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Heart failure is treatable, but in the United Kingdom, the 1-, 5- and 10-year mortality rates
are 24.1, 54.5 and 75.5%, respectively. The poor prognosis reflects, in part, the lack of
specific, simple and affordable diagnostic techniques; the disease is often advanced by the
time a diagnosis is made. Previous studies have demonstrated that certain metrics derived
from pressure–velocity-based wave intensity analysis are significantly altered in the
presence of impaired heart performance when averaged over groups, but to date, no
study has examined the diagnostic potential of wave intensity on an individual basis, and,
additionally, the pressure waveform can only be obtained accurately using invasive
methods, which has inhibited clinical adoption. Here, we investigate whether a new
form of wave intensity based on noninvasive measurements of arterial diameter and
velocity can detect impaired heart performance in an individual. To do so, we have
generated a virtual population of two-thousand elderly subjects, modelling half as healthy
controls and half with an impaired stroke volume. All metrics derived from the
diameter–velocity-based wave intensity waveforms in the carotid, brachial and radial
arteries showed significant crossover between groups—no one metric in any artery
could reliably indicate whether a subject’s stroke volume was normal or impaired.
However, after applying machine learning to the metrics, we found that a support
vector classifier could simultaneously achieve up to 99% recall and 95% precision. We
conclude that noninvasive wave intensity analysis has significant potential to improve heart
failure screening and diagnosis.
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INTRODUCTION

Heart failure (HF) is a broad spectrum of disease in which the heart is unable to supply blood at the
rate required by the body. It is often stratified by ejection fraction (EF): heart failure with reduced
ejection fraction (≤40%, HFrEF), where there is usually a decrease in stroke volume (SV) due to a
failure of intrinsic inotropy or loss of functional heart muscle; and heart failure with preserved
ejection fraction (≥50%, HFpEF), where there is often a decrease in SV because the end diastolic
volume (EDV) has reduced due to loss of ventricular compliance.

HF is treatable but the prognosis is poor: in the UK, the 1-, 5- and 10-year mortality rates are 24.1,
54.5 and 75.5%, respectively, and these have only improved by around 7% each since the year 2000
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(Taylor et al., 2019). Moreover, 79% of UK HF diagnoses are only
made after an emergency hospital admission despite 41% of the
patients visiting their GP in the preceding five years with at least
one of the three major symptoms of HF: breathlessness, ankle
swelling, and fatigue (Bottle et al., 2018). The survival rates
following a diagnosis in primary care are, as expected, better
than the average (Taylor et al., 2017), but there are clear missed
opportunities for early diagnosis and intervention. There is also a
significant disconnect between clinical guidelines and actual
patient diagnoses: only 24% of patients were diagnosed
according to the recommended pathway (Taylor et al., 2019).
All of these factors necessitate an improved diagnosis pipeline.

One prominent issue is that the three main symptoms are not
exclusive to HF. If one of these symptoms is identified, the current
pathway recommends a blood test for brain natriuretic peptides
(BNP); this is highly sensitive and can therefore effectively rule
out those who do not have the disease, but BNP levels are also
commonly elevated in other pathologies such as chronic kidney
disease (Maisel et al., 2008; Tagore et al., 2008) and may be
abnormally low in obese patients (Madamanchi et al., 2014). A
positive BNP test should be followed by echocardiography, which
is the gold-standard for diagnosis, but this is not available in
primary care and, at least in the UK, a shortage of trained staff is a
limiting factor with hospital wait times of up to 6 weeks (Cowie,
2017). Even for those patients who have a HF symptom recorded
during a primary care consultation, 44% are not referred for a
BNP test, for echocardiography, or to a specialist for further
consultation, highlighting a lack of both confidence in current
investigations and test availability (Bottle et al., 2018). There is an
urgent need for a specific, low-cost, noninvasive method to
improve HF screening in primary care and for treatment
management at point-of-care.

Arterial pulse waves carry information about the performance
of the heart and vessels, and several studies have identified
statistically significant changes in the metrics derived from
wave intensity (WI) in the presence of impaired heart
performance (Curtis et al., 2007; Siniawski et al., 2009; Li and
Guo, 2013; Takaya et al., 2013; Vriz et al., 2015) but only when
averaged over groups. Furthermore, WI has generally been
determined from measurements of blood velocity and pressure
made throughout the cardiac cycle (Parker, 2009), but pressure
waveforms with sufficient temporal resolution can only be
obtained accurately by invasive methods or estimated
inaccurately by noninvasive ones, which has inhibited the
clinical realisability of WI-based diagnostic methods.

A new form of WI has recently been introduced that instead
relies upon measurements of blood velocity and arterial diameter
(Feng and Khir, 2010); this is significant because both can be
noninvasively measured at the same arterial location and time, for
example by ultrasound. Despite the intrinsic nonlinear
relationship between arterial diameter and blood pressure
arising from effects such as viscoelasticity and strain-stiffening,
Reavette et al. (2020) found by numerical modelling that this
noninvasive method gave results that were close to those of the
invasive method.

As noted above, impaired SV is important in both HFrEF and
HFpEF (A reduced SV is consistent with a preserved ejection

fraction if EDV is reduced.) HF can co-exist with a normal resting
SV if the heart compensates with increased inotropy; however,
the hearts of such patients will struggle to fulfil physiological
needs during exertion. At such times, SV can again become
subnormal.

To elucidate whether diameter-based WI can detect impaired
heart performance on an individual basis, we have generated an
age-stratified virtual population of elderly subjects, modelling half
as healthy controls and half as HF patients with an impaired SV.
Simulations were performed using the PulseWaveSolver utility of
Nektar++ (Cantwell et al., 2015), which solves the 1D equations

FIGURE 1 | Depiction of the 55-artery network (Willemet, 2015a).
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of blood flow using a high-order discontinuous Galerkin method
with a spectral/hp-element discretisation. This reduced-order
modelling can accurately solve for the arterial area, velocity
and pressure waveforms in complex arterial networks with
reasonable computational cost (Alastruey et al., 2011; Sherwin
et al., 2003) and has been validated against in-vitro (Alastruey
et al., 2011; Matthys et al., 2007) and in-vivo (Mynard and
Smolich, 2015; Olufsen et al., 2000; Pedregosa et al., 2011)
data. We applied a support vector machine (SVM) classifier to
metrics derived from wave intensity analysis (WIA) in the
common carotid, brachial and radial arteries. These arteries
are all accessible to ultrasound. Machine learning can identify
and utilise complex relationships between metrics and has been
successfully applied in numerous biomedical classification studies
(Yamamoto et al., 2020; Zhao et al., 2020) and to in-silico datasets
(Bikia et al., 2021; Jin et al., 2021). An SVM was chosen after it
performed best in preliminary tests against other classification
algorithms.

MATERIALS AND METHODS

The 1D equations of conservation of mass and momentum
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for cross-sectional area A, average cross-sectional velocity U and
pressure P, frictional force per unit length f, and density of blood
ρ � 1,060 kg m−3, together with the nonlinear tube law
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for reference diastolic area Ad and pressure Pd, stiffness and
viscoelastic parameters β and Γ, respectively, and strain-stiffening
modulus α, were solved in models of the largest 55 systemic
arteries (Figure 1). The arteries were modelled as linearly
tapering vessels, and terminal vessels were coupled to RCR
Windkessel models (Alastruey et al., 2012). For further details
of the numerical method and tube law, the reader is referred to
Sherwin et al. (2003) and Reavette et al. (2020), respectively. The
simulations and analysis were performed locally on an iMac
(2017, 4.2 GHz Quad-Core Intel Core i7 processor, 32 GB
RAM) using Nektar++ (Cantwell et al., 2015) and Python
(Van Rossum and Drake, 2009), respectively.

Generation of a Virtual Population
Two-thousand subjects were generated, with equal numbers ofmales
and females, of controls andHF patients, and in age groups of 60–69
and 70–79 years. To simulate blood flow in each subject, it is
necessary to specify the parameters of the arterial network—such
as arterial areas, lengths and wave speeds—and an inflow waveform.

To generate network parameters for each subject, we took
those from the model of Willemet et al. (2015b, Table 1), with

wall viscosities from Alastruey et al. (2012), and scaled them
using randomly generated age-stratified multipliers in the
physiological ranges given in Table 2, which is based on
similar tables given in Reavette et al. (2020) and Willemet
et al. (2015b). Arterial lengths were scaled to account for men
being 7% taller than women (Roser et al., 2019). Furthermore,
for all groups the total peripheral resistance R, total peripheral
compliance C, arterial lengths Li, strain-stiffening parameters
αi, wall viscosities ϕi, diastolic pressure Pd and outflow
pressure to the venous system Pout were varied with
multipliers of 0.9–1.1. Doing so provided additional
variation between subjects without inducing significant
deviation from published values.

To generate a different inflow waveform for each subject, we
took that used for the thoracic aorta by Boileau et al. (2015),
added natural variation to its shape, and scaled it to match a
generated SV, heart rate (HR) and left ventricular ejection time
(LVET).

To generate an SV for each subject, we started with the 2D
echocardiographic values for EDV and EF given in Table 3
(Lang et al., 2005; Lang et al., 2015). These were assumed to be
normally distributed, and values for each subject were randomly
sampled from each distribution (McDonagh et al., 2021). For
each control, the EDV and EF were multiplied to calculate an
SV, and this was used if it was in the range 60–100 ml (Edwards
Lifesciences LLC, 2009). For each patient, the EDV was
arbitrarily multiplied by 0.9 to reduce it, and the resulting
SV was used if it was below 60 ml. Echocardiographic values
were used for the EDV and EF ranges because they are generally
used to define EFs clinically. They are lower than those obtained
using MRI (Maceira et al., 2006).

An HR in the range 60–90 bpm was randomly assigned to
each subject and used to calculate an LVET through regression
analysis of the data given in Weissler et al. (1968) with natural
variation added to the LVET. Example waveforms are given in
Figure 2.

The average SV for women is lower than for men. To reflect
this difference, the cut-off of 60 ml between healthy and
impaired subjects should theoretically be lower for women.
Keeping the same cut-off for both sexes, however, allowed us
to test the algorithms on two distinct SV distributions: for
men, SVs would be more dispersed, with greater average
differences between controls and HF patients; for women,
the SVs would be more concentrated around the 60 ml
mark for both the controls and HF patients. We were
interested in measuring how the classifier performed in
each case.

The cardiac output for each control was restricted to a healthy
physiological range of 4–8 L min−1. Both normal and reduced
cardiac outputs were permitted for HF patients to account for
those whose compensatory mechanisms are and are not working,
respectively (Brandforbrener et al., 1955; Curtis et al., 2007;
Rodeheffer et al., 1984; Vriz et al., 2015).

Resistances were scaled to bring brachial blood pressures
into the physiological range: diastolic blood pressures were
normal, with a mean of 74 mmHg across all subjects; systolic
blood pressures were often elevated, with a mean of 119 mmHg
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across all subjects and with numerous subjects exhibiting
isolated systolic hypertension from the increased arterial
stiffness observed in the elderly. The resistances of HF
patients were scaled by a larger amount to reflect the

physiological compensatory mechanism triggered by a
reduced cardiac output; this should introduce distinctions
in the reflection coefficients between the controls and HF
patients.

TABLE 1 | Parameters of the baseline model. In addition to these, Pd and Pout were 10 kPa (75 mmHg) and 1.33 kPa (10 mmHg), respectively.

Artery Length, L
(cm)

Prescribed area,
Ad, in → Ad, out

(cm2)

Wave speed
Coefficient, ac

Wall viscosity,
ϕ (kg cm−1s−1)

Peripheral resistance,
R (kg cm−4s−1)

Peripheral compliance,
C (cm4s kg−1)

1. Ascending aorta 5.8 7.21 → 7.16 14.3 5 - -
2. Aortic arch A 2.3 5.23 → 4.79 14.3 5 - -
3. Brachiocephalic 3.9 3.40 → 2.69 14.3 10 - -
4. R. subclavian 3.9 1.09 → 0.675 14.3 10 - -
5. R. common carotid 10.8 1.00 → 0.270 14.3 60 - -
6. R. vertebral 17.1 0.114 → 0.0651 15.6 60 45.1 0.00902
7. R. brachial 48.5 0.556 → 0.184 15.6 25 - -
8. R. radial 27.0 0.114 → 0.0799 15.6 60 39.6 0.00987
9. R. ulnar A 7.7 0.114 → 0.0962 15.6 60 - -
10. R. interosseous 9.1 0.0366 → 0.0269 15.6 60 632 0.00325
11. R. ulnar B 19.7 0.0850 → 0.0651 15.6 60 39.6 0.00769
12. R. internal carotid 20.5 0.271 → 0.153 15.6 60 18.8 0.0258
13. R. external carotid 18.7 0.0519 → 0.0186 15.6 60 104 0.0193
14. Aortic arch B 4.5 3.80 → 3.60 14.3 5 - -
15. L. common carotid 16.0 0.785 → 0.198 14.3 60 - -
16. L. internal carotid 20.5 0.154 → 0.0924 15.6 60 18.8 0.0189
17. L. external carotid 18.7 0.0305 → 0.0125 15.6 60 104 0.0173
18. Thoracic aorta A 6.0 3.33 → 2.99 14.3 5 - -
19. L. subclavian 3.9 1.00 → 0.590 14.3 10 - -
20. L. vertebral 17.0 0.114 → 0.0651 15.6 60 45.1 0.00902
21. L. brachial 48.5 0.546 → 0.184 15.6 25 - -
22. L. radial 27.0 0.102 → 0.0651 15.6 60 39.6 0.00848
23. L. ulnar A 7.7 0.154 → 0.154 15.6 60 - -
24. L. interosseous 9.1 0.0269 → 0.0269 15.6 60 632 0.00277
25. L. ulnar B 19.7 0.140 → 0.114 15.6 60 39.6 0.0130
26. Intercostals 9.2 1.33 → 0.751 14.3 5 60.0 0.104
27. Thoracic aorta B 12.0 2.27 → 1.39 14.3 5 - -
28. Abdominal aorta A 6.1 1.25 → 1.25 14.3 5 - -
29. Celiac A 2.3 0.506 → 0.395 14.3 5 - -
30. Celiac B 2.3 0.225 → 0.200 14.3 5 - -
31. Hepatic 7.6 0.243 → 0.161 15.6 25 27.2 0.0205
32. Gastric 8.2 0.0850 → 0.0750 15.6 60 40.6 0.00821
33. Splenic 7.2 0.147 → 0.127 15.6 60 17.4 0.0140
34. Superior mesenteric 6.8 0.519 → 0.420 14.3 10 6.98 0.0481
35. Abdominal aorta B 2.3 1.09 → 1.06 14.3 5 - -
36. L. renal 3.7 0.225 → 0.225 14.3 25 8.48 0.0231
37. Abdominal aorta C 2.3 1.15 → 1.15 14.3 5 - -
38. R. renal 3.7 0.225 → 0.225 14.3 25 8.48 0.0231
39. Abdominal aorta D 12.2 1.11 → 1.00 14.3 5 - -
40. Inferior mesenteric 5.8 0.184 → 0.0844 15.6 25 51.6 0.0133
41. Abdominal aorta E 2.3 0.968 → 0.899 14.3 5 - -
42. L. common iliac 6.8 0.519 → 0.407 18.0 10 - -
43. R. common iliac 6.8 0.519 → 0.407 18.0 10 - -
44. L. external iliac 16.6 0.341 → 0.310 18.0 25 - -
45. R. internal iliac 5.8 0.133 → 0.133 19.7 60 59.6 0.0137
46. L. femoral 50.9 0.225 → 0.120 19.7 60 - -
47. L. deep femoral 14.5 0.133 → 0.114 19.7 60 35.8 0.0127
48. L. posterior tibial 36.9 0.0799 → 0.0651 19.7 60 106 0.00743
49. L. anterior tibial 39.8 0.0564 → 0.0441 19.7 60 106 0.00513
50. R. external iliac 16.6 0.341 → 0.310 18.0 25 - -
51. R. internal iliac 5.8 0.133 → 0.133 19.7 60 59.6 0.00137
52. R. femoral 50.9 0.225 → 0.120 19.7 60 - -
53. R. deep femoral 14.5 0.133 → 0.114 19.7 60 35.8 0.0127
54. R. posterior tibial 36.9 0.0799 → 0.0651 19.7 60 106 0.00743
55. R. anterior tibial 39.8 0.0564 → 0.0441 19.7 60 106 0.00513
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Filter Criteria
FollowingWillemet et al. (2015b), the SV and cardiac output filter
criteria were supplemented by additional restrictions based on

brachial blood pressure and the aorto-iliac bifurcation reflection
coefficient (Willemet et al., 2016), which was calculated as

Ra � Ya − Yb − Yc

Ya + Yb + Yc,Y
i � ρci

Ai
. (4)

All criteria are summarised in Table 4; whenever subjects did
not pass all filters, replacements were generated.

Wave Intensity
Diameter-based WI was calculated as

dI � dDdU

(Δt)2 , (5)

where the scaling by (Δt)2 removes the dependence of the
magnitude on the sampling period.

WI is separable into intensities of forwards- and backwards-
travelling waves,

dI± � ± 1

(Δt)2
c

2D
(dD ± D

2c
dU)2

, (6)

but this requires the pulse wave velocity (PWV), c; in clinical practice,
this can be estimated noninvasively through the lnDU-loop (Feng
and Khir, 2010), but this introduces errors, particularly when close to
significant reflection sites as in the case of the carotid artery (Willemet
et al., 2016). We applied the SVM to the WI metrics generated from
both the unseparated and separated WI, where for the latter we used
the PWV calculated through the lnDU-loop.

Metrics
A typical WI waveform for the common carotid, with separated
waves, is given in Figure 3.

Eight metrics were used to characterise the waves: the
magnitudes of the systolic, diastolic and reflected (S, D, and
R) waves (SWI, DWI and RWI, respectively); the wave energies of

TABLE 2 | Variation for the parameters that were known to vary between age
groups. Arteries were categorised based on structure: 1–5, 14, 15, 18, 19,
26–30, 35–39 and 41 as elastic and the rest muscular. PWV � Pulse wave velocity.

Parameter Multiplier

Age group (year)

60–69 70–79

Elastic arteries PWV (celas) 1.75–2.05 2.075–2.425
Muscular arteries PWV (cmusc) 1.075–1.225 1.225–1.375
Elastic arteries diameter (Delas) 1.1–1.3 1.3–1.5
Muscular arteries diameter (Dmusc) 1.105–1.305

TABLE 3 | Typical echocardiographic parameters (Lang et al., 2005; Lang et al.,
2015). SD � Standard deviation.

Male (Mean ± SD) Female (Mean ± SD)

End Diastolic Volume (ml) 106± 22 76±15
Ejection Fraction (%) 62± 5 64±5

FIGURE 2 | 16 example inflow waveforms. The area under each
waveform gives the respective stroke volume; this was impaired through either
a shortened left ventricular ejection time, a reduced peak inflow, or a
combination of the two.

TABLE 4 | Filter criteria. Blood pressures refer to those taken in the brachial artery,
and the reflection coefficient was calculated at the aorto-iliac bifurcation using
Eq. 4 (Willemet et al., 2015b).

Criterion Range Group

Stroke Volume 60–100 ml Controls
<60 ml Patients

Cardiac Output 4–8 L/min Controls
Diastolic Blood Pressure ≥40 mmHg All
Systolic Blood Pressure ≤200 mmHg All
Pulse Pressure, Ppulse 25 mmHg ≤ Ppulse ≤ 100 mmHg All
Reflection Coefficient, Ra −0.3 ≤ Ra ≤ 0.3 All

FIGURE 3 | A typical wave intensity plot for the common carotid. The
wave to the right of the diastolic (D) wave, the valve (V) wave, results from the
abrupt closure of the aortic valve and is in turn responsible for the incisura; this
is unlikely to have any diagnostic utility so was not included in the
analysis. S � Systolic wave; R � Reflected wave.
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the S, D, and R waves (SWE, DWE and RWE, respectively),
calculated as the area under each peak; the reflection coefficient
(RC), calculated as RWI/SWI; and the SD-Delay, which is the
time delay between the arrivals of the peaks of the S and D waves.

Classification
The data were organised into training and test sets using an 80/20
split—giving 1,600 and 400 subjects in the respective groups.
Such a split ensured sufficient data for full training (explored in
Section 3.2.1) whilst leaving enough unseen data for evaluation.
An SVM with a radial basis function kernel was implemented
using Scikit-learn (Cortes and Vapnik, 1995; Pedregosa et al.,
2011); this kernel supports nonlinear classification. The model’s
hyperparameters were optimised using 10-fold cross-validation
(CV): the training set was split into ten distinct folds, and for each
set of candidate hyperparameters, the model was trained ten
times—each time a different fold was held out for validation with
the model trained on the remaining nine. The model was then
trained with the hyperparameters that had the best average
performance on the validation sets, giving a model capable of
generalising well to the test set.

The performance of the SVM was evaluated using the
precision, recall and F1 score:

Precision � True Positives
True Positives + False Positives

(7)

Recall � True Positives
True Positives + False Negatives

(8)

F1 Score � 2 × Precision × Recall
Precision + Recall

(9)

Precision quantifies how many of the subjects that the
model identifies as having HF actually have HF; recall
quantifies how many of the HF patients the model
identifies as having HF; the F1 score is high only when
both precision and recall are high. The classifier was
considered fully trained when the F1 score of the validation
set stopped improving.

The decision threshold of the SVM can be shifted from its
default value of zero to achieve the desired precision or recall,
although as one increases the other decreases. Contextually, it
is better to prioritise recall: more patients who show signs of
HF will be detected, and those who are incorrectly identified
can be ruled out by subsequent echocardiogram. Therefore,
for each artery, we have included results for both the default
decision threshold and that which achieved 99% recall on the
training set.

The performance of the SVM on the test sets was also
evaluated using confusion matrices, which show the number
of true and false predictions (Table 5).

RESULTS

Separating waves into their forwards and backwards components
did not improve the model’s performance, nor did stratifying the
data by age or sex; we therefore only present the results obtained
from the unseparated waves for the entire dataset.

TABLE 5 | The structure of a confusion matrix.

Actual

1 0

Predicted
1 True Positive False Positive
0 False Negative True Negative

FIGURE 4 | Inlet waveforms (top) and wave intensities in the common
carotid (second from the top), brachial (second from the bottom) and
radial (bottom) for three subjects: one healthy control, one with an impaired
left ventricular ejection time, and one with an impaired peak flow.
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WI plots for the common carotid, brachial and radial arteries for
three example subjects—one healthy control, one HF patient with an
impaired LVET, and one HF patient with an impaired peak
flow—are given in Figure 4.

The SWI and SWE are greatly reduced in all arteries for the
patient with an impaired peak flow, but these same metrics are
largely unchanged in the patient with impaired LVET. The DWI
and DWE are reduced in all arteries for both HF patients,

FIGURE 5 | Box plots of the metric distributions separated by controls and patients (top row of each) and the stroke volume against all eight metrics for all three
arteries for the training set data (bottom row of each). SWI, RWI and DWI � S, R and D wave intensities; SWE, RWE and DWE � S, R, and D wave energies; RC �
Reflection coefficient; SD-Delay � The time delay between the arrivals of the S and D waves.
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implying that these metrics have the potential to be the two
biggest discriminators between the controls and patients. The SD-
Delay is shorter for the patient with impaired LVET, as the
diastolic relaxation occurs earlier due to the impairment. The R
wave is approximately the same in the control and patient with an
impaired LVET but is reduced in the patient with an impaired
peak flow.

Correlations
Plots of SV against the various WI metrics for all arteries and
subjects in the training set, as well as box plots showing the
distribution of each metric stratified by controls and patients, are
given in Figure 5. For each metric we have calculated the
Pearson’s correlation coefficient between the metric and the

SV. The arbitrary hard cut-off for the SV of 60 ml leads to a
distinct horizontal line in each correlation graph, an artefact that
is a consequence of generating the two groups from different
distributions.

For the common carotid, all metrics except for the RWI and
RWE showed moderate correlation (magnitude above 0.3) with
the SV. Furthermore, although there is crossover between the
metric values in the control group and those in the patient group,
specific values of some metrics occurred only in one group; for
example, only in the control group were DWI and DWE values
ever above 175 cm2 s−3 and 2.1 cm2 s−2, respectively. The
reflection coefficient increases with decreasing SV, meaning
that, generally, HF patients have a higher RWI relative to the
SWI, which is consistent with the result of Curtis et al., 2007.

FIGURE 6 | Plots of the (A) learning curve, (B) precision and recall against the decision threshold, and (C) receiver operating characteristic curve for each artery, all
for when the classifier was applied to training data. For (A) the scores were the average of all nine- and one-fold training and validation sets, respectively, and the shading
represents the standard deviation. For (B) the dashed lines show the precision at 99% recall. For (C) the dashed line shows the result of a perfectly random classifier.
AUC � Area under the curve.
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For the brachial, the highest correlation coefficient is that of
the RWE (0.595), and with the exception of the RC, all metrics
showed moderate correlation with SV. Again, certain values of
some of the metrics (the DWI, DWE, RWE and SD-Delay)
occurred only in the control group. The RC is unlikely to
influence the classification.

For the radial, the correlation coefficient with the largest
magnitude is that of the RC (0.592). As with the carotid, the
RC increases with decreasing SV. All metrics except for the RWI
and RWE showed moderate correlation.

Although there appears to be some stratification between the
two groups, no one metric in any artery can reliably be used to
classify a subject’s SV as either normal or impaired. However, the
correlations give only an introductory insight, as not all decreases
in SV will cause the same changes in the metrics; it will depend on
how the decrease arises. For example, an impaired peak flow is
likely to affect the SWI and SWE, whereas an impaired LVET is
likely to affect the SD-Delay.

Classification
Training
Plots of the learning curves for the training and CV sets, precision
and recall against the decision threshold for the training set and
the receiver operating characteristic (ROC) curve for the training
set are given for each artery in Figure 6, and summary statistics
are given in Table 6.

The SVM was considered fully trained at the approximate
training set size at which the CV F1 score stopped
improving—around 1,200–1,350 for the carotid and brachial
but around 500–600 for the radial. The close agreement
between the scores of the training and CV sets indicates the
classifier did not overfit. The SVM achieved its highest CV F1
score on the radial data, second highest on the carotid data, and
lowest on the brachial data, although all scores were over 94%. All
arteries required a substantially smaller training set (<250) to hit a
CV F1 score that was 97.5% of the final score, with the radial
hitting this value with a training set size of 144—the smallest used.

For each artery, we have identified the precision for when the
decision threshold was set to achieve 99% recall. The SVM
performed best on the radial data with a precision of 95%,
followed by the carotid (87%) and brachial (86%) data.

The ROC curve shows the true positive rate (sensitivity)
against the false positive rate (1 − specificity). Sensitivity and
specificity measure the ability of the SVM to correctly identify
those with and without HF, respectively; therefore, the better
the model performs, the closer its scores will be to the top left
corner of the plot. This is quantified by the area under the
curve; again, the SVM performed best on the radial data with a

score of 0.996, followed by the carotid (0.994) and brachial
(0.990) data.

Testing
The confusion matrices and summary statistics upon testing are
given in Tables 7, 8: Table 7 for the default decision threshold
and Table 8 for the 99% recall threshold. For the default
threshold, the classifier performed best on the radial data with
the scores of the other arteries close behind. For the 99% recall
decision threshold, similar precisions were achieved to those
given in Table 6, and here the SVM performed substantially
better on the radial data with only 16 out of 400 subjects
misclassified; there were 41 and 46 misclassifications out of
400 for the carotid and brachial data, respectively.

Errors
The SVs of the misclassified test subjects are given in
Figure 7.

For the default threshold, the majority of the SVs are close to
the 60 ml cutoff, as expected, but several are situated around the
55 ml mark. The most extreme misclassifications either side were
for a patient with an SV of 45.0 ml and a control with an SV of
84.5 ml with the former occurring for the brachial data and the
latter misclassified for all datasets. There were multiple false
negatives for those who had SVs less than 50 ml, indicating
that this technique may miss several severe cases of impaired SV.

For the 99% recall threshold, most misclassifications are in
the 60–75 ml range. There are three missed patients in total,
with one being misclassified for both the brachial and the
radial data. The most extreme misclassifications either side
were for a patient with an SV of 46.7 ml and a control with an
SV of 84.5 ml; the former occurred for both the brachial and
radial and the latter for the brachial.

The percentages of severe misclassifications (patients who
were classified as healthy despite having SV < 50 ml) were low
for each artery and threshold: for the carotid, 0.5 and 0% were
severely misclassified for the default and 99% recall thresholds,
respectively; for the brachial, the same figures were 1.25 and
0.25%; for the radial, both were 0.25%.

DISCUSSION

Overall, the SVM achieved high precision and recall when using
the default decision threshold for all arteries and maintained a
high precision with the 99% recall threshold for the radial. We
conclude that arterial WIA has significant potential to improve
the HF diagnostic pipeline.

TABLE 6 | Summary statistics for classifier training performance. ROC AUC � Area under the receiver operating characteristic curve; CV � Cross validation.

Training set size for
full training

CV set final
F1 score

Training set size for 97.5% of
final CV F1 score

Precision at 99%
recall

ROC AUC

Common Carotid 1,200–1,300 0.965 170 0.868 0.994
Brachial 1,250–1,350 0.949 222 0.860 0.990
Radial 500–600 0.975 144 0.952 0.996

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org December 2021 | Volume 9 | Article 7370559

Reavette et al. Wave Intensity in Heart Failure

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


These results were achieved without separating the WI into
intensities of forwards- and backwards-travelling waves, which
eliminates experimental errors introduced by determining the
PWV from the lnDU-loop. Additionally, stratifying the data by
sex and age group did not improve the classification. Both of
these results led to a simpler analysis without sacrificing
performance. We may have neglected modelling criteria that
would cause greater differences between the WIs of different
sexes and age groups; nevertheless, even without such

stratification, this study has already supported the ability of
WIA to screen for HF.

In this study, the SVM performed best on the radial data, and
this may in part be caused by differences in the RCs between
arteries. In general, there was more stratification for the RC in the
radial than for the other arteries; the radial was modelled as a
terminal vessel, and increasing the peripheral resistance to keep
pressures in the physiological range increased the size of the R
wave relative to the S wave. The trend towards larger reflections
was not observed in the brachial, probably as a result of wave
trapping: the geometry of the arterial system is optimised to
minimise reflection of forwards-travelling waves at
bifurcations—the well-matched condition—but this necessarily
results in poor matching for backwards-travelling waves, with a
greater proportion of these being re-reflected (Parker, 2009).
Hence, reflections generated in the periphery will be less
apparent in the brachial than in the radial. (The radial artery
performs well in other applications where wave properties are
important—see Zheng et al., 2012.) This does not, however,
explain why the trend towards greater reflection in HF patients
occurs in the carotid too, which itself is one bifurcation removed
from terminal vessels (the internal and external carotids).

For the default decision threshold, some subjects that had a
severely impaired SV were misclassified as healthy, which is a
significant issue. Altering the threshold to increase recall
prevented the most egregious misclassifications, and this
caught all patients in the carotid but not in the brachial or
radial. Although there was some crossover in the misclassified
patients between arteries, it may be the case thatWI data from the
carotid, brachial and radial could be used together to improve the
results obtained here. Another issue, albeit one less serious, is the
misidentification of healthy subjects as having an impaired SV: as
noted above, these errors, which are small in number, would be
corrected at the echocardiogram stage. Due to the inner
complexity of the SVM, it is difficult to suggest why patients
were misclassified; these errors warrant further investigation
since the method may miss subjects that require immediate
treatment.

TABLE 7 | Confusion matrices for each artery (top three) and summary statistics
(bottom) for when the SVM was applied to the test set using the default
decision threshold. HF � Heart failure.

Common carotid Actual

HF No HF

Predicted HF 194 12
No HF 7 187

Brachial Actual

HF No HF

Predicted HF 187 11
No HF 14 188

Radial Actual

HF No HF

Predicted HF 197 7
No HF 4 192

Precision Recall F1 score

Common Carotid 0.942 0.965 0.953
Brachial 0.944 0.930 0.937
Radial 0.965 0.980 0.973

TABLE 8 | Confusion matrices for each artery (top three) and summary statistics
(bottom) for when the SVM was applied to the test set using the 99% recall
threshold. HF � Heart failure.

Common carotid Actual

HF No HF

Predicted HF 201 41
No HF 0 158

Brachial Actual

HF No HF

Predicted HF 198 43
No HF 3 156

Radial Actual

HF No HF

Predicted HF 200 15
No HF 1 184

Precision Recall F1 score

Common Carotid 0.831 1 0.907
Brachial 0.822 0.985 0.896
Radial 0.930 0.995 0.962

FIGURE 7 | Stroke volumes of the misclassified subjects. The dashed
line is the cut-off stroke volume.
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An SVM classifier worked well for all three arteries examined in
this study and gave particularly good results for the radial artery data.
It is a versatile algorithm capable of identifying complex nonlinear
patterns between metrics when classifying. SVMs are particularly
effective in high dimensional spaces, but this was not advantageous
here given the relatively low number of features. They are also well
suited to small- to medium-sized datasets. Both of these advantages
in part explain why SVMs have been successfully used in other
biomedical applications: fields such as genomics are often
characterised by high-dimensional data (Amaratunga and Cabrera,
2018), and sample sizes in typical clinical trials tend to be relatively
small. One notable drawback of an SVM is the lack of interpretability:
knowledge of the features that drive classification is important for
developing a stronger understanding of heart failure itself and helpful
for clinical adoption. Another drawback is that SVMs do not
ordinarily provide a probabilistic estimate when classifying each
subject; classification is given only in a binary format. Platt scaling
is a method that can transform the outputs into a probabilistic model
(Platt, 1999), but this comes with its own disadvantages.

Clinically, this method would require spatiotemporally
coincident measurements of diameter and velocity with sufficient
temporal resolution to resolve the waveforms accurately. MRI has
previously been used to calculate WIs with a temporal resolution of
10 ms (Bhuva et al., 2020; Biglino et al., 2012; Li et al., 2010;
Neumann et al., 2018; Schäfer et al., 2018), but it is currently
unavailable in primary care or on the ward and is likely to
remain so. The present study used a frequency equivalent to
1,000 frames per second, which is achievable with ultrafast
ultrasound devices; previous studies have indeed used ultrasound
to determine diameter and velocity using a combination of M-mode
and Doppler (Feng and Khir, 2010), but the optimal beam angle for
Doppler is orthogonal to that for M-mode, which introduces
inaccuracies. Ultrasound imaging velocimetry is, however,
feasible, for it can accurately determine the velocity waveform
even in the presence of the high gradients observed in early
systole, and wall-tracking algorithms can determine the
diameter waveform with the necessary spatiotemporal
coincidence. Real-time implementation of an ultrafast
ultrasound method is also possible: scans can be acquired in
a few seconds, beamformed in real-time with GPU accelerated
computing (Hyun et al., 2019), and clutter-filtered in real-time
with randomised singular value decomposition (Song et al.,
2017). Subsequent processing to determine the wave intensity
metrics is not computationally intensive, and results could again
be available within seconds. There are, however, key challenges
that must be addressed to permit successful clinical adoption of
such a method, the most important of which is proving that it
gives reliable, reproducible and accurate results when applied to
real human data.

Limitations
1. HF is a broad spectrum of disease that cannot be completely

characterised by an impaired SV, although that can be a useful
indicator.

2. In practice, not every HF patient will exhibit an impaired SV at rest,
and WIA may only be able to identify such people under exertion.

3. The machine learning model used here was trained and tested on
purely in-silico data, and strong performance on the generated
datasets does not necessarily imply similar performance on actual
patient data. However, this study was intended to propose
methodology that could be applied in a real setting; the results
provided here require corroboration by an experimental trial
where measurement errors, amongst other things, could
worsen the efficacy of the technique.

4. The only compensatory mechanism we have modelled is increased
vascular resistance to maintain blood pressure. In reality, several
neurohormonal compensatory mechanisms are involved in the
compensatory response.

5. The population size used in this study was large when
compared to that of a typical trial; however, the classifier
could be trained to a reasonable standard with far fewer
subjects. Furthermore, an alternative form of statistical
analysis on a smaller sample may achieve similar success.
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