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Mild traumatic brain injury (mTBI) is a major public health concern. Functional MRI has reported alterations in several brain
networks following mTBI. However, the connectome-scale brain network changes are still unknown. In this study, sixteen mTBI
patientswere prospectively recruited froman emergency department and followed up at 4–6weeks after injury. Twenty-four healthy
controls were also scanned twicewith the same time interval.Three hundred fifty-eight brain landmarks that preserve structural and
functional correspondence of brain networks across individuals were used to investigate longitudinal brain connectivity. Network-
based statistic (NBS) analysis did not find significant difference in the group-by-time interaction and time effects. However, 258
functional pairs show group differences in which mTBI patients have higher functional connectivity. Meta-analysis showed that
“Action” and “Cognition” are the most affected functional domains. Categorization of connectomic signatures using multiview
group-wise cluster analysis identified two patterns of functional hyperconnectivity amongmTBI patients: (I) between the posterior
cingulate cortex and the association areas of the brain and (II) between the occipital and the frontal lobes of the brain. Our
results demonstrate that brain concussion renders connectome-scale brain network connectivity changes, and the brain tends to
be hyperactivated to compensate the pathophysiological disturbances.

1. Introduction

Mild traumatic brain injury (mTBI) represents amajor public
health burden with an annual incidence of over 1.2 million
people in the USA [1–3]. Despite normal findings in clinical
imaging such as computed tomography (CT) and structural
magnetic resonance imaging (MRI) for the majority of mTBI
patients, mTBI can cause emotional, physical, and cognitive
symptoms that significantly impact the patients’ quality of
life and cost the nation $16.7 billion each year [4–6]. TBI
in general can be thought of as a disorder of network
disconnection [7]. Similar clinical presentations are observed
in diverse range of insult and injury despite different origins

and locations of impact.Therefore, evaluating the outcome of
injury in specific brain regions is confusing, and it provides
a distorted view of brain functional disruption [8]. This
situation is more significant in mild TBI than in severe
and moderate TBI because there is usually no significant
structural damage at mild TBI, indicating that this may
account for a greater portion of the problem in mTBI than
in moderate or severe TBI [9].

In light of heterogeneous locations of injury, use of
large-scale approaches can provide a better understanding
of brain function and improve neuropsychological under-
standing of the sequela of mTBI. Furthermore, mapping the
topography of the brain functional connectivity alterations
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2 Neural Plasticity

at a macrolevel can elucidate the role of brain plasticity.
It has been reported that brain injury induces not only
structural damage, which could be detected by diffusion
tensor imaging (DTI), but also functional disturbances and
compensation, which are considered a neural plastic effect
[10–13]. In adults, brain plasticity still takes place, especially
at a large scale, which is known as adult plasticity [9, 14, 15]. In
general, brain plasticity can be defined as the capacity of the
brain to change its structural or functional connectivity and
organization during a short or long period of time [16, 17]. In
adult plasticity, according to the Hebbian theory, coincident
neuronal firing leads to wiring together [18]. At the same
time, brain functional connectivity is measured using the
temporal dependency of neural activity [19].Therefore, it has
been suggested that functional connectivity (FC) of the brain
during the resting state is linked to the brain plasticity [20],
which has been confirmed by showing a strong correlation
between brain plasticity and resting-state FC (rs-FC) changes
[21, 22].

Accumulating evidences demonstrate brain plasticity
after brain injury. Zhou et al. [20] studied brain plasticity
using rs-FC after partial and complete callosotomy groups,
in which disrupted functional connectivity was restored
at day 28 in the partial callosotomy group through the
remaining interhemispheric axonal pathways. Additionally,
intrahemispheric functional connectivity was increased in
both partial and complete callosotomy, representing plasticity
in brain FC and adaptation after injury [20]. Nakamura et al.
[23] examined neural plasticity in a longitudinal study during
recovery period of TBI using graph theory, which revealed
that overall functional connectivity strength is higher at three
months after injury as compared with what is observed in
healthy adults; however, functional connectivity decreases
and approaches that of the healthy subjects sample after
six months after injury. These findings indicate that overall
functional connectivity increases to compensate the effect of
injury after TBI [23]. Therefore, the study of neuroplasticity
can provide a new angle to inspect the neurological origins
of brain alterations after injury, especially at a large scale, and
provide new insights into the pathophysiological substrates
of cognitive and behavioral alterations [7, 24]. However, to
date, the field is still short of investigation on connectome-
scale brain network alterations and compensatory effects after
TBI. Moreover, the impacts of brain alterations over time in
connectome-scale brain networks during brain recovery are
still unknown [11]. We hypothesize that mTBI induces brain
network disturbances and also the consequent compensatory
effects at the connectome-scale network level. Our objective
is to investigate the connectome-scale brain network changes
after mTBI and recovery and potential brain plasticity.

Resting-state functional MRI (rsfMRI) constitutes an
ideal way to evaluate brain functional connectivity and
changes in brain functional connectivity at a connectome
scale which can contribute to a better understanding of plas-
ticity and the brain’s attempts to compensate for injury [7–
9]. Brain functional connectivity can be measured using sta-
tistical relationships between the blood-oxygen-level depen-
dent (BOLD) signals of brain regions, which reflects the
prior history of coactivation between brain regions [25].

The large-scale rs-FC is an ideal way to evaluate brain func-
tional connectivity on a connectome scale at a macrolevel,
which can be used to investigate brain plasticity and serve
as an index of the efficacy of healing [8]. rsfMRI provides
unique insights into brain plasticity at the macrolevel, which
can provide a better understanding of brain disorders such as
TBI and consequently guide proper rehabilitation plan [11].

In the evaluation of connectome-scale brain networks,
one technical challenge is to define the network nodes or
regions of interest (ROIs). The network nodes serve as
structural and functional substrates for network analysis.
Several approaches are available in the field with remarkable
progress. However, they also suffer different limitations from
different perspectives, particularly at a large scale, when
the network is at very fine level. Any mismatch will result
in the cross talk of a network to its neighbors. Zhu et al.
previously identified 358 regions of interest (ROIs), known
as dense individualized common connectivity based cortical
landmarks (DICCCOLs), distributed across the brain. The
location of each DICCCOL is identified based on the white
matter fiber connection profile obtained from diffusion MRI
(dMRI). Each DICCCOL preserves similar structural and
functional properties across individuals [26]. Since each
DICCCOL preserves consistent structural connection pat-
terns, according to the connectional fingerprint concept,
its functional role should be similar across subjects [27].
In addition to reproducibility and consistency, DICCCOL
analysis has been shown to be powerful in identifying
connectivity signatures (disrupted connectivity) in affected
brains [28]. After localizingDICCCOLs across an individual’s
brain, the time series related to each DICCCOL is derived
from the BOLD rsfMRI signal of the gray matter area in
the 5mm neighborhood of each DICCCOL. The functional
connectivity of an individual’s brain at a large scale is assessed
by measuring temporal Pearson correlation between each
pair of the time series allocated to the DICCCOLs. Our goal
is to use the DICCCOL framework to define the functional
network nodes at a large scale and further assess the effect of
brain injury on mTBI patients over time.

2. Materials and Methods

2.1. Data Acquisition. Patient eligibility was based on the
mTBI definition by the American Congress of Rehabilitation
Medicine, 1993, with the following inclusion criteria: patients
aged 18 or older with an initial Glasgow Coma Scale (GCS)
score of 13–15 in the ED with any loss of consciousness
less than 30 minutes or any posttraumatic amnesia less
than 24 hours, or recorded change of mental status (con-
fused, disoriented, or dazed). In the acute stage (first scan),
patients were scanned at 82.64/17 hours (average/median)
after injury, and the second scan was acquired at 4–6 weeks
after injury (subacute stage). For healthy subjects, two scans
were acquired with a 4–6-week interval in between. rsfMRI
and dMRI data were acquired on a 3-Tesla Siemens Verio
scanner with a 32-channel radiofrequency head-only coil.
Demographic characteristics are presented in Table 1. dMRI
data has been already used and analyzed for another study.
Thus, dMRI has only been used to identify the locations of
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Table 1: Demographic characteristics of healthy controls and
patients.

Characteristic Control subjects mTBI patients
(𝑛 = 24) (𝑛 = 16)

Gender
Male 20 10
Female 4 6

Age (years)
Mean ± SD 28.00 ± 7.55 34.52 ± 13.85
Median/range 26/(19∼50) 30/(19∼63)

Race
African American 2 11
White 15 3
Others 7 2

Cause of injury
Motorcycle accident — 1
Bicycle accident — 1
Motor vehicle accident — 5
Struck by vehicle — 2
Assault — 4
Fall — 3

Time between injury and
1st scan (hours)

Mean ± SD — 82.64 ± 121.90
Median/range — 17/(3∼446)

Time between 2 scans
(days)

Mean ± SD 84.60 ± 55.48 42.68 ± 17.48
Median/range 70/(22∼225) 36/(26∼89)

Glasgow Coma Scale
Mean ± SD — 14.92 ± 0.28
Range — (14∼15)

DICCCOLs in this study. dMRI data was acquired using a
gradient echo EPI sequence with 𝑏 = 0/1000 s/mm2 in 30
diffusion gradients directions with the following parameters:
TR (repetition time) = 13300ms, TE (echo time) = 124ms,
slice thickness = 2mm, pixel spacing size = 1.333 × 1.333mm,
matrix size = 192 × 192, flip angle = 90∘, and number
of averages (NEX) = 2. For rsfMRI data, gradient echo
EPI sequence with following imaging parameters has been
performed: pixel spacing size = 3.125 × 3.125mm, slice
thickness = 3.5mm, slice gap = 0.595mm, matrix size = 64 ×
64, TR/TE = 2000/30ms, flip angle = 90∘, 240 volumes for
whole-brain coverage, and NEX = 1. During rsfMRI scans,
subjects were instructed to keep their eyes closed and not
to think about anything specific. In addition, T1, T2, fluid
attenuated inversion recovery (FLAIR), and susceptibility
weighted imaging (SWI) were also acquired. The total data
acquisition protocol took about 40 minutes.

2.2. Data Analysis. A series of steps were taken to analyze
the data: (1) localizing DICCCOL nodes of each subject using

the DICCCOL framework and computing FC between the
time series of each pair of DICCCOLs; (2) performing a
longitudinal statistical analysis using mixed 2 × 2 design
analysis of variance (ANOVA) and network-based statistic
(NBS) analyses to determine the connectomic signatures;
(3) determining the functional roles of the connectomic sig-
natures using meta-analysis; and (4) performing multiview
group-wise cluster analysis to determine involved FC clusters
and the interrelationships of the connectomic signatures.

2.2.1. Localizing DICCCOLs and Computing FC Matrix for
Each Subject. In the connectomic study, one essential step
is to identify the locations of ROIs across the brain that
preserve consistent structural and functional connections
across individuals. DICCCOLs are a set of brain landmarks
with similar structural and functional connectivity across
individuals obtained by identifying the consistent white
matter (WM) fiber connection profile across subjects. This
has been done using the tool available to download at
http://dicccol.cs.uga.edu/. Identifying the locations of DIC-
CCOLs on the brain of an individual can be summarized
in the following steps (see Figure 1): (1) deterministic trac-
tography of whole brain was performed (Figure 1(a)). As a
result, we were able to identify the WM fiber connection
profile of each location of the brain. (2) Extraction of the
transformation matrix was performed for the coregistering
of the brain of an individual subject to the brain template
(Figure 1(b)). (3) Application of the transformation matrix
was carried out to transfer the individual surface and fiber
bundles to the template space for prediction (Figure 1(c)).
As a result, the initial location of DICCCOLs on the
individual’s brain was obtained. (4) Searching the local
neighborhood (6mm radius) of the initial location of each
DICCCOL was conducted to find the optimized location
of that DICCCOL. For this purpose, similarity between the
WM fiber connection profile in the template and all local
neighborhoods was measured. The neighborhood with the
maximum similarity of the WM fiber connection profile
with the WM fiber connection profile of the DICCCOL
on the template was selected as the optimized location of
the DICCCOL (Figure 1(d)). This was performed to identify
optimized locations of all DICCCOLs on each individual’s
brain (Figure 1(e)). DICCCOL landmarks have been shown
to be highly reproducible across individuals [28]. At the same
time, according to the connectional fingerprint concept, each
brain’s cytoarchitectonic area has a unique set of extrinsic
inputs and outputs that largely determines the functions
that each brain area performs [27]. The close relationships
between structural connection patterns and brain functions
have extensively been reported [29–31]. Since each DIC-
CCOL preserves consistent structural connection patterns,
its functional role should be similar across subjects. The
intrinsic functional role of each DICCCOL has been already
extensively examined and validated [28, 32]. On the other
hand, although function-based ROIs are helpful for wide
range of studies, they seem to not be an appropriate choice
for connectome studies, which require fine identification
of ROI locations, because the accuracy of ROIs locations
in function-based ROIs can be compromised by several
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Figure 1: Pipeline for identifying the locations of DICCCOLs on the brain of an individual. (a) Fiber tracking and tractography of the
whole brain was performed via MedINRIA (http://med.inria.fr/). Box “𝑎” presents the preprocessing steps (including brain extraction,
motion correction, and eddy current correction) and deterministic tractography. (a)(I) shows diffusion data of an individual brain at 𝑏

0

and some different gradient directions, and (a)(II) shows the result of tractography in 3D space in the sagittal, axial, and coronal views.
(b) The transformation matrix to transfer coordinates from the subject space to the template space was obtained by registering the brain
of an individual subject to the brain template. (b)(III) shows the schematic of this procedure in which box 𝑏 represents the transformation
matrix. (b)(IV) and (b)(V) show the coronal, axial, and sagittal views of individual and template’s brains, respectively. (c) Transformation and
identification of the initial location ofDICCCOLs.The transformationmatrix (𝑏) is applied to transfer the individual surface and fiber bundles
to the template space for prediction. As a result, the initial location of DICCCOLs on the individual’s brain is obtained. (c)(VI) is the surface
of an individual in the subject space, and (c)(VII) is the surface of the same individual, which is transferred to the template space. The initial
location of DICCCOLs on an individual’s brain was obtained by overlaying the location of DICCCOLs of the template on the transformed
surface of the individual. (d)The schematic procedure of optimization in which the local neighborhood (6mm radius) was searched in order
to identify the location where the profile of connected fiber has the most similarity with the WM fiber connection profile of the DICCCOL
on the template. (d)(VIII) shows the initial location of a DICCCOL, obtained from the previous step. Using the information of deterministic
tractography ((a)(II)), the connected fiber at this initial location was extracted ((d)(X)). Next, the similarity between the connected fibers at
this location and the connectedWMfiber on the template was measured.The same procedure took place for all local neighborhoods, and the
locationwithmaximum similarity of the connectedWMfibers was identified as the optimized location of theDICCCOL. Box𝑑 represents the
optimization procedure. (d)(IX) shows the initial and optimized locations of a DICCCOL in red and green, respectively. (d)(X) and (d)(XI)
show the connected fibers at the initial and optimized locations of the DICCCOL, respectively. (e) represents the optimized locations of all
DICCCOLs on an individual’s brain. (e)(XII), (e)(XIII), and (e)(XIV) show the coronal, sagittal, and axial views in 3D space, respectively.
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Figure 2: Functional connectivity (FC) was measured across the brain using the DICCCOL framework. (a), (b), and (c) show the optimized
locations ofDICCCOLs across the brain in the coronal, sagittal, and axial views, respectively. (d), (e), and (f) represent the time series allocated
to three DICCCOLs obtained from the rsfMRI data of the graymatter of the 5mmneighborhood of each DICCCOL.The Pearson correlation
was calculated between time series of 358 DICCCOLs in order to obtain the FC of the brain at large scale. (g) and (h) show two examples of
FC measurement, and (i) is a symmetric affinity matrix, which represents FC at a connectomic level.

factors such as normalization and spatial smoothing [30].
Therefore, the DICCCOL framework was applied to identify
the corresponding ROIs across individuals for FC analysis.

For FC analysis of the rsfMRI data using FSL, pre-
processing included brain extraction, motion correction,
slice-time correction, spatial smoothing (FWHM = 5mm),
temporal prewhitening, grand mean removal, and temporal
high-pass filtering [33]. The time series allocated to each
DICCCOL was derived from the gray matter area in the
5mm neighborhood of that DICCCOL. FC between each
pair of DICCCOLs was obtained by measuring temporal
Pearson correlations between the time series allocated to
each DICCCOL. Therefore, a symmetric affinity matrix with
64261 unique features was obtained to represent functional
connectivity of the brain at a connectomic level (Figure 2).

2.2.2. Network-Based Statistical (NBS) Analysis. Neuroimag-
ing studies suggest that networks compose cognitive and

functional domains of the brain. At the same time, the
networks for different cognitive and functional domains can
overlap with each other [34]. To fully investigate the dis-
rupted cognitive and functional domains of the brain, meta-
analysis and multiview group-wise clustering approaches
were applied. For the statistical longitudinal analysis, a mixed
2 × 2 design ANOVA was used to identify connectomic sig-
natures. Independent variables were group (controls versus
patients) and time (acute versus subacute). NBS is a validated
method which was originally developed for connectomic
studies to performnonparametric statistical analysis on large-
scale pairs of connections [35]. While the false discovery
rate (FDR) is sensitive to detecting an independent, isolated
connected pair regardless of its affiliation (or conjunction)
with other connected pairs, NBS improves power to detect
a nexus that includes multiple affiliated connected pairs [35].
In other words, NBS, while controlling the family-wise error
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rate (FWER), implements rejection of a null hypothesis at the
network level. NBS, intuitively, includes the following steps:

(a) Performing a statistical test on each connected pair
independently. NBS, like other common neuroimag-
ing software packages, uses the general linear model
(GLM) as the statistical test.Theoutput of this step is a
set of connected pairs that are the potential candidates
to be connectomic signatures (connected pairs which
are statistically different between two groups).

(b) Identifying any possible connectivity structure from
connected pairs which were selected at the previous
step.

(c) Calculating a FWER-corrected 𝑝 value for a con-
nectivity structure with size of K using permutation
testing. Specifically, for each permutation, connec-
tivity structures were identified and the maximal
component size was obtained. Then, 𝑝 value for any
observed connectivity structure with size of K can be
calculated based on the possibility of having maximal
connectivity structure size > K in M permutation.

NBS parameters, including the uncorrected threshold
value, were chosen as follows according to previous published
literature [36–39]: threshold = 3.5, permutation = 5000,
component size = extent, and 𝑝 value = 0.05. For statistical
longitudinal analysis, a mixed 2 × 2 design ANOVA has
been used to identify connectomic signatures. Independent
variables are group (controls versus patients) and time (acute
versus subacute). If the interaction effect was not significant,
we investigated the group and time effects. Otherwise, we
investigated each simple effect. In other words, if the inter-
action effect was significant, we used a two-sample unpaired
𝑡-test to compare two groups and a two-sample paired 𝑡-test
to investigate each group over time.

2.2.3. Categorizing Connectomic Signatures Using Meta-
Analysis. BrainMap (http://www.nitrc.org/projects/brain-
map/) is an online database of published neuroimaging
literature, which can be used to identify the function of
brain regions based on previous reported data from well-
credited labs [40]. Yuan et al. used the BrainMap software
to identify the possible functional roles for each DICCCOL
using meta-analysis [32]. Using the BrainMap database, we
can categorize the DICCCOLs involved in connectomic
signatures into five general functional categories, including
“Action,” “Perception,” “Cognition,” “Interoception,” and
“Emotion,” and these five categories can be further divided
into 53 subcategories. At the same time, the strength of
functional connectivity between two DICCCOLs can be part
of the strength of functional connectivity between their
corresponding networks. For instance, if DICCCOL “A” was
identified as “Cognition” and DICCCOL “B” was identified
as “Emotion,” then we can interpret that the strength of
functional connectivity between “A” and “B” is related to
the strength of functional connectivity between “Cognition”
and “Emotion.” Therefore, by categorizing the DICCCOLs

involved in connectomic signatures to these functional cat-
egories, we can have better understanding of brain functional
and cognitive interactions at large scale.

2.2.4. Multiview Group-Wise Cluster Analysis. Multiview
group-wise clustering has been applied to the DICCCOL
system to extract the substrate brain functional clusters as
previously described by Chen et al. [41]. A cluster is defined
as a set of DICCCOLs that have stronger inner functional
connectivity with each other rather thanwith theDICCCOLs
of other clusters. If we consider the DICCCOL system to
be a graph representation of the brain, the DICCCOLs can
be considered to be the nodes of the graph, and functional
connectivities betweenDICCCOLs are the edges of the graph.
For each subject, the functional connectivity matrix of the
brain was extracted and considered to be one “view” for
the clustering approach. The group-wise clustering method
was applied to categorize common clusters across individuals.
Briefly, in this clustering method, the clusters were obtained
by projecting each view on the others to derive consistent
functional clusters across brain functional connectivity of
individuals [41]. After identifying the brain functional clus-
ters, the connectomic signatures of mTBI were categorized
into these identified clusters to reveal possible patterns in
functional connectivity alterations of the brain after injury.

3. Results

Statistical analysis (Section 2.2.2) was performed on the brain
functional connectivity, which was obtained from 24 healthy
subjects and 16 mTBI patients at two time points. No statisti-
cally significant difference was found in the interaction effect
(𝑝 value = 0.05). The time effect did not show any significant
difference (𝑝 value = 0.05), either. However, in our NBS
analysis, which only considers the interconnected network
clusters, we identified a group effect on 258 FC pairs that
were significantly affected in mTBI patients (Figure 3). All of
these affected FC pairs (i.e., connectomic signatures) showed
increased functional connectivity in the patient group.

In order to have a better understanding of changes in
brain function after mTBI, meta-analysis was performed.
The affected functional connectivity was categorized into
five major brain functional domains: “Action,” “Percep-
tion,” “Cognition,” “Interoception,” and “Emotion.”We have
observed that “Action” and “Cognition” are more involved
in altered functional connectivity after mTBI, especially the
interaction between “Action” and “Cognition” networks,
which has been affected the most (Figure 4). Further inves-
tigation of the roles of DICCCOLs which were evaluated in
greater detail using 53 subcategories reveals that the inter-
actions between “Execution” (from the “Action” category)
and “Attention” (from the “Cognition” category) and between
“Execution” (from “Action” category), and “Working Mem-
ory” (from “Cognition” category) were affected the most
(Figure 4).

Due to the nature of mTBI and the prevalence of diffuse
axonal injury (DAI) pathology in TBI patients, the brain
functional response is expected to be seen throughout the
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Figure 3: 𝑇-values from the longitudinal statistical analysis using
a mixed design ANOVA and NBS on the 258 FC pairs which are
significantly stronger in the patient group. Since the FCmatrices are
symmetric, only the lower half was used for the statistical analysis.
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Figure 4: Categorization of altered functional connectivity in
mTBI. The color-bar indicates percent change. The results show
that the “Action” and “Cognition” networks have been disrupted
the most. Further functional analysis using the 53 subcategories
shows that interaction between “Execution” (from the “Action”
category) and “Attention” (from the “Cognition” category) and
between “Execution” (from the “Action” category) and “Working
Memory” (from the “Cognition” category) has been affected the
most (yellow arrow). This is consistent with published literature
on Attention, Working Memory, and executive function deficits in
mTBI patients.

brain rather than only in certain restricted regions (see
Figure 5). One aim of this study was to discover possible
existing patterns among the connectomic signatures after
mTBI. For this purpose, we first categorized DICCCOLs
into similar clusters based on their rsfMRI time series
similarity using a multiview group-wise clustering approach.
Using the multiview group-wise clustering approach on all
data (a combination of two time points and two groups),
we have identified eight functional connectivity clusters
(Figure 6). The estimated clusters are similar to the result
of our previous work obtained in young healthy subjects

[41]. After identifying the corresponding cluster for each
DICCCOL, the connectomic signatures were categorized
based on the DICCCOLs’ clustering information. Results
demonstrated that cluster number 1, specifically the posterior
cingulate cortex (PCC) portion of it, is the most involved
cluster in functional connectivity alterations after mTBI
(Figure 7). Interestingly, among all 258 connectomic signa-
tures, 253 (98%) are involved in between-clusters interactions
(Figure 7). Further investigation reveals two general patterns
among the affected interactions: (I) an increase in functional
connectivity between the PCC (from cluster number 1) and
the association areas of the brain such as the associative visual
cortex, supplementary motor cortex, and the somatosensory
association cortex (from clusters numbers 4, 5, and 8),
see Figures 8(a)–8(c); and (II) functional hyperconnectivity
between the occipital lobe of the brain from cluster number 3
and the frontal lobe area from cluster number 8 (Figure 8(d)).

4. Discussion

Our work demonstrates that (a) mTBI affects brain func-
tional connectivity changes at a connectome scale, which is
consistent with the published data on diffuse axonal injury
pathology [10, 42].The brain functional connectivity changes
at a large scale aftermTBI emphasize the necessity of applying
connectome-scale study to have a better understanding of
brain function and its network substrates of mTBI sequela;
(b) there is functional hyperconnectivity across the brain,
which can be interpreted as the brain’s attempts at large scale
to compensate for injury, as has been observed in previous
studies [20, 23]; (c) themost affected neurocognitive domains
are executive function, attention, and working memory, in
line with reported neurocognitive profiles of mTBI patients
[43, 44], of which attention and working memory domains
are also shown to be particularly susceptible to plasticity in
noninjured brains [15, 22, 45, 46]; and (d) the cluster analysis
of brain functional connectivity alterations demonstrates
two general compensatory patterns: (1) hyperconnectivity
between the PCC and the association areas of the brain
and (2) increase in frontal-occipital functional connectivity.
This study represents a systematic investigation of large-scale
brain functional connectivity at resting state in response
to mTBI. The results are well consistent with current find-
ings and assumptions of mTBI and validate our hypothesis
regarding brain compensation after injury through increasing
functional connectivity at a connectome scale, as discussed
below.

Large-Scale Approaches. Assessment of large-scale brain con-
nectivity is required to properly investigate the brain connec-
tivity alterations aftermTBI. Alteration in one connection can
directly or indirectly alter other brain connections [7]. The
brain is a complex hyperconnected nexus, and any alteration
in a brain connection due to mTBI causes a domino effect,
which affects other structural or functional connections of
the brain. In this situation, the outcome of the brain after
injury is not limited to the location and the origin of the
injury, and changes in brain functional connectivity are
not limited to certain local regions near the site of injury
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Figure 5: Visualization of location of DICCCOLs involved in affected functional connectivity signatures (red sphere) and the remaining
DICCCOLs (green sphere) on cortical surface.
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Figure 6: Eight functional connectivity clusters as results of using amultiview group-wise clustering. Eight functional clusters were identified
in different colored bubbles.

and could be distributed across the brain [11, 13, 47–51],
as we already know structural changes like diffuse axonal
injury (DAI) to be a common result of mTBI [10, 42, 52].
At the same time, large-scale brain connectivity analyses
such as connectome-scale approaches are more sensitive to
alterations that are less apparent in gross structure (i.e., white
matter integrity and DAI), because large-scale approaches
consider each region’s integration into the global unit rather
than as an independent entity. In light of this, large-scale
approaches can provide a better understanding of brain
alterations and uncover the role of brain alterations at the
macrolevel even in the absence of obvious structural damages
[9, 14]. However, to date,most of the brain functional imaging
investigations focus on a single or a limited number of brain
regions or networks instead of assessing the brain networks
at a connectome scale [11, 47, 48, 51], and there is still a lack
of investigation into large-scale brain functional connectivity
changes after mTBI. Our work supported our hypothesis that
mTBI does induce large-scale brain network changes. This
is well consistent with the published literature about DAI

pathology, which reports multifocal lesions across the brain.
It also offers new insights from in vivo imaging perspective.

Functional Hyperconnectivity as Compensation. It has been
reported that most mTBI patients suffer reversible brain
injury or transient pathophysiological disturbances. After
injury, the brain initiates its natural response by cellular
repair mechanisms, which leads to recovery, and the brain’s
compensation through plasticity and modification of brain
functional connectivity is a secondary response. Lastly, the
brain could experience anatomical plasticity to compensate
for the effect of injury [53, 54]. Several studies have shown
increases in functional connectivity or hyperconnectivity
after different severities of TBI and physical disruption as
common brain response [23, 55–57]. Hyperconnectivity was
observedmostly in highly connected regions of the brain [55],
such as brain regions involved in executive functions and
working memory, and central hubs of main brain networks
such as the PCC and medial frontal cortex in the default
mode network; the dorsolateral prefrontal cortex and parietal
cortex in the executive control network; and/or anterior



Neural Plasticity 9

Cluster number

0

20

25

30

35

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8
5

10

15

Cl
us

te
r n

um
be

r

Figure 7: Categorizing the disturbed functional connectivity, which
has been obtained using longitudinal statistical analysis by a mixed
design ANOVA and NBS, into eight functional connectivity clusters
that have been obtained using the multiview group-wise clustering
method. Results show that some clusters (especially cluster number
1) aremore involved in functional connectivity alteration aftermTBI.
The color-bar indicates number of involved connectomic signatures.

insula in the salience network [53, 55, 58, 59]. Our analysis
of whole-brain large-scale networks demonstrates an overall
increased functional connectivity in mTBI patients as a brain
compensatory response to mTBI. This is consistent with the
published literature on separate brain networks [11, 47, 48,
51]. It is of note that our results do not indicate that there
was no hypoconnectivity among mTBI group. Our analysis
reveals hypoconnectivity in several connections amongmTBI
patients. However, none of them were detected by the NBS
analysis, which only detects disrupted functional connectiv-
ity pairs at the network level and does not detect changes
if a pair is isolated or not well interconnected with other
disrupted pairs in a network. In our data, hypoconnectivity
pairs seem to not be well connected enough to survive the
NBS analysis.

Affected Neurocognitive Domains. After mTBI, the constella-
tion of clinical and neurocognitive symptoms significantly
affects mTBI patients’ qualify of life. The detection of neural
network substrates of these neurocognitive presentations
may help attending physicians order a proper neuroreha-
bilitation program for the patients. Symptoms in several
neurocognitive domains have been widely reported in mTBI
patients, including attention [56, 60],memory [23, 53, 61–68],
processing speed [56], and execution [53, 69]. Among them,
attention [56, 60], working memory [23, 56, 61–66], and
execution [53, 69] are the most widely reported. Executive
function deficits have also been reported in chronic mTBI
patients and predicted by DTI data [70]. We hypothesized
that the brain functional connectivity alterations should
be involved in similar functional and cognitive domains.
Categorizing the connectomic signatures usingmeta-analysis
intriguingly validated our hypothesis. The results demon-
strate that, among functional and cognitive domains, the

interaction between “execution and attention” and “execu-
tion and working memory” has been affected the most,
which is consistent with the reported patients’ symptoms
in these neurocognitive domains. Our results further show
that the DICCCOLs involved in “action” and “cognition”
domains have been involved in brain functional connectivity
alterations. This includes the intranetwork connectivity (the
connectivity of the DICCCOLs within a cognitive domain)
or between-network connectivity (the connectivity between
“action” and “cognition” domains). Our study provides the
foundation for understanding the changes in functional
domains occurring after mTBI, which are similar to changes
seen in moderate and severe TBI in adults [56].

Brain Compensatory Patterns. It has been well reported that
the frontal, temporal, and occipital lobes are susceptible
to focal contusions due to the direct impact of brain soft
tissue onto the rigid inner table of the frontal, occipital,
and temporal bones [10, 42]. At the same time, several
TBI studies show alterations in functional connectivity of
highly connected regions of the brain, specifically the PCC,
as a central hub of the brain [11–13, 47, 71]. The multiview
group-wise cluster analysis was used to identify the prevalent
compensatory pattern of the brain functional connectivity.
The results illustrate brain functional connectivity alteration
in the expected regions.ThePCCdemonstrates an increase in
functional connectivity with different brain regions including
Brodmann area 8 (BA8) of the frontal cortex, the supple-
mentary motor area (BA6), the somatosensory association
cortex (BA7), the dorsolateral prefrontal cortex (BA9), the
associative visual cortex (BA19), and the anterior cingulate
cortex (BA32). Moreover, functional connectivity between
the frontal and occipital lobes as two susceptible regions was
observed.

Limitation and Future Work. One limitation of this study
is the small number of subjects in comparison with the
great number of networks and connectivity features, which
easily makes the statistical analysis underpowered. A larger
sample size and acquiring data at the chronic stage are
required to increase the power of statistical analysis and the
chance of finding a significant difference. Though we used
the NBS approach, a relatively larger number of subjects are
indispensable for future investigation to draw a more solid
conclusion. Since there is no ground truth of the connectome-
scale network alterations, another independent dataset will
be necessary in future, as a reproducibility study to cross-
validate the findings in the current study.

Another issue is the recovery effect after mTBI. It is
expected to see FC recovery in mTBI patients over time.
Therefore, assuming similar FC values for a healthy subject
and changes in FC formTBI patient over time, the interaction
effect is highly expected. However, our 2×2 design ANOVA
does not show statistical significant difference between the
two time points of patient group. Although we did not
observe a statistically significant interaction effect, our anal-
ysis shows a trend of recovery in FC of mTBI. Overall
functional connectivity of mTBI patients shows a slow trend
of approaching the functional connectivity patterns of the
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Figure 8: Categorization of affected functional connectivity using the multiview cluster-wise cluster method. (a)–(c) show the connectomic
signatures involved in the interaction between cluster number 1 (C1) and clusters numbers 4 (C4), 5 (C5), and 8 (C8), respectively. These
interactions represented the important role of the PCC as the central hub of the brain and its interactions with association brain areas as
compensatory effects after brain injury. (d) reveals the interaction between the occipital lobe, cluster number 3 (C3), and the frontal lobe,
cluster number 8 (C8).

healthy subjects over time. Increasing the number of time
points would significantly improve a repeated measure data
analysis method; thus another data acquisition at the chronic
stage is required to evaluate it. It is possible to observe
a statistically significant interaction effect if the time gap
between the acquisitions was more than 4–6 weeks, allowing
for more time to recover and therefore a larger effect size
which statistical analysis might have been able to capture.
For instance, Nakamura et al. [23] revealed that the overall
functional connectivity strength is higher at three months
after TBI but that functional connectivity decreases and
approaches that of the healthy subjects sample after six
months after injury. Moreover, using a larger sample can
improve the power of statistical analysis and the chance
of finding a significant difference. Furthermore, to apply
the current work to clinical management of mTBI patients,
the predictive value of the current imaging-based network
analysis for mTBI patients’ functional and neurocognitive
symptoms over long-term recovery is yet to be determined.

This could be done by correlating the network-based findings
with the patients’ chronic neurocognitive and functional
assessment, which should also be performed in longitudinal
framework.

5. Conclusion

In summary, our prospective longitudinal study of mTBI
patients at the acute and subacute stages demonstrates func-
tional hyperconnectivity of the brain at a connectome scale.
The most affected neurocognitive domains are executive
function, attention, and working memory, which is in line
with reported neurocognitive profiles of mTBI patients.
Furthermore, despite the functional connectivity alterations
distributed throughout the whole brain, the cluster analysis
reveals two general functional connectivity compensation
patterns among mTBI patients, between the PCC and the
association areas of the brain and between the occipital and
the frontal lobes of the brain.
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