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A B S T R A C T   

A whale fall community of chemosymbiotic invertebrates living on cetacean bones has been 
identified off southwestern Australia during a Remotely Operated Vehicle (ROV) survey at 
bathyal depths within the Bremer Marine Park, which is part of important marine mammal areas 
(IMMA) of the Albany Canyon Region. Cetacean bones on the seafloor of the Hood Canyon, 
consisted of isolated skulls of three species of beaked whales (family Ziphiidae): Mesoplodon cf. 
layardii, M. grayi, and M. hectori, a few vertebrae, and lower jaws. One of the beaked whale skulls 
(Mesoplodon cf. layardii) was sampled and found to be intensely colonised by hundreds of spec-
imens of a bathymodilinae mussel (“Adipicola” s.l.). Live polychaetes (Phyllochaetopterus?), ske-
neimorph gastropods, and amphipods (Seba, Leptamphopus) colonised the skull bone, which 
represent a later stage (sulfophilic) of carcass decomposition. The reducing sediment below the 
skull was inhabited by lucinid (Lucinoma) and vesicomyid (Calyptogena) chemosymbiotic bi-
valves. Additionally, the sediment thanatocoenosis comprised shells of various other chemo-
symbiotic bivalves, such as Acharax, thyasirids, lucinids, vesicomyids, and limpets, representing 
the complex ecological turnover phases through time in this whale fall chemosynthetic habitat. 
With one exception, all bones recovered were colonized by bathymodiolin mussels. This is the 
first documented case of a chemosynthetic community and associated chemosymbiotic fauna 
relating to beaked whales, and the first fully documented record of a whale fall community within 
the Australian Southern Ocean region.   

1. Introduction 

Cetacean remains, commonly referred to as ‘whale falls’, are known to be exploited by chemoautotrophic consortia and specialized 
chemosymbiotic fauna. Whale carcasses that sink to the seafloor provide a localised but extraordinarily large source of energy to the 
deep-sea ecosystems from scavengers to specialized chemosynthetic -based organisms that inhabit these regions [1,2] In fact, after the 
initial scavenging stage by fishes and crustaceans, such as amphipods and decapods, the decomposing whale carcass becomes the locus 
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of complex pluriannual taphonomic processes, which form sulfidic reducing microhabitats of microbial consortia feeding on its organic 
components, especially lipids 3–20. 

The Hood Canyon is part of the Bremer Canyon systems, a network of submarine canyons incising the southwestern Australian 
margin 21,22 near the convergence of the southeast Indian Ocean and northwestern limits of the Austral Southern Ocean. This system 
of canyons was explored during the austral summer of 2020 using the Schmidt Ocean Institute’s RV Falkor and its ROV, SuBastian 23. 
While the primary goal of the expedition was to find and collect deep-water corals for paleoceanographic and paleoclimatic studies 24, 
time was also devoted to investigate other interesting biota, including the remains of local megafauna. Notably, this region (Fig. 1) is 
renowned for its high numbers of seasonally transient or resident large mysticetes and odontocetes, predominantly sperm and killer 
whales, but also fin, humpback, blue whales, and dolphins, which inhabit the Australian Whale Sanctuary 25and, more specifically, the 
Albany Canyon Region IMMA (https://www.marinemammalhabitat.org/portfolio-item/albany-canyon-region/) and associated 
Bremer Marine Park (https://parksaustralia.gov.au/marine/parks/south-west/bremer/). The area is also on the migratory route of fin, 
humpback, blue, and southern right whales26. Considering the high number of cetaceans in these waters 27, the aggregation of killer 
whales and the known instances of killer whale predation on beaked whales 28, we anticipated that whale carcasses and skeletons 
might occur in different stages of preservation on the seafloor within our study area. 

The search for whale falls using the ROV SuBastian resulted in the discovery of various bones exposed on the seabed at two sites in 
the Hood Canyon of the Bremer Marine Park, each colonised by a wide variety of chemosymbiotic organisms (https://www.youtube. 
com/watch?v=U7LRwVczTas). Our finding was the first of this type recorded to date from Australian waters, or within the eastern 
Indian and Austral Southern oceans 23,29. The occurrence of communities related to organic falls in Australian waters was not, 
however, unexpected given that associated chemosymbiotic organisms (e.g., Idas) had been previously collected by trawling surveys 
(https://biodiversity.org.au/afd/taxa/Idas) and were reported from New Zealand waters 30. Recently, Georgieva et al. 31 described in 
detail the polychaetes from the skull of a pilot whale trawled off eastern Australia. The scope of our study is to provide the first insights 
into the communities associated with a natural whale fall recorded in-situ offshore southwest Australia. 

Fig. 1. Location of the two ROV dive sites, 315 and 323, in the Hood Canyon where the whale fall chemosymbiotic communities were found, which 
are discussed in the text. 
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Table 1 
Typology and georeferenced locations of whale bones found in the Hood Canyon, Bremer Marine Park.  

ID DIVE DATE LAT 
(DDEG) 

LON 
(DDEG) 

DEPTH 
(M) 

OBSERVATION TAXONOMY NOTES FIGURE 
REFERENCES 

1 S0315 January 2, 
2020 

− 34.74 119.66 1531 Whale skull Mesoplodon 
layardii  

Fig. 2 

2 S0323 2/13/2020 − 34.75 119.62 952 Caudal vertebra  Broken during 
sampling 

Fig. 3 A,B 

3 S0323 2/13/2020 − 34.76 119.63 1041 Central part of 
rostrum 

Ziphiidae  Fig. 3C and D 

4 S0323 2/13/2020 − 34.76 119.63 1040 Central part of 
rostrum    

5 S0323 2/13/2020 − 34.76 119.63 1045 Skull Mesoplodon grayi  Fig. 3 E,F 
6 S0323 2/13/2020 − 34.76 119.63 1110 Several vertebrae Mesoplodon?  Fig. 3 I,J,K 
7 S0323 2/13/2020 − 34.76 119.63 1115 Bone   Fig. 3 G,H 
8 S0323 2/13/2020 − 34.76 119.64 1120 Skull and jaw bones Mesoplodon 

hectori  
Fig. 3 L,M,N  

Fig. 2. Whale fall at dive 315, Hood Canyon, depth 1530 m. (A) location of the skull of a ziphiid whale (arrow), provisionally assigned to Mes-
oplodon layardii, at the foot of a Tertiary-age chalk escarpment. Note abundant shell hash and debris in the foreground; (B–C) ex situ detail of the 
same skull showing clusters of bathymodiolinae mussels and the occurrence of chaetopterid polychaete tubes; (D) detail showing dense “Adipicola” 
bathymodiolins at different growth stages; (E) detail of a section of the skull colonized by skeneimorph gastropods (g), living polychaetes (p) and 
chaetopterid polychaete tubes; (F) the polychaete Eunoe crawling out of a cavity, small bathymodiolins nested in cavities, and chaetopterid 
polychaete tubes. 
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2. Material and methods 

The data and material discussed in this study were obtained during Cruise FK200126 (26 January-26 February 2020) aboard the 
Schmidt Ocean Institute’s research vessel Falkor. Video and still images, together with samples from the seafloor, were collected using 
the ROV SuBastian. 

Multibeam bathymetry was acquired using Falkor’s Kongsberg EM 302 and 710 sonar systems. Oceanographic data and water 
samples were collected with a Rosette system equipped with a Seabird SBE 911plus CTD and associated SBE 43 dissolved oxygen sensor 

Fig. 3. Whale bone falls at dive 323. (A) caudal vertebra on the seafloor at ~952 m; (B); fragmented part of the same specimen after collection, 
showing colonization by bathymodiolinae mussels; (C) rostral bones of a Ziphiidae species on the seafloor at ~1040 m; (D) same rostral bones after 
collection showing the bone at the “reef stage” of decomposition, and encrusted by non-chemosymbiotic fauna such as serpulids (s); (E) in situ skull 
of Mesoplodon grayi at ~1044 m; (F) ex situ skull of M. grayi (ventral view) same as in E), showing the presence of bathymodiolinae bivalves; (G) 
caudal vertebrae of provisionally-identified ziphiid spread at ca. ~115 m; (H) detail of one caudal vertebra after collection showing a cluster of 
bathymodiolinae; (I) the most complete sequence of bones (vertebrae, possibly Mesoplodon) which was recorded at ~1109 m; (J) recovery of one 
vertebrae with ROV SuBastian’s robotic arm causing seepage of sulphidic compounds (black swirls); (K) the same sample on board revealed some 
bathymodiolinae (b) colonizing its surface; (L) skull and disarticulated lower jaws of Mesoplodon hectori at ~1120 m, with an echinoid on the skull; 
(M) detail of the previous image showing dense clusters of small bathymodiolinae; (N) one of the two lower jaws recovered on board appeared 
colonized by a row of small bathymodiolinae. 
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and Wet Labs ECO- FLNTU fluorescence sensor. Water column parameters measured in-situ included temperature (T), conductivity 
(salinity: S), dissolved oxygen (DO), and pressure (depth). Further cruise operational details can be found in Trotter et al. 25. 

Bones were carefully recovered from the seafloor using SuBastian’s hydraulic arms (Table 1). At station 315, after the removal of the 
large bone, the underlying sediments and shells were collected using scoops and vacuum devices manipulated by the robotic arms. 
Once onboard, the bone material was immediately inspected for associated fauna; a full photographic record was obtained together 
with a detailed description of the samples. Living organisms were removed and stored in ethanol for biomolecular analyses, with an 
aliquot selected for more detailed inspection by stereo microscopy and macrophotography. Due to the strong odour from the release of 
hydrogen sulphide, the skeletons were frozen and kept in sealed containers onboard, then archived post-cruise at the Western 
Australian Museum in Perth. 

While onboard, the sediment was washed with freshwater through a 0.5 mm mesh sieve. The resulting fraction was examined for 
live fauna, which were handpicked for initial identification and photographic documentation prior to fixing in ethanol. The remaining 
skeletal fraction was dried in an oven at 40 ◦C, then inspected to provide an initial taxonomic assessment prior to storage. The sediment 
fractions are currently archived at the ISMAR-CNR, Bologna, repository. 

3. Results 

3.1. Bone remains 

The whalebone material described in this study (Figs. 2 and 3; Table 1) consists of three almost complete skulls, several vertebrae, 
and two mandibles and one rostrum. 

One skull was collected from the Hood Canyon during ROV dive 315 (1530 m), which has been identified as a beaked whale in the 
family Ziphiidae (Fig. 2A). The skull is ascribed to Mesoplodon layardii (Gray, 1865), the most common ziphiid in these waters 32. The 
beaked whale skull appeared very porous, cracked, and friable in places. The skull surfaces that were not in direct contact with the 
underlying sediment were densely colonised by hundreds of mussels at various growth stages (Fig. 2B–D). Based on shell resemblance, 
the mussels were provisionally ascribed to Adipicola Dautzenberg, 1927 a chemosymbiotic bathymodiolinae 33. These “Adipicola” s.l. 
resemble A. pacifica Dall et al., 1938, and Terua osseocola Dell, 1987, the latter being a bathyal species previously reported with organic 
remains found offshore New Zealand 30. The skull was also intensely colonised by chaetopterid polychaetes (possibly Phyllochae-
topterus), either as a carpet of soft tubes attached to the bone, or as isolated individuals settled within cavities in the bone (Fig. 2C–E,F). 
We observed numerous specimens of amphipods belonging to at least three different species, including Seba sp., and Leptamphopus?, 
which were very active on and within holes in degraded areas of the bones. Finally, we collected a still unclassified skeneimorph 
gastropod. Background macro- (2 mm–20 mm) and megabenthic (>20 mm) species comprised large predatory polychaetes (Eunoe sp. 
and Eunicidae) crawling inside a cavity in the bone (Fig. 2 F). 

The other two skulls, found at dive site 323, were attributed to Mesoplodon grayi von Haast, 1876, and M. hectori (Gray, 1871), and 
the five vertebrae, two mandibles and one rostrum likely belong to the Ziphiidae, possibly Mesoplodon (Fig. 3). These skeletal remains 
were scattered at various sites along the ROV track, more often as isolated findings but in one case as a series of four adjacent vertebrae 
(Fig. 3 I). Although the skull (M. hectori) was not collected, we sampled a skull (M. grayi), vertebrae and other bones at this station, 
which were colonised by “Adipicola”mussels (Fig. 3B–D,F,H,K,M,N). The background macro- and megabenthos included a sea urchin 
nestled in the concave part of the skull (Fig. 3 L), mobile shrimp Eualus and Nematocarcinus, and polychaetes Mellicephala and Nothria 

Fig. 4. Chemosymbiotic bivalves found alive in the reducing sediment beneath the ziphiid skull at 1530 m, dive 315: (A) Lucinoma sp.; (B–C) 
Calyptogena sp., valves that belonged to two different individuals. 

M. Taviani et al.                                                                                                                                                                                                       



Heliyon 10 (2024) e29206

6

on or around the bones. One jaw represented older remains, which hosted sessile organisms including both live and dead barnacles of 
Gibbosaverruca, and empty tubes of Serpulidae. 

All skulls and bones lacked obvious flesh, with the community typology indicating that most of the whale bones observed in the 
Hood Canyon are presently in the sulfophilic stage of decomposition34–36, the penultimate phase of becoming a simple substrate for 
non-chemotrophic communities (reef stage). One rostrum appeared to be in this more advanced reef stage, acting as substrate for 
cemented serpulid polychaetes and barnacles (Fig. 3C). 

The apparent absence of the boneworm Osedax at the study sites is somewhat surprising. This siboglinid annelid has been 
consistently recorded as an inhabitant of organic falls on the seafloor 37 since the Mesozoic 38. Osedax plays a crucial role in fostering 
the exploitation of whalebones by other chemosymbiotic fauna and scavengers 17. Hence, its absence where dissolved oxygen levels 
seem suitable to Oseadax 25 is notable, with more extensive studies required to ascertain whether this is a site-specific or regional 
anomaly. 

3.2. Sediments 

Removal of on of the skulls (M. layardii) exposed the underlying sediment (dive 315). It was comprised of a muddy-sandy shell hash, 
highly enriched in molluscan shell remains and other skeletal biosomes and fragments, below which appeared to be reducing con-
ditions. These reducing sediments were inhabited by a few living specimens of chemosymbiotic bivalves (Fig. 4), namely a lucinid 
(Lucinoma sp., Fig. 4A) and a vesicomyid (Calyptogena sp., Fig. 4B and C). 

The coarse fraction contains abundant non-chemosymbiotic skeletal components, predominatly benthic molluscs (Acesta sp., 
Fusitriton oregonensis, Sassia remensa, various protobranchs, gastropods, scaphopods, etc), bryozoans, brachiopods, echinoids, ser-
pulids, scleractinians, large foraminifers (e.g., Pyrgo), as well as planktic (pteropods) and pelagic (Janthina) molluscs. Infauna collected 
around these remains revealed a diverse crustacean assemblage including seven species of amphipod (including Leptamphropus, Seba, 
Lysianassidae, Oedicerotidae, Phoxocephalidae, Stenothoidae), two Isopods (Munnidae, Gnathiidae), one tanaid (Parataniadae), and 
one leptostracan (Nebalia). Amphipods are common inhabitants of whale falls, particuarly Lysianassoidea 11,39, many as scav-
engers/predators (e.g., Leptamphropus, Stenothoe) or microbial grazers (e.g., Seba) attracted to the nutrient-rich environment of the 
whale fall. 

We also identified some shells of chemosymbiotic bivalves 40–44, which include at least 1 large solemyid (Acharax), 3 species of 
Thyasiridae, 3 species of Lucinidae, and 2 species of Vesicomyidae. Limpet shells are also present, some of which are possibly asso-
ciated with organic fall habitats (see Refs. 7,44–46). An in-depth taxonomic examination is beyond the scope of the present study but 
will be undertaken in future assessments by specialists. 

Finally, the sediments display an unusual abundance of miliolid foraminifer tests, especially Pyrgo spp., a phenomenon observed 
elsewhere in association with hydrocarbon seeps, such as the Strait of Sicily in the Mediterranean Sea (47 and unpublished data) and 
the Bay of Bengal in the Indian Ocean, the latter accompanied by anomalous δ13 compositions 48. 

4. Discussion 

The paleontological record of fossil whale fall communities dates back to the Paleogene and most commonly since the Miocene 
49–53. It should also be recognised that specialized communities associated with large carcasses decomposing on the seafloor occurred 
much earlier, when large marine reptiles dominated the Mesozoic oceans 38,54. Therefore, organic falls of large aquatic animals have 
provided an important and widespread energy source, essential for supporting specialized chemosynthetic habitats in the ocean, since 
Mesozoic times. 

Kiel and Goedert 55 raised an interesting point that early cetaceans, being smaller, contained fewer lipids, the breakdown of which 
would eventually trigger the chemosynthetic processes essential to these specialized communities. Consequently, those authors 
proposed that early whale fall communities shared more traits with vent faunas than Miocene− modern whale falls. However, Pyenson 
and Haasl 51 noted that, regardless of the size, the richness in oils in mysticete skeletons was the main controller that forms modern 
whale fall communities, consistent with our findings in the Hood Canyon. 

It has been proposed that, within the general scheme of the evolution and biogeography of vent-type taxa, whale falls could 
represent “stepping stones” for specialized chemosynthetic and chemosymbiotic organisms like those associated with geologically- 
older hydrothermal vents and hydrocarbon seeps 3,56–58. Kiel 59,60 lends support to this view, including whale-falls within its 
biogeographic network, while Smith et al. 57 deem that whale fall communities are still too poorly described to reach a definitive 
conclusion. Acknowledging these limitations, our case-study contributes new, albeit preliminary, faunal data and a novel geographic 
location to this on-going debate. 

Besides these evolutionary debates, it has been argued that the human-driven decline of cetaceans during the 19th and 20th 
centuries would also have had detrimental effects on the populations of associated fauna and their distribution 61,62. This theory has 
not gained general consensus 63 but it has attracted attention from the environmental humanities 64. 

It is evident from our case study that isolated carcasses dispersed on the sea floor provide an opportunity for local chemosymbiotic 
invertebrates to utilise this food source. Bathymodiolinae mussels, the dominant chemosymbiotic metazoan observed on the whale 
bones in the canyon, are among the most common colonizers of past and present organic fall habitats 49,65–71. While many che-
mosymbiotic taxa (e.g., some bivalves) have developed strategies to enhance their dispersal in the water mass to track these energy 
sources, and hence are widely distributed 72–75, this is not always the case 31. The latter scenario would thus promote greater 
endemicity, as observed at some whale fall sites 31. 
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Ziphiids are mid-sized odontocetes (4.5–10 m) and elusive animals that normally live in deep waters76, so their life habits are less 
well known compared to larger whales and many of the dolphins. While we could not determine the cause of death of the ziphiids 
discovered in the Hood Canyon, documented causes of ziphiid mortality in southwestern Australian waters have been linked to net 
entanglements and predation by killer whales 28,77. Skeletal remains of beaked whales on the sea bottom are known at some locations, 
such as offshore South Africa 78, but are not otherwise commonly reported. Therefore, our samples represent a rare case of ziphiid 
skeletal remains on the sea floor that have been examined in-situ. The lack of articulated bones, together with their occurrence at the 
foot of a canyon wall at dive site 315, suggest that the carcass was subject to post-mortem dismemberment and downslope transport. 

It is likely that some flesh was present on the M. layardii skull when it settled on the sea floor at dive site 315. This is inferred from 
the high organic enrichment of the sediments in direct contact, or immediately adjacent, to the skull. In fact, this whale fall promoted 
the development of sulphate-reducing and methanogenetic bacterial-archaea consortia, which resulted in chemosynthetic habitats 
similar to cold seeps 12,16,79. These habitats are limited in their areal extent, depending also on the size of the decaying carcass and 
the type and quantity of lipids 9, but could exceed the area covered by the whale fall (Bull’s eye), and the increase in carbon could be up 
to 3.5% with respect to adjacent sediments 80. The “bull’s eye” at the ziphiid remains (dive 315) appeared to be almost limited to the 
sediment beneath the skull. The total diversity of chemosymbiotic bivalves at this site is, however, quite high and is interpreted as 
representing different stages in carcass consumption and exploitation of the associated reducing sediments over time. 

In a biogeographic context, our study helps fill the large distributional gap in known whale fall sites. Li et al.81 (Fig. 1) recently 
summarised all available evidence of whale falls at a global scale, including carcasses relocated to deeper water for scientific obser-
vations. Their review reveals an absence of data from the Indian Ocean and Southern Ocean Australian waters (Fig. 5), thus the data 
presented by Trotter et al. [25] and this paper contribute the first datum within this large and underexplored region. 

5. Conclusion 

We provide the first direct evidence of the occurrence of deep-sea whale fall communities inhabiting the continental margin of 
southwestern Australia, where high concentrations and a large variety of both seasonally transient and resident odontocete and 
mysticete cetaceans occur. 

Our discovery includes beaked whales, the first documented case of a whale fall community feeding off an elusive member of the 
odontocete family Ziphiidae. The whale fall community represents a sulfophilic stage of carcass and skeleton consumption, which is 
comprised of chemosymbiotic bathymodiolinae bivalves (“Adipicola” s.l.) and associated skeneimorph gastropods, polychaetes, and 
amphipods. A single occurrence represents the reef stage. 

It is highly probable that many other whale fall communities at varied ecological stages of exploitation by chemosynthetic and 
chemosymbiotic faunas also occur along the southwestern and western Australian margins, from shelf to abyssal environments. Their 

Fig. 5. Map showing natural whale falls with associated chemosynthetic and chemosymbiotic communiities recorded in the literature, together with 
new locations discussed in text (modified from Li et al., 2022). Yellow dots refer to literature records, and red dots to sites described in this study. 1: 
Smith, 1989; 2: McLean, 1992; 3: Bennett et al., 1994; 4: Dell, 1994; 5: Marshal, 1994; 6: Wada et al., 1994; 7: Warén, 1996; 8: Smith & Baco, 2003; 
9: Dahlgren et al., 2004; 10: Goffredi et al., 2004; 11: Rouse et al., 2004; 12: Bolotin et al., 2005; 13: Milessi et al., 2005; 14: Braby et al., 2007; 15: 
Pelorce & Poutiers, 2009; 16: Lundsten et al., 2010; 17: Amon et al., 2013; 18: Glover et al., 2013; 19: Digitalized from Li et al., 2022; 20: Georgieva 
et al., 2023. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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importance to deep-sea ecosystems highlights the need to systematically examine these habitats using advanced marine technologies, 
such remotely operated and autonomous underwater vehicles. Within the still scant documentation of deep-sea whale falls in the 
world’s ocean, this study represents the first record for the Indian-Austral Southern Ocean region. 
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