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ABSTRACT An in-depth understanding of microbial function and the division of ec-
ological niches requires accurate delineation and identification of microbes at a fine
taxonomic resolution. Microbial phylotypes are typically defined using a 97% small
subunit (16S) rRNA threshold. However, increasing evidence has demonstrated the
ubiquitous presence of taxonomic units of distinct functions within phylotypes. These
so-called sequence-discrete populations (SDPs) have used to be mainly delineated by
disjunct sequence similarity at the whole-genome level. However, gene markers that
could accurately identify and quantify SDPs are lacking in microbial community stud-
ies. Here, we developed a pipeline to screen single-copy protein-coding genes that
could accurately characterize SDP diversity via amplicon sequencing of microbial com-
munities. Fifteen candidate marker genes were evaluated using three criteria (extent
of sequence divergence, phylogenetic accuracy, and conservation of primer regions)
and the selected genes were subject to test the efficiency in differentiating SDPs
within Gilliamella, a core honeybee gut microbial phylotype, as a proof-of-concept.
The results showed that the 16S V4 region failed to report accurate SDP diversities
due to low taxonomic resolution and changing copy numbers. In contrast, the single-
copy genes recommended by our pipeline were able to successfully quantify
Gilliamella SDPs for both mock samples and honeybee guts, with results highly con-
sistent with those of metagenomics. The pipeline developed in this study is expected
to identify single-copy protein coding genes capable of accurately quantifying diverse
bacterial communities at the SDP level.

IMPORTANCE Microbial communities can be distinguished by discrete genetic and ec-
ological characteristics. These sequence-discrete populations are foundational for
investigating the composition and functional structures of microbial communities at
high resolution. In this study, we screened for reliable single-copy protein-coding
marker genes to identify sequence-discrete populations through our pipeline. Using
marker gene amplicon sequencing, we could accurately and efficiently delineate the
population diversity in microbial communities. These results suggest that single copy
protein-coding genes can be an accurate, quantitative, and economical alternative
for characterizing population diversity. Moreover, the feasibility of a gene as marker
for any bacterial population identification can be quickly evaluated by the pipeline
proposed here.
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Accurate identification of distinct functional units in natural bacterial communities
is crucial in understanding their ecological roles, interactions within the network,

as well as the fine-scale composition and dynamic changes within the whole commu-
nity. As a rule of thumb, a bacterial phylotype is often defined by grouping strains that
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share a sequence identify greater than 97% for a selected fragment of the small subu-
nit (16S) rRNA gene (1). However, increasing evidence has indicated that a bacterial
phylotype may contain multiple finer lineages, each showing distinct biological traits.
For example, closely related enterotoxigenic Escherichia coli (ETEC) isolates form dis-
crete lineages with consistently definable variations in virulence profiles (2). Such intra-
phylotype lineages could be delineated based on divergence in genomic sequences and
phylogenetic inferences. These finer subdivisions of phylotypes are called sequence-dis-
crete populations (SDPs), which typified by genetic and genealogical discontinuity from
the rest of the community and are delineated by overall sequence divergence at the
whole-genome level (3–5). A broad comparison of 90,000 bacterial genomic sequences,
with a close examination of pairwise genomic similarities in natural bacterial commun-
ities, has proved the pervasive discontinuity in genetic similarity below and above SDPs
(3). Bacteria in the same SDP normally show less than ca. 5% variation in whole-genome
sequences. This genetic divergence is much less than those among strains of the same
phylotype (ca. 30%) (6). With respect to habitats, specific SDPs are likely ubiquitous in
various environments, such as human and animal guts (5, 7, 8), freshwater (9), ocean (10)
and soil (11). Based on large-scale whole-genome and metagenomics investigations,
these genetically and ecologically discernible SDPs have been identified within multiple
phylotypes, e.g., for intestinal Prevotella copri (8, 12) and Eubacterium rectale (13), four to
five geographically stratified SDPs consist in human (or mouse) spanning geography and
lifestyle. Therefore, SDPs are probably better than phylotypes, as taxonomic units that
represent functional entities in bacterial communities, which are likely shaped by ecolog-
ical pressure and evolutionary selection. As such, SDPs are important units of microbial
diversity and should be considered baseline information for investing crucial questions,
such as “how do bacterial populations interact and evolve within communities?” (4).

Despite the essential nature of accurate SDP identification, a rapid and accurate
method that can trace SDP boundaries is still lacking, especially with regard to the
selection of proper markers for evaluating sequence divergence. It is obvious that
genetic divergence among bacterial strains is dependent on which genes are com-
pared. We now understand that the commonly used 16S gene cannot generally pro-
vide sufficient resolution to characterize SDP diversity (14, 15). For example, in cases
where the SDPs show an ;5–10% genome-wide divergence, they varied mostly
merely , 1% in the 16S sequences (16). Moreover, the copy number of the 16S gene
may vary significantly among phylotypes or even among strains of the same phylo-
type, making quantitative characterization of bacterial community a challenging, if not
impossible, task (17, 18). The 16S was selected for phylotype delineation years ago
because it has conserved primer sites that flank relatively variable regions that made it
easy to sequence with Sanger technology. Currently, much effort has been put into
developing genes or gene segments that can be easily sequenced, and that vary
enough to serve as practical proxies for SDP delineation (19–21). However, a systematic
evaluation of the validity and performance of such genes in SDP delineation, which
includes the rapidly increasing but heterogeneously sampled database, has not been
carried out.

Fortunately, recent developments in microbial genomics show a promising solution
to complement the coverage of bacterial genomes. The number of sequenced
genomes of various bacterial lineages has been growing rapidly. For example, the
Genomes OnLine Database (GOLD) now contains 437,099 bacterial genomes, the ma-
jority of which (397,945) are uncultured, representing host-associated, environmental
and engineered ecosystems (22). The ever-growing bacterial genome data set offers a
great opportunity to screen phylogenetically informative genes that show good per-
formance in taxonomic delineation, including those capable of quantitatively character-
izing bacterial communities at the SDP level (23, 24). For instance, Wu and colleagues
identified 114 PhyEco universal markers for all bacteria (25). From these universal
markers, 15 single-copy protein-coding genes were successfully applied in estimating
species abundances using shotgun metagenomic data (26). On the other hand, growing
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numbers of genomes and metagenomes produced for particular bacterial communities
or taxonomic groups allow for comprehensive characterization of SDP diversity within
focal environments and bacterial groups. Taking social bee gut microbiota as an exam-
ple, diverse strains derived from the major honeybee hosts have been isolated and
deep-sequenced (27), including well-covered SDPs of nearly all core gut bacterial phylo-
types (5, 28, 29). Thus, the relatively complete genome data set provides a genome-
wide-based gold standard for defining SDPs for the honeybee core bacteria.

Honeybees are important pollinators and play vital roles in the sustainability of ecosys-
tem and agriculture (30). Honeybee has a simple and specialized gut microbial community,
consisting of 5–9 core bacterial genera (31, 32), which benefit the host in multiple aspects,
including diet digestion (33, 34), nutrient provision (35), pathogen resistance (36), immune
modulation (37) and endocrine signaling (35). Despite of its relatively simple diversity at
the generic level, the gut bacterial community of the honeybee contains extensive genetic
divergences, where high degrees of gene content diversity have been described within
each phylotype (38–40). Strains belonging to the same phylotype form distinct phyloge-
netic clusters according to host species, e.g., Lactobacillus Firm5 (a dominant gut symbiont
of honeybees) strains isolated from honeybees and bumble bees are grouped into 4 and 2
SDPs, respectively, showing distinct host specificity (38, 40). Shotgun metagenomics
further revealed that SDPs generally co-occurred in individual honeybees with a relatively
stable abundance (5). As gene repertoires can differ markedly among SDPs (38, 40), SDP
profiling is essential for resolving the fine-scale diversity and the organization of ecological
function in bee gut microbial community, as well as for understanding their impacts on
the hosts.

In the present study, we developed a pipeline to screen potential marker genes
capable of accurate identification and quantification of SDP diversity. Here, we have
comprehensively collected core bacterial strains from the Asian honeybee Apis cerana
across China. Among these core bacterial phylotypes, all known SDPs are well repre-
sented by numerous strains, and at least one strain has been genome-sequenced for
each SDP. Therefore, we used Gilliamella as a proof of concept to examine the efficacy
of the selected marker gene. In particular, we applied the available genome sequences
as a leverage to delineate Gilliamella SDPs, which serves as the reference for marker
evaluation. We further screened from a 15 single-copy protein-coding gene set lever-
aged from MIDAS software (26), which had been broadly applied for identification and
quantification bacterial species from shotgun metagenomic data, to identify candidate
marker genes capable of differentiating the defined Gilliamella SDPs. Important charac-
teristics such as the level of sequence divergence, phylogenetic robustness, and the
presence of conservative primer regions, are considered in marker gene screening.
Finally, we applied the candidate markers in amplicon sequencing of both bacterial
mock samples and real honeybee guts to verify their efficiency in SDP profiling (Fig. 1).
The markers we identified could accurately, consistently and quantitatively capture
SDP diversity.

RESULTS
A comprehensive genome reference database for honeybee gut bacteria. A

comprehensive genome reference database was constructed for honeybee gut bacte-
ria (Table S1). A total of 242 genomes were included, covering 103 isolates from
A. cerana and 139 from A. mellifera. Based on whole-genome sequence identity
(gANI $ 95%), sequence discrete populations (SDPs) within each phylotype were iden-
tified. In line with previous studies, genomes associated with A. cerana and A. mellifera
clustered into different SDPs (29, 39). For phylotypes associated with A. cerana, 5 SDPs
were identified for Gilliamella (Gillia, n = 65), 2 for Bifidobacterium (Bifido, n = 9), 1 for
Lactobacillus Firm5 (Firm5, n = 6), 1 for Apibacter (Apib, n = 16) and 2 for Snodgrassella
(Snod, n = 7). For those associated with A. mellifera, 6 SDPs were identified for Gillia
(n = 65), 9 for Bifido (n = 19), 2 for Lactobacillus Firm4 (Firm4, n = 2), 6 for Firm5
(n = 18) and 2 for Snod (n = 35) (Table S1). These SDPs delineated based on genome
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sequences were used as references for subsequent taxonomic assignments using 16S
rRNA gene, marker gene, or metagenome-based SDP identifications.

Single-copy marker genes showed higher sequence variations at the SDP level
than the 16S gene. Sufficient sequence variation is crucial for high resolution discrimi-
nation of bacterial SDPs. Here, we compared the average Shannon entropy (ASE)
between the whole-16S and the 15 single-copy marker genes. Our results clearly
showed that the marker genes had much higher ASEs at both phylotype and SDP lev-
els compared to those of the 16S (Fig. 2A). The regional difference in the variation lev-
els between 16S rRNA and selected marker genes was also compared along the full
gene length. A slide-window (20 bp) SE analysis showed that several spikes of variable
regions were identified along the 16S gene, with the highest variable region corre-
sponding to part of the classic V3 region, mirroring results reported in a previous study,
where the V3-V4 primers performed well in profiling bee-associated microbial com-
munities (41). However, the taxonomically informative region of V3 is confined to its
hypervariable fragments and is short in length (;90 bp), which restrains its potential
resolution power. Comparatively, marker genes are typically several folds longer in
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FIG 1 Screening marker genes suitable for SDP discrimination and quantification. (A) SDPs are identified for gut bacterial phylotypes
based on phylogenetic relationships and genome-wide pairwise average nucleotide identities (gANI). (B) A candidate marker gene for
SDP discrimination is selected from a set of universal and single-copy genes based on sequence variation, phylogenetic relationship,
and well-conserved regions for primer design. (C) The performance of marker gene amplicon sequencing (MGAS) on SDP
identification and quantification is validated and compared as characterized using the mock samples and gut communities.
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length, with informative sites evenly distributed along the gene, e.g., nusA, pth, and frr
(Fig. 2B; Fig. S1).

Because phylogenetic placement of the query sequence is a critical step in our SDP
identification method, each marker gene will need to first produce a “correct”

FIG 2 Marker genes are highly variable among SDPs. (A) Average Shannon entropy of the 15 marker genes and the 16S gene at both phylotype and SDP
levels of honeybee gut bacteria. Numbers in brackets for each of the SDP groups indicate the number of strains examined for that specific group. (B) The
Shannon entropy across 16S and candidate marker genes of all A. cerana Gilliamella. The Shannon entropy value is subsequently averaged by a 20-bp
slide-window at a 5-bp step. Gray shadows depict conserved regions optimal for primer-binding sites and blue shadows are considered hypervariable
regions in this study. Dash lines represent the mean Shannon entropy values cross all sequences. Gray lines depict the classic variable regions of the 16S
gene. Apib: Apibacter; Bifido: Bifidobacterium; Firm5: Lactobacillus Firm5; Gillia: Gilliamella; Snod: Snodgrassella alvi.
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phylogeny for the phylotype in question. Therefore, we further examined whether
each of the 15 marker genes could produce the same SDP phylogeny as inferred from
whole-genome sequences of Gilliamella. Here, the tree based on all 65 A. cerana
Gilliamella genomes was used as the gold standard. The results showed that all 15
marker genes but rnhB reconstructed the SDP phylogeny, with all strains assigned to
corresponding SDPs (Fig. S2). On the rnhB gene tree, two Gilliamella genomes were
misplaced from SDP Acer_Gillia_4 to Acer_Gillia_2, which was likely due to a higher
sequence similarity between these two SDPs at a value of 90.93% 6 0.18 SD compar-
ing to that between other SDPs (79.98% 6 1.89 SD). Therefore, rnhB was subsequently
excluded from further screening.

For the 14 remaining marker genes, we further explored for regions that were suita-
ble for amplicon sequencing, based on the presence of conserved primer regions flank-
ing the hyper-variable region. The rimM gene lacked hyper variable regions across the
full gene length (Fig. S1), while some other genes (murB, recR, miaA, rbfA, ribF, ruvA,
rsfS, and yebY) did not demonstrate promising conserved regions for primer design.
These genes were then excluded from the candidate gene pool. The 5 remaining can-
didates (frr, nusA, pth, truB, and smpB) all had a hyper-variable region of ;200-550 bp
that was flanked by conservative primer regions. Among them, frr, nusA and pth pro-
duced an amplicon of ;200 bp (Fig. 2B), which could be thoroughly sequenced with
most current shotgun sequencing methods (e.g., PE100 or PE150). These 3 genes were
then chosen for the final test for their performance in SDP discrimination in both iden-
tity and quantity, using Gilliamella mock samples and real honeybee guts.

Marker gene amplicon sequencing (MGAS) showed high accuracy, sensitivity
and repeatability in SDP profiling of mock samples. Mock samples contained varied
proportions of the representative strain cultures of the 5 Gilliamella SDPs. These sam-
ples were extracted for DNA and amplified for the hyper-variable regions of the 3 can-
didate marker genes (frr, nusA, and pth). Twenty-four barcoded amplicons were pooled
and shotgun sequenced for ca. 1 Gb data (ca. 2.5 million reads). Each mock sample was
sequenced three times. An average of 73,462, 86,467, and 113,498 reads per sample
was generated for frr, nusA and pth, respectively.

The results of MGAS showed a high level of repeatability across the three replicates,
where the average ICC(C,1). 0.9, except for pth, which had an ICC(C,1) of 0.752 among
samples with equal proportion of bacterial DNA (Fig. 3A; Fig. S4C). With regard to
detection accuracy, MGAS correctly detected all bacterial members present in 22/24
samples, while two samples (S03 and S04) showed false-positive results, which was
probably derived from sample contamination or sequencing error (Fig. 3B). Because
the sensitivity of amplicon sequencing was affected by sequencing depth, we calcu-
lated the minimum read numbers required to detect members at low abundances,
using rarefaction curves (Fig. S5). The results suggested that strains with a relative
abundance of 1% could be detected by a minimum of ca. 1,123, 2,953, and 5,034 reads
for frr, nusA, and pth (equivalent to 0.49, 1.29, and 2.44 Mb data per sample), respec-
tively. Accordingly, lower abundance would require deeper sequencing. At a relative
abundance of 0.02%, approximately 17,778, 18,518, and 22,222 reads (7.75, 8.07, and
10.76 Mb data) were required for frr, nusA, and pth, respectively (Fig. 3D; Fig. S5). The
sequencing depth was generally sufficient for SDP detection in our study. Among the
216 sequenced samples, only two samples were sequenced with only 963 (frr) and
2,348 (pth) reads, respectively, and failed in identifying corresponding SDP members at
the lowest proportions (1% and 0.1%, respectively) due to insufficient sequencing
depth.

All three markers performed well for the DNA mixture with the average R2 values of
0.99, 0.91 and 0.99, for frr, nusA, and pth, respectively (Fig. S4B). In addition, mock sam-
ples collected from bacterial culture mixtures were also sequenced. The relative abun-
dances evaluated by frr amplicon reads were highly congruent with the corresponding
proportions of the mock samples, with the average R2 values of 0.91, while nusA and
pth showed relatively low fidelities with R2 values of 0.74 and 0.66, respectively (P ,

2.2e-16, Fig. 3C). The reduced accuracy in bacterial culture mixtures was likely
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attributed to artifacts associated with the sample homogenizing procedure. Overall,
the MGAS method showed high levels of accuracy, sensitivity and repeatability in char-
acterizing SDP compositions, in both taxonomic identity and relative abundance.

MGAS performed equally well as metagenomics in characterizing honeybee
gut SDP diversity. To examine the performance of the MGAS method in characterizing
honeybee gut microbiota, we used frr (Fig. 4) and pth (Fig. S6) genes to calculate
Gilliamella SDP diversities for the 12 A. cerana workers from Sichuan and Taiwan,
China. The MGAS was able to assign strains to the correct SDP at accurate abundance
for real gut samples, with results were highly congruent with those from metagenom-
ics sequencing (with R2 = 0.99 for frr and 0.97 for pth, P , 2.2e-16, Fig. 4B; Fig. S6B).
Both results revealed that most individual bees were dominated by two or three
Gilliamella SDPs, yet with significant variations in dominant members and composi-
tions among individuals and across geographical locations (Fig. 4A). Gillia_Acer_2 was
the dominant SDP in most of the sequenced bees, which was found in 11 out of the 12
samples, with 10 bearing relative abundances of 48.06–98.37% (Fig. 4A). Both methods
showed congruent results in alpha diversity (P = 0.82 and 0.79 for MGAS and metage-
nomics sequencing, respectively, Wilcoxon rank-sum test, Fig. 4C). At the beta diversity
level, the principal coordinate analysis (PCoA) based on Bray-Curtis dissimilarity
revealed that the gut bacterial communities from bees of Sichuan and Taiwan formed
two distinct clusters, which separated along the first axis (Fig. 4D). This result was again
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FIG 3 MGAS accurately identifies A. cerana Gilliamella SDPs. (A) Intraclass correlation coefficient (ICC) of relative abundance among the three replicates of
MGAS samples. The ICC is calculated using the two-way mixed effects model with consistency (C) as the relationship among replicates, and single (1) result
as the unit of measurement, i.e., ICC(C, 1). (B) Relative SDP abundances in mock samples revealed by marker gene sequencing. The results shown in the
heatmap are the logarithms of the relative abundances of the five representative strains of the five SDPs of A. cerana Gilliamella. Gray box indicates a
relative abundance at zero. False positive results are framed in red. (C) Spearman correlation of SDP abundances in A. cerana Gilliamella communities
revealed by sequencing against mock samples. P , 2.2e-16. The black line presents the linear regression of the MGAS results against SDP abundances in
mock samples. The blue solid and gray dashed lines represent a 1: 1 line and the fitted exponential regression (with 95% confidence interval shown in
gray shade), respectively. (D) Minimum read numbers required for detecting members at low abundances.
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consistent between the MGAS and metagenomic methods (Adonis PERMANOVA, R2 =
0.056, P = 0.204 for MGAS and R2 = 0.096, P = 0.134 for metagenomics). Thus, the per-
formance of SDP profiling using MGAS was parallel to the metagenomic gold standard
in microbial community studies.

The 16S V4 region was also used to determine the Gilliamella SDP compositions for
the 6 bee gut samples from Sichuan. We applied operational taxonomic unit (OTU)
clustering based on sequence similarity at 97% and 99% identity thresholds, which are
commonly adopted for surveying phylotype and intraphylotype microbial diversities,
respectively (14, 42), to assess the efficacy of 16S V4 region in SDP profiling. 16S V4
amplicon sequencing resulted in 8 and 10 OTUs at 97% and 99% thresholds, respec-
tively, with a frequency cut off at . 100. The identified OTU numbers differed from
those of the MGAS results at the same sequence similarity thresholds (Fig. 4E).
Alarmingly, 16S V4 amplicons failed to assign OTUs to the correct SDPs via blast. And
the relative OTU proportions revealed by 16S V4 region disagreed with those from
MGAS, where the numbers of dominant OTUs (.1%) revealed by MGAS were more
congruent to those from metagenomics. The improved performance with the MGAS
method in characterizing SDP diversity is likely due to greater sequence divergence of

FIG 4 MGAS shows high congruence to metagenomics sequencing at SDP-level analysis. (A) Relative abundances of Gilliamella SDPs revealed by MGAS (frr)
and metagenomics sequencing of A. cerana gut communities. (B) Spearman correlation coefficient between MGAS and metagenomics results, with R2 =
0.99, P , 2.2e-16. The black line presents the linear regression of the MGAS results in SDP abundances against those of metagenomics. The blue solid and
gray dashed lines represent a 1: 1 line and the fitted exponential regression (with 95% confidence interval shown in gray shade), respectively. (C) Shannon
diversity index of SDP frequencies for bee guts from two locations calculated by MGAS (left panel) and metagenomics sequencing (right panel). The two
methods showed no significant difference, with the P-value of 0.70 and 0.82 in SC and TW, respectively, by Wilcoxon rank-sum test. (D) Principal coordinate
analysis (PCoA) based on Bray-Curtis dissimilarity of SDP compositions of honey bee workers from Sichuan and Taiwan using MGAS (left panel, Adonis
PERMANOVA, R2 = 0.056, P = 0.204) and metagenomics sequencing (right panel, Adonis PERMANOVA, R2 = 0.096, P = 0.134). Each point represents the
value for an individual bee, with the color showing its collection location (Sichuan or Taiwan). Note that samples B0108, B0120, B14756, B14757, and
B14758had similar Gilliamella SDP compositions, therefore overlapped in the figure. The shaded ellipses represent 95% confidence intervals on the
ordination. (E) Relative abundances of Gilliamella OTUs in the gut microbiota of A. cerana assigned by clustering at 97% or 99% thresholds for 16S V4 and
frr. The result shown in the heatmap are the logarithms of the relative abundances of the OTUs or five SDPs. Individual bees are marked to right of each
row. Gray box indicates a relative abundance at zero.
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the marker genes. For instance, the average pairwise inter-SDPs sequence similarity in
the frr hyper-variable region was significantly lower (90.92% 6 3.18, n = 65) than that
of the 16S V4 region (99.95% 6 0.65, n = 44) (Wilcoxon rank-sum test, P , 2 e-16). We
reconstructed the Gilliamella phylogeny using both frr and the 16S V4. The results
showed that frr revealed a correct SDP relationship, while 16S V4 yielded an inter-
mingled cluster containing SDPs from Gillia_Acer_1 and Gillia_Acer_2, with nearly no
in-group resolution (Fig. S7). Furthermore, when blasted against the reference genome
data set, 16S V4 almost always failed to assign sequences as the correct SDPs, with
only one exception that was mapped to Gillia_Acer_3.

SUMMARY AND DISCUSSION

We developed a pipeline to identify reliable marker genes for accurate identification
and quantification of SDPs from bacterial communities. Three important criteria were
applied in the assessment: the extent of sequence divergence, phylogenetic accuracy,
and the presence of flanking conservative primer regions. Single-copy protein-coding
genes identified by our pipeline were applied as marker genes in SDP quantification of
honeybee gut microbiota, successfully producing results consistent with those from
metagenomics, which were used as the gold standard. Conversely, we showed that the
widely used 16S V4 region contained limited sequence divergence within phylotypes,
failing to provide sufficient resolution in differentiating SDPs. As a result, 16S V4 ampli-
con sequencing cannot reflect fine scale bacterial diversity for the community.
Consequently, dominant OTUs delineated by 16S V4 at 97% or 99% thresholds signifi-
cantly differed from the defined SDPs. On the other hand, the OTUs of single-copy pro-
tein-coding genes screened out by our pipeline were successfully assigned to the cor-
rect SDPs, and the numbers of dominant OTUs showed more congruent results to
those from metagenomics.

Compared with whole-genome shotgun sequencing, amplicon sequencing of sin-
gle-copy protein-coding genes provides an alternative solution to characterize SDP di-
versity in an accurate, quantitative and economical way. We address that not every sin-
gle copy protein-coding gene is efficacious in SDP quantification. The candidate gene
must meet all three criteria integrated in our pipeline to be a good marker gene.
Notably, the three marker genes identified in this study were screened from a small set
of candidates containing only 15 genes recommended for bacterial species identifica-
tion. We emphasize that these genes are not meant to be exhaustive for bacterial SDP
profiling. A larger candidate gene set (e.g., the 114 PhyEco bacterial universal genes
reported in Wu et al. [25]) or even the whole set of single-copy genes that are conserv-
ative across bacterial lineages) will likely result in a lot more marker genes suitable for
identifying and quantifying bacterial SDPs. In this case, we expect dozens to hundreds
of proper marker genes to be filtered out. On the other hand, a small set of core sin-
gle-copy protein-copy genes that are determined to be universally present among
known bacteria, such as the 15 marker genes tested in this study, will likely provide
candidate genes suitable for accurate characterization of SDP diversity for less known
bacterial taxa.

Accurate identification of the SDP composition will also facilitate the prediction of
the functional capacity of microbial communities. Functional attributes of a given bac-
terial lineage are strongly correlated with its phylogenetic position (43). Therefore, vari-
ous approaches, e.g., PICRUTs (44), have been developed to predict potential functions
of a given microbial community based on phylogenetic profiles of bacterial members.
As demonstrated in this study, single-copy protein-coding genes identified by our
pipeline show better fidelity in revealing phylogenetic relationships for the focal phylo-
type. Therefore, we anticipate that function prediction for microbial communities will
be further improved by integrating single-copy protein-coding genes and the screen-
ing pipeline described here.
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MATERIALS ANDMETHODS
Genome references of core gut bacteria of honeybees. A total of 242 bacterial genomes associ-

ated with A. mellifera and A. cerana were downloaded from the NCBI genome database (Table S1). These
242 genomes were used as the reference database of honeybee gut bacteria, which comprised the 6
major phylotypes: Apibacter (n = 16), Bifidobacterium (n = 28), Lactobacillus Firm4 (n = 2), Lactobacillus
Firm5 (n = 24), Gilliamella (n = 130) and Snodgrassella (n = 42).

SDP delineation for honeybee core phylotypes. Protein-coding genes of all sequenced genomes
were annotated using Prokka (https://github.com/tseemann/prokka) (45). Core genes, which were
defined as being shared by . 99% strains of a given phylotype, were identified using Roary (version
3.13.0) (46) with the parameter -blastp 75. Multiple sequence alignments were carried out using MAFFT
(version v7.467, https://github.com/The-Bioinformatics-Group/Albiorix/wiki/mafft) (47). Phylogenetic
trees were constructed using core single-copy genes of each phylotype by RAxML (version 8.2.12, -x
12345 -N 1000 -p 12345 -f a -m GTRGAMMA) (48). Phylogenies were visualized in R (version 3.6.0) using
the package ggtree_v2.4.1 (49) or iTOL (version 6.1.1) (50). Pairwise genome-wide average nucleotide
identity (gANI) values were calculated using pyani (version 0.2.10; https://github.com/widdowquinn/
pyani) (51). A clade with a gANI $ 95% from its closest clade was defined as an SDP.

Screening for candidate marker genes capable of discriminating Gilliamella SDPs. The 15 uni-
versal single-copy maker genes (frr, nusA, pth, rbfA, recR, rnhB, ribF, rimM, rsfS, RuvA, smpB, truB, miaA,
murB, and yebY, listed in Table S2) (26) were evaluated as candidate genes. The sequences of candidate
marker genes were retrieved by MIDAS (version 1.3.2) (26), whereas the 16S genes were retrieved from
the reference genomes using an in-house script. The average Shannon entropy (ASE) of the full gene
length was used to assess sequence variation between strains of inter- and intra-SDPs for all phylotypes,
where the Shannon entropy for each nucleotide site across genomes in comparison was calculated
using oligotyping (version 2.1) (52).

The phylotype Gilliamella, which contains the most genomes available for this study, was used as a
proof of concept to examine the efficacy of marker genes in SDP differentiation. For each SDPs in phylo-
type Gilliamella, the Shannon entropy values were subsequently averaged for each 20-bp slide-window
with a 5-bp step to evaluate the regional genetic divergence along the full length of the marker genes.
Pairwise sequence similarities were determined by Clustal Omega (53).

From the candidate genes, potential marker genes that may efficiently distinguish all known SDPs of
the Gilliamella phylotype were screened. The following criteria were followed: (i) the marker genes
should contain conservative regions flanking the hyper-variable region for designing primers enabling
recovery target phylotype; (ii) the amplicon length is between ;150-550 bp; (iii) the amplified region is
sufficiently variable to allow the discrimination of SDPs; and (iv) the primers are specific to the focal phy-
lotype to avoid off-target amplifications. The aforementioned 15 marker genes were subject to these cri-
teria, and 5 of them (ffr, nusA, pth, truB, and smpB) were selected as potential markers for identifying
SDPs of A. cerana Gilliamella. Among these, three genes (ffr, nusA, and pth) were subjected to further
testing as a proof of concept, because their amplicon lengths were 206, 206 and 230 bp, respectively,
which were ideal for current shotgun sequencing platforms. To increase the throughput and cost effi-
ciency, 24 amplicons were pooled for one sequencing run. The 59 end of both forward and reverse pri-
mers were tagged with 6-bp unique barcode sequences (see Table S3) to distinguish positive and nega-
tive DNA strains, and to differentiate samples.

Bacterial mock samples. One representative strain from each of the five Gilliamella SDPs associated
with A. cerana was cultured at 35°C and 5% CO2 for 48 h, on heart infusion agar (HIA) medium contain-
ing 5% sheep’s blood (54). To screen potential contaminations, the full-length 16S gene was amplified
for each bacterial culture using universal primers 27F and 1492R (54) and was subject to Sanger
sequencing. 16S sequences were checked against those of the reference strains for identification, before
strains were mixed for mock samples. Each Gilliamella culture was adjusted to OD600 = 0.5. Twenty-four
mock SDP communities were prepared by mixing up 2–5 of the representative strains at varied propor-
tions. The compositions of the mock samples were set as: equal proportion of each of the five strains,
equal proportion of four strains with the absence of one strain at a time, equal proportion of three
strains with the absence of two randomly selected strains, and a series of varied compositions with rela-
tive abundances ranging from ca. 0.02% to 50%. DNA of the bacterial mixtures were extracted using a
CTAB-based DNA extraction protocol followed by recovery in 10 mM Tris-EDTA buffer (1�TE, pH 7.4)
and quantified using the Qubit DNA assay kit on a Qubit 3.0 Fluorometer (Life Technologies, CA, USA).
Alternatively, genomic DNA of each of the five representative strain cultures was extracted separately
and the mixed at varied compositions and proportions (see Table S4).

SDP identification and quantification for mock samples using amplicon sequencing of the
three marker genes. PCR amplification was performed for frr (frr-F 59-GCTGAAGATGCAAGAAC and frr-R 59-GC
ATCACGACGAATATT), nusA (nusA-F 59-CTTGAAATTGAAGAACT and nusA-R 59-GTACCTTGTTCAGCTAA), and
pth (pTH-F 59-AAACTTATTGTAGG and pTH-R 59-CCACTTAAATTCATAAA) for each mock sample with three
replicates. Triplicate 50-ml reactions were carried out with 25 ml of 2 � Phanta Max Master Mix
(Vazyme Biotech, Nanjing, China), 2 ml (each) of 10 mM primer, 19 ml of ddH2O, and 2 ml of template
DNA. The thermocycling profile consisted of an initial 3-min denaturation at 95°C, 35 cycles of 15 s at
95°C, 15 s at 52°C for nusA and frr or at 42°C for pth and 20 s at 72°C and a final 10-min extension step
at 72°C. After being visualized on 2% agarose gels, DNA was purified using a gel extraction kit
(Qiagen, Germany) and quantified using the Qubit DNA assay kit on a Qubit 3.0 Fluorometer.
Barcoded amplicons of up to 24 mock samples were pooled and subject to Illumina sequencing using
a NovaSeq 6000 platform (PCR-free library, 150 PE) at Novogene (Beijing, China). Approximately 1 Gb
of raw data were obtained from each pooled library (Table S5).
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The program fastq-multx (version 1.3.1. https://github.com/brwnj/fastq-multx) was employed to
demultiplex sequencing reads based on barcode sequences. The 6-bp barcodes in reverse sequences
were trimmed using Seqtk (https://github.com/lh3/seqtk). The demultiplexed paired-end reads were
then analyzed in QIIME2 (version 2020.2. https://qiime2.org) (55). A plugin DATA2 (56) was used to
denoise reads and to group sequences into amplicon sequence variants (ASVs). Individual ASVs were
then taxonomically classified using blast (classify-consensus-blast) at a 97% identity threshold (Fig. S3)
against the 3 marker genes (ffr, nusA, and pth) derived from the customized bee gut bacterial data set.
The relative abundance of each SDP (RASDP) was calculated as: RASDP = (NRSDP)/(NRGillia)*100, where NRSDP

represents the number of reads mapped to the focal SDP and NRGillia represents the number of reads
mapped to all Gilliamella SDPs. These estimated abundances were then compared to those of the mock
samples. The performance of SDP profiling of the 3 marker genes was evaluated on the basis of accu-
racy, sensitivity and repeatability. Intraclass correlation coefficient (ICC) with a two way random/mixed
(ICC[C,1]) model was used to assess the repeatability of this method using SPSS (version 20.1) (57).

Rarefaction curves were plotted using identified SDP numbers against read numbers, which were used
to infer the minimum read number required to detect strains at varied proportions. For each sample, ASVs
with a depth,100 were filtered out. Rarefaction was performed using QIIME2 with the plugin alpha-rarefac-
tion and a sampling depth of 40,000 reads per sample and default parameters. Minimum read numbers for
identifying SDPs with relative abundances of 0.02%, 1% and 20% were chosen manually.

SDP identification and quantification for A. cerana gut microbiota using 16S V4, marker genes
and metagenome sequencing. Adult worker bees collected in Sichuan were used to quantify
Gilliamella SDP diversity using three different methods (16S V4 region amplicon sequencing, MGAS and
metagenomics sequencing). Bees were first cooled at 4°C for 10 min. Then the entire guts were dis-
sected from the abdomen using sterile forceps and DNA was extracted using a CTAB bead-beating pro-
tocol described previously (29).

First, the 16S V4 region was amplified for six bee guts from Sichuan and sequenced using an
Illumina Hiseq X 10 platform (250–300 bp insert size, 250 PE) at BGI-Shenzhen (Shenzhen, China). Raw
reads obtained for each sample were summarized in Table S6. Data quality control was performed using
fastp (version 0.13.1, -q 20 -u 10 -w 16) (58). The demultiplexed sequences were denoised and grouped
into ASVs using an open reference method VSEARCH (59) embedded in QIIME 2. The taxonomic identifi-
cation for ASVs was subsequently performed using the naive-Bayesian classifier trained on the BGM-Db,
a curated 16S reference database for the classification of honeybee and bumblebee gut bacteria (60). A
feature table and ASVs consisting of filtered 16S reads pertaining to Gilliamella was constructed. OTU
clustering was performed at both 97% and 99% identity thresholds, respectively, using VSEARCH with
cluster-features-de-novo method. Additionally, low-abundant OTUs comprising of ,100 reads were
removed. Taxonomic assignments for OTUs were performed using blast against the BGM-Db with SDP-
level taxonomy. OTU composition heatmaps were generated based on relative abundances and visual-
ized in R.

Second, for each sample, the marker genes frr and pth, which demonstrated the best and worst per-
formances in accuracy and sensitivity, respectively, among the 3 marker genes, were applied following
the same pipeline used in the mock samples. ASVs of the six sample from Sichuan were clustered into
OTUs and filtered following the above-mentioned 16S V4 pipeline. Taxonomic assignments for OTUs
were performed by blast against frr sequences derived from the customized bee gut bacterial genome
sequence database.

Finally, metagenome sequencing of four bee (B0108, B0120, B0154, and B0174) guts was performed using
an Illumina Hiseq X 10 platform (300–400 bp insert size, 150 PE) at BGI-Shenzhen. Additional metagenomes of
eight worker bee guts (BioProject PRJNA705951) were download from NCBI (Table S6). The metagenome
sequencing was used as the gold standard for Gilliamella diversity distributed in the honeybee guts. Shotgun
reads mapped to the A. cerana genome (GCF_001442555.1) using BWA aln (version 0.7.16a-r1181, -n 1) (61)
were identified as host reads and subsequently excluded. We used the ‘run_midas.py species’ script in MIDAS
with default parameters to estimate the relative abundances of SDPs for each sample. Finally, the results from
MGAS were compared to those from metagenome sequencing to assess the performance of the marker
genes.

Data availability. Raw data from MGAS, 16S V4 amplicon and metagenomics sequencing have been
submitted to NCBI under BioProject PRJNA772085.
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