suppressive activity of Tregs (40), but also induces the
conversion of conventional CD4+ T cells into iTregs. However,
these iTregs do not possess the TrHMP hypomethylated
signature of Treg genes and can revert into non-suppressive
cells in the absence of rapamycin. Therefore, as suggested by
Battaglia et al. (40), careful attention and appropriate quality
controls must be in place when mTOR inhibitors are included in
the expansion protocol for Treg cell therapy. For clinical
application, the initiation of the expansion phase with highly
purified and well-defined population of Treg cells seems the
appropriate strategy. Overall, these studies highlight the
importance of optimizing cell culture conditions (composition
and duration) and quality control assessments in the expansion
protocols for Treg manufacturing (52, 54). The progress of Treg
immunotherapy demands establishing relevant mechanistic links
between pre- and post-expansion phenotype, suppressor
function and epigenetic profile of Treg cell populations with
corresponding clinically relevant outcomes of operational
tolerance or reduced rejection.

Preservation
For far-reaching applications of Treg cell-based therapy, it is
essential to ensure the stability of the cell product during storage,
including optimal cell viability, recovery and functionality.
Widening the window between the collection and application
of Tregs for adoptive therapy would increase the flexibility of
their clinical use. Because preservation techniques can potentially
change the yield, viability, and activity of Tregs, they are
considered a new therapeutic biological product from a
regulatory point of view (55).

Tregs can be cryopreserved before isolation (as peripheral blood
mononuclear cells, PBMCs), just after isolation, or after the
expansion phase. Treg cell recovery rates from cryopreserved
PBMCs fluctuate between 35 to 63% (55–61). Using isolated
Tregs cryopreserved in liquid nitrogen for up to one year, Peters
et al. reported a viability of 70-80%, with a suppressive capacity that
was significantly impaired after thawing but recovered after
activation (38). Kaiser et al. found better recovery rates and
cellular viability by using cryogenic solution of 5% DMSO instead
of 10% DMSO (55). Cryopreserved Tregs after three or four cycles
of re-stimulation did not alter their original phenotype or
June 2022 | Volume 13 | Article 883855
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suppressive function (56). Different groups have reported using
cryopreserved Treg cells in SOT patients. Mathew et al.
cryopreserved the leukapheresis product approximately one
month before kidney transplant, their expansion protocol lasted
21 days, and the infusion of Tregs was given 60 days after surgery
(7). Harden et al. and Sanchez-Fueyo et al. cryopreserved the Treg
product after isolation and expansion and thawing was performed
at the bedside of the patient prior to administration (9, 10). Fraser
et al. reported the feasibility of infusing pre-expanded cryopreserved
Tregs, showing a reported cell recovery >90%, viability >75% and
suppressive function of >80% (11).

Using fresh starting material may have recognized
advantages, but the ability to cryopreserve also allows for a
more flexible, convenient, efficient -and less expensive-
manufacturing process that can be easily managed and
scheduled in cellular therapy laboratories (9, 10). However, the
effect of cryopreservation on Treg phenotypic and functional
parameters and on subsequent clinical outcomes has to be
properly established. Such assessments would have a profound
logistical impact on clinical trial design, infusion timelines and
testing requirements for future studies.
ADMINISTRATION ROUTE

Too often, the cell delivery method is an overlooked factor that
may have a direct effect on treatment bioavailability to the target
organ and, as such, a determining factor for assessments of
feasibility, safety and efficacy outcomes of treatment (62, 63).
There are two principal methods to introduce cells into the body:
systemic delivery and local delivery into the organ. The most
common method for Treg cell infusion is systemic intravenous
(IV) injection. IV injection allows for wide distribution of cells
throughout the body, and it has the advantage of being
minimally invasive with low/minimal safety risks in early
phase clinical studies. With this methodology, there are several
hurdles to overcome in order to deliver cells to the target organ
and have them engrafted. IV delivered cells have to pass through
the lungs before they can distribute throughout the body. This
pulmonary “first-pass” effect results in significant entrapment of
cells (64) caused by the estimated size of Tregs (10–15 mm
diameter) (65–68), as observed with microsphere particles of
this size (64, 69). Similarly, clinical studies with IV-delivered
stem cell infusion showed that the majority of cells get trapped in
the lungs after intravenous administration (64, 69, 70). Likewise,
systemic infusion of expanded tumor infiltrating lymphocytes
(TILs) resulted in higher concentrations of cells in lung, liver,
and spleen (71).

The optimal method of therapeutic cell delivery will always
depend on the mechanism of action of the cell product. Since
Tregs cannot exert their organ-protective effect distally, the
delivery system must reach the target organ or allow Treg cells
to migrate toward it. The alternative to systemic infusion is the
direct local delivery into the organ. This approach can provide a
high concentration of Tregs in a first passage where all injected
cells have opportunity to interact with post-capillary endothelia
Frontiers in Immunology | www.frontiersin.org 6
of the target organ (72). Direct intra-arterial infusion of stem
cells into the brain has proven to significantly enhance cellular
engraftment and concentration in animal models of brain
ischemia when compared to systemic IV administration (73–
75). Also reported, infusion of radiolabeled TILs in the hepatic
artery is followed by a rapid increase and slow decline in the
intensity signal of the liver (76). However, a disadvantage of local
injection is that it may cause further local damage in tissue that,
such as a SOT, is already particularly sensitive. It has also been
shown that, although direct injection increased localization, it
did not necessarily increase engraftment or survival (77). Animal
models using direct intra-arterial delivery of mesenchymal
stromal cells to the kidney have shown retention of cells in the
renal cortex (78) and induction of a favorable tolerogenic milieu
after transplantation (79–85). To the best of our knowledge, all
currently active clinical protocols using adoptive transferred
Treg cells in transplantation are using systemic IV delivery of
cells. As safety is the necessary focus of these phase I/(II) studies,
alternative routes of cell administration have become an
understudied area that remains to be properly addressed.
Developing efficient cell delivery protocols could significantly
improve the effective implementation and outcomes of Treg-
based cell therapy in SOT.
MONITORING AND TRACKING
INFUSED CELLS

Regardless of the infusion route, the success of any cell-based
immunotherapy relies on efficacy of cell trafficking and
recruitment to the targeted area where they must remain
functional. Tracking these adoptive cells in vivo becomes
critical to evaluate their delivery, biodistribution and
therapeutic response. However, our ability to longitudinally
interrogate the migration and fate of infused Treg cells
throughout the body remains elusive. In fact, it has become
one of the most challenging limitations in current Treg cell
immunotherapy studies.

There are only a few studies reporting the in vivo assessment
of the distribution and fate of infused Treg cells in humans. Oo
et al. used single-photon emission computed tomography
(SPECT) to track the distribution of autologous Tregs marked
with 111Indium tropolonate (111In) in four patients with
autoimmune hepatitis. At 24 hours, they detected a
predominant distribution within the liver (22-44%), spleen
(11-24%), and bone marrow (9-13%). Tregs persisted in the
liver for 72 hours until the 111In was no longer detectable (86).
Bluestone et al. used non-radioactive labeling of deoxyribose
with deuterium for tracking Treg cells after infusion in type-1
diabetes patients (37). They observed a peak concentration of
circulating Tregs between days 7 and 14 with a subsequent
decline. Ninety days later, the concentration was 25% of the
maximum, and one year after, labeled Tregs were still detected.
They reported an initial fast decay phase of infused cells with a
half-life of 19.6 days, followed by a slower decay phase.
Chandran et al. demonstrated similar kinetic and stability
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pattern: Tregs peaked in the first week, had a bi-phasic decay,
and were still detectable circulating one month after infusion, but
were undetectable at the 3-month mark (6). However, a study in
non-human primates reported strikingly different results: using
carboxyfluorescein succinimidyl ester (CFSE)-labeled cells, Singh
et al. observed a rapid decrease of Tregs in peripheral blood
during the first three days after infusion, and were barely
detectable after 16 days. The uptake and clearance of infused
Tregs in bone marrow and lymph nodes followed a similar
pattern as with concentrations in blood. They also reported a
significant change in phenotype, with less than 30% of CFSE-
labeled cells holding the CD25+FoxP3+ phenotype by day 16
(87). Although cell manufacturing and labeling protocols differed
among studies, and accounting for possible inter-species
variability, the inconsistent results among available studies
underscore current limitations to assess in vivo trafficking,
homing and fate of infused Treg cells to the transplanted organ.

Novel approaches for monitoring the biodistribution and
organ trafficking efficacy of adoptive Treg cells after infusion
are in dire need. In the absence of standard non-invasive
modalities to assess treatment responses, allograft biopsy
analyses of FoxP3 mRNA expression in the transplanted organ,
either alone or as a ratio with GranzymeB, are used as surrogate
markers for infiltrated Treg and Teff cells, respectively (88–101).
New non-invasive imaging technologies such as SPECT,
Positron Emission Tomography (PET), Magnetic Resonance
Imaging (MRI) or hybrid modalities such as MRI-SPECT in
combination with computational biology (102–104) still require
validation and standardization. However, they are among
emerging technologies that, once implemented into clinical
practice, will significantly help improve the efficacy of current
cell-based therapy protocols.
ANTIGEN-SPECIFIC TREG CELLS

The generation of antigen-specific Treg cells is a valuable new
approach to provide local, more restricted, immune tolerance
(105–109) with cells that are efficiently trafficking to tissues that
express cognate antigens (110, 111). Efforts to generate antigen-
specific Tregs are currently focused on two different strategies:
ex-vivo induction of Tregs by stimulation of antigen-directed
CD4+ effector Tconv cells (112), and engineering synthetic T-cell
receptors (TCRs) or chimeric antigen receptors (CARs) with
target-tissue specificity (113). The reported lineage instability of
iTregs cells under inflammatory conditions precludes the clinical
use of these cells. To potentially overcome the limitations to
generate clinically efficient antigen-directed iTreg cells, gene-
editing or transgenic approaches are being applied to induce
stable expression of FoxP3 or other Treg signature proteins, as
well as to identify key gene targets and pathways involved in the
regulation of Treg function and stability (112, 114–118).

On the other hand, the genetic introduction of engineered
TCRs and CARs can provide antigen-specificity to polyclonal
Tregs (106, 111, 113, 119–121). The ectopic expression of TCRs in
Treg cells allows the targeting of processed intracellular antigens
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presented by HLA molecules. Several pre-clinical studies have
demonstrated translational potential of this approach (120, 122–
125). However, the HLA-restricted physiological activation limits
the application of engineered TCRs and may acquire harmful
specificities when mispaired with endogenous TCRs. Interestingly,
enforcing the expression of MHC-I-restricted TCRs or not
functional low affinity Tconv TCRs (126), enable human Treg
cells to bypass the MHC requirement for antigen recognition.
Also, instead of using exogenous TCRs isolated from Tconv cells,
there is the option of using specific Treg TCRs, which have shown
some structural differences (127–129). Another strategy may entail
the creation of universal Treg donor cell lines by sequential genetic
modifications of MHC molecules (130).

CARs are modular artificial receptors that combine an
extracellular antigen-recognition domain and intracellular
signaling and costimulatory domains. CAR-engineered effector
T cells are being used to reprogram effector Tconv to target
tumor cells in patients with blood cancers (131–134). The major
advantage of CARs is their ability to recognize whole proteins
expressed in target tissues unrestricted to MHC class I or II
presentation. Therefore, unlike TCR-modified Treg, CAR-Tregs
cells could be applicable to a larger number of patients. However,
the design of the CAR should consider specific traits of the host
Treg cell, such as the determination of optimal specificity and
affinity/avidity of antigen recognition and identification of co-
stimulatory signaling domains and accessory molecules that
enhance suppressive activity without jeopardizing Treg lineage
stability. Recent in-depth reviews comprehensively discuss
current status and future prospects of engineered TCR- and
CAR-Treg cells in different clinical settings (135, 136).

Currently, a multi-center clinical trial is investigating safety
and tolerability of CAR-Treg therapy in HLA-A2 mismatched
kidney transplant recipients (NCT04817774) (Table 2). These
advanced genetic technologies in cell therapy should be
implemented in clinical settings with restricted safety
precautions and quality control assessments. Among the latter,
the complex nature of Treg functional fitness needs careful
attention to any TCR genetic manipulation as the maintenance
of Treg identity depends on a fine-tuned strength of antigen-
specific stimulation (113, 137, 138).
EFFICACY: ENDPOINTS AND
BIOMARKERS
Traditional primary endpoints for treatment efficacy in transplant
clinical trials include graft survival, death with a functioning graft,
and quality of life (QoL). These ‘patient-centered’ endpoints are
commonly evaluated by surrogate endpoints which, by definition,
require adequate validation and should demonstrate robust ability
to predict meaningful benefits. Effective use of surrogate endpoints
offers the promise of more efficient assessment by providing earlier
answers to questions of therapeutic efficacy. Common surrogate
endpoints to assess transplant allograft survival include: subclinical,
acute cellular, antibody-mediated and steroid-resistant
rejection episodes.
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The use of biomarkers as surrogates has facilitated the
assessment of treatment efficacy in numerous clinical studies.
Currently, there is no validated biomarker for treatment efficacy
in organ transplantation, which is a fundamental limitation in
clinical studies. QoL is a complex endpoint difficult to evaluate
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because it includes multiple physical, emotional and intellectual
parameters that are subjective in nature (139). Although Treg
transfer therapy studies are early phase I/II safety and feasibility
trials, the evaluation of clinical efficacy is still a critical unresolved
issue. To aggravate this limitation, current good short-term
TABLE 2 | Clinical trials evaluating Treg transfer therapy after solid organ transplantation*.

Study ID (Phase) Treg product Clinical settings

NCT04817774
(I/II)

Antigen-specific CAR-Tregs (TX200-TR101) Population: HLA-A2 mismatched living kidney donor
transplant recipients.

Dose: not specified. Intervention: IV infusion of autologous CAR-Tregs.
Three single ascending dose cohorts and an additional expansion cohort. Follow-up: 84 weeks after infusion.

NCT03943238
(I)

Autologous, polyclonal, ex-vivo expanded Tregs. Population: Kidney transplant recipients.
Dose: starts at 25x106 cells. Intervention: Two weeks after transplant, on

separate days, IV infusion of:
Escalated doses of Tregs if the donor chimerism is less than 25% after 60 days. - Purified CD34+ and T cells from the kidney donor.

- Autologous Treg cells.
Follow-up: 2 years

NCT03867617
(I/II)

Autologous, polyclonal, ex-vivo expanded Tregs. Population: HLA-mismatched living donor kidney
transplant recipients.

Dose (cells/kg):
Target dose: 1x107

Intervention: IV infusion of autologous regulatory T
cells + donor bone marrow + Tocilizumab.

Dose range: 0.3-1.5 x107 Follow-up: one year

NCT03284242
(I)

Autologous, polyclonal, ex-vivo expanded Tregs. Population: Kidney transplant recipients

Dose: 50-300x106 Intervention: IV infusion of Treg cells
Follow-up: 2 years

NCT02711826
(I/II)

Autologous, polyclonal, ex-vivo expanded Tregs. Population: Kidney transplant recipients

Dose: 100-1000 x106 cells. Intervention: IV infusion of autologous regulatory T
cells 3-7 months after transplant.
Follow-up: 405 days

NCT03577431
(I/II)

Donor alloantigen-specific autologous Tregs. Population: Liver transplant recipients.

Dose: Target dose: 2.5 x 10 6 cells. Intervention: IV infusion of Treg cells.
Dose range: 1-125 x 106 cells. Follow up: Until completion of study (At least 104

weeks, up to 4.5 years).
Intent to treat analysis: 1-2.5 x 106cells.

NCT03654040
(I/II)

Donor alloantigen-specific autologous Tregs. Population: Liver transplant recipients.

Dose: Target dose: 90x106 cells. Intervention: IV infusion of Treg cells.
Follow up: Until completion of study (At least 104
weeks, up to 4.5 years).

NCT02474199
(I/II) (completed)

Donor alloantigen-specific autologous Treg cells. Population: Liver transplant recipients (2 to 7 years
post Tx)

Dose: 400 x 106 cells (300-500 x 106) Intervention: IV infusion of Treg cells.
Follow-up: 52 weeks.

NCT02188719
(I) (Terminated)

Donor alloantigen-specific autologous Treg cells. Population: Liver transplant recipients

Dose: Cohort #1: No cells; #2: 25-60 million cells (target: 50 million); #3: 100-240 million
cells (target: 200 million); #4: 400-960 million (target: 800 million).

Intervention: IV infusion of Treg cells.
Follow up: 40 weeks after transplant.

NCT02091232(I)
(completed)** (12)

Autologous, donor antigen reactive, ex-vivo expanded Tregs, stimulated with kidney donor
PBMC in the presence of beltacept

Population: Kidney transplant recipients

Intervention: IV infusion of Treg cells.
Follow-up: 2 years
Tregs, regulatory T cells; CAR-Tregs, chimeric antigen receptor Treg; HLA, human leukocyte antigens; IV, intravenous; ALT, Alanine amino-transferase; GGT, Gamma-Glutamyl
transpeptidase. *Clinical trials with unknown status are not reported in the table. **Results are published as part of the ONE study.
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outcomes of standard drug immunosuppression regimens demand
long-term evaluation of large cohorts to assess the efficacy of any
novel therapeutic intervention (140, 141). Implementation of
standardized measurable outcomes of direct relevance to patients
(including graft function and QoL) is an obvious shortcoming of
current SOT clinical trials. Multicentric trials such as Treg Adoptive
Therapy for Subclinical Inflammation in Kidney Transplantation
(TASK), TReg Adoptive Cell Therapy (TRACT), or the ONE Study
are positive initial attempts to unify criteria of cell manufacturing
and evaluation of SOT Treg-based clinical studies. However, current
protocols still vary in essential criteria and further efforts are
required to develop common designs in future clinical trials.
CONCLUSION

The indispensable role of Treg cells to immune homeostasis and
sustaining self-tolerance has awakened an exciting field of
research in SOT. Aiming at improving the QoL and long-term
outcomes of transplant recipients, Treg cell therapy appears as an
attractive alternative to current standard immunosuppressive
Frontiers in Immunology | www.frontiersin.org 9
treatments. Recent bench-to-bedside progress is paving the
way towards the successful application of cellular therapies to
achieve transplant tolerance. We hope this review will help
the reader appreciate the enormous therapeutic potential
and also the challenges of Treg cell-based immunotherapy
in transplantation.
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