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Abstract

Many sociological theories make critically different macropredictions when
their microassumptions are implemented stochastically rather than deter-
ministically. Deviations from individuals’ behavioral patterns described by
microtheories can spark cascades that change macrooutcomes, even when
deviations are rare and random. With two experiments, we empirically
tested whether macrophenomena can be critically shaped by random
deviations. Ninety-six percent of participants’ decisions were in line with a
deterministic theory of bounded rationality. Despite this impressive micro-
level accuracy, the deterministic model failed to predict the observed
macrooutcomes. However, a stochastic version of the same microtheory
largely improved macropredictions. The stochastic model also correctly
predicted the conditions under which deviations mattered. Results also
supported the hypothesis that nonrandom deviations can result in funda-
mentally different macrooutcomes than random deviations. In conclusion,
we echo the warning that deterministic microtheories can be misleading.
Our findings show that taking into account deviations in sociological theories
can improve explanations and predictions.
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Contemporary sociology has an ambivalent relationship with the concept of

randomness. On the one hand, randomness is an integral part of statistical

models, where commonly the biggest part of a dependent variable’s variance

remains unexplained and is therefore assumed to be random. Sociological

theory, on the other hand, has been criticized for often neglecting that at least

parts of human behavior deviates from the general patterns that theories

describe (Macy and Tsvetkova 2015). This deterministic approach to socio-

logical theory is problematic because a theory “in which individual behavior

is completely determined, flawlessly executed, entirely knowable, and per-

fectly predictable is not only empirically implausible, it can also be highly

misleading” (Macy and Tsvetkova 2015:324). Deviations from general beha-

vioral patterns of individuals are of potentially critical importance whenever

individuals do not act in isolation but react to each others’ action. In such

settings, deviations can lead to behavioral reactions in actors’ social envi-

ronment, which can, in turn, motivate further behavior changes. Formal

models demonstrated that such chains of reaction can have profound impact

on the collective level, even though they might have been sparked by a

random and rare event on the individual level.

Unlike in sociology, random deviations are basic building blocks of the-

oretical models in other disciplines that study systems with a micro–macro

structure, such as physics (Nicolis et al. 1977), chemistry (Pomeau 1986),

biology (Camazine et al. 2001), traffic research (Treiber, Hennecke, and

Helbing 2000), cognitive science (Rabinovich et al. 2008), and economics

(Binmore and Samuelson 1999; Selten 1975; Harsanyi and Selten 1988). A

very prominent example are theories of biological evolution, where random

mutations in the genes of individuals generate the biological variation that

species need to adapt to changes in their environment. Similarly, the random

microscopic motion of particles (temperature) is a key ingredient of models

of turbulent fluid flows and the kinetic theory of gases (Nicolis et al. 1977).

A growing body of formal modeling work demonstrates that deviations

can also change predictions of theories explaining sociological phenomena

such as social norms (Young 2015), conventions (Young 1993), opinion

polarization (Mäs, Flache, and Helbing 2010; Pineda, Toral, and

Hernandez-Garcia 2009), cultural assimilation (Huckfeldt, Johnson, and
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Sprague 2004; Klemm et al. 2003), residential segregation (van de Rijt,

Siegel, and Macy 2009), social classes (Axtell, Epstein, and Young 2000),

collective behavior (Granovetter 1978), and the production of public goods

(Kollock 1993). One intriguing finding was, for instance, that Schelling’s

famous model of residential segregation predicts higher levels of ethnic

segregation when random deviations from Schelling’s deterministic

microassumptions are included (van de Rijt et al. 2009). According to Schel-

ling’s original model, even highly tolerant populations segregate because

every move of an actor implies that his ethnic group becomes less repre-

sented in her old neighborhood and more represented in the new neighbor-

hood. As a consequence, former neighbors of the same ethnic group and new

neighbors of the other ethnic group may also decide to move, which can, in

turn, motivate further moves. Thus, a single actor’s decision to move can

precipitate a cascade of further movings that lead the population to surpris-

ingly high degrees of ethnic segregation. It turned out that random moves can

intensify segregation because they can spark moving cascades that would not

have occurred in Schelling’s deterministic model.

So far, deviation effects have mainly been investigated from a theoretical

perspective. Empirical support for the macroeffects of microdeviations was

provided in an laboratory experiment by Goeree, Holt and Palfrey (2007)

who found that information cascades are much shorter than a deterministic

rational choice model predicts. Information cascades can arise when individ-

uals with limited information make decisions in a sequence. At some point in

the sequence, decision makers rationally ignore their private information and

only respond to the decisions of those actors who decided earlier. This can

lead to a situation where all individuals rationally make the wrong choice

(Bikhchandani, Hirshleifer, and Welch 1992). Contrary to this deterministic

prediction, Goeree et al. observed that information cascades broke down

because participants sometimes responded to their private signal rather than

rationally following the herd.

We report here results from two empirical studies testing hypotheses

about the effects of microlevel deviations on macrooutcomes. Study 1 had

two aims. First, we tested the central notion that deviations matter, studying a

social setting where a microtheory that abstracts from deviations makes very

different macropredictions than the same microtheory with deviations. Sec-

ond, we tested whether the theoretical model with deviations accurately

identifies the conditions under which deviations matter for macrooutcomes

and when macrooutcomes are unaffected by deviations. Study 2 challenged

the assumption that deviations are random. On the one hand, the prediction

that microdeviations have macroeffects is most surprising when deviations
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are assumed to occur randomly. On the other hand, we show that sometimes

the theoretical assumption that deviations are random leads to very different

macropredictions than assumptions about systematic deviations from the

prevalent patterns of individual decision-making, even when deviations are

rare. Study 2, therefore, empirically tested whether it can be problematic to

treat deviations as random phenomena when they actually follow a pattern.

Empirically testing hypotheses about the effects of microlevel deviation on

macrooutcomes is challenging for various reasons. First, theories predict that

macroeffects of deviations are not immediate. In contrast, deviations trigger

off behavioral cascades, processes that may or may not take very long until

they translate into macroeffects. This lack of precision makes many predic-

tions immune to empirical falsification. Another problem is that deviations are

difficult to quantify, in particular when they might be random and rare. What is

more, it is very difficult to determine whether a given action constitutes a

deviation or is in line with the general behavior pattern. For instance, a white

person leaving a white neighborhood and moving into a black one does deviate

from Schelling’s model assumptions. However, a less abstract micromodel that

also takes into account actors’ budget constraints might perfectly capture this

moving decision. Thus, it often depends on the assumed micromodel whether a

given behavior is considered a deviation or not.

Confronted with these methodological challenges, we decided to study

microdeviations and their macroeffects in two controlled laboratory experi-

ments. This had two crucial advantages. First, strategically providing parti-

cipants with limited information about the behavior of others and their social

environment, we managed to create a setting where our participants made

decisions based on the so-called best-response heuristic, a simple rule of

boundedly rational decision-making (e.g., Alós-Ferrer and Netzer 2010;

Blume 1993; Fudenberg and Levine 1998; McFadden 1973; McKelvey and

Palfrey 1995; Montanari and Saberi 2010; Young 1993). We were also able

to unequivocally determine for each observed decision of our participants

whether it was a best response or a deviation. It turned out that 96 percent of

all observed decisions were best responses. Second, we were able to imple-

ment a setting where a deterministic version of the best-response model

makes different macropredictions than a version of the same microtheory

that adds random deviations. This allowed us to empirically test whether the

best-response model with deviations makes more accurate macropredictions

than a deterministic version.

Despite the artificial context of our laboratory studies, we contribute to a

debate of broad sociological relevance because any theory of social action in

the sense of Max Weber (1978) may make different macropredictions, when
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deviations are included. Whenever individuals do not act in isolation but

respond to their social environment, it cannot be excluded that deviations

spark behavioral cascades that change macropatterns. This is independent of

how complex or simple the micromodel is and does not only apply to the

best-response heuristic. In fact, the literature provides multiple examples of

prominent deterministic micromodels that were believed to explain given

macrooutcomes but actually failed to provide valid explanations when ran-

dom deviations were included (e.g., Kollock 1993; Klemm et al. 2003; Mäs

et al. 2010). Likewise, there are examples where including assumptions

about random deviations from individuals’ behavioral patterns (e.g., Mäs

et al. 2010; Pineda et al. 2009) provided new solutions to long-standing

theoretical puzzles (e.g., Abelson 1964). In the light of these strong theore-

tical reasons to take into account deviations, it is important to empirically test

the notion that deviations matter.

Random behavior is often falsely conceived as a residual component that

needs to be stripped away in order to reveal systematic behavior that allows

one to explain and predict the behavior of humans and collectives. In contrast

to this view, we argue that taking into account deviations in sociological

theories will improve explanations and predictions. Even though microlevel

deviations might be random and unpredictable, their macroeffects can be

systematic and, thus, predictable. Obviously, when individual deviations are

random, it is not possible to predict when they occur. However, there is a rich

theoretical toolbox that allows one to identify the structural conditions under

which deviations have no macroconsequences and when they have the poten-

tial to spark behavioral cascades that change macrooutcomes (Foster and

Young 1990; Freidlin and Wentzell 2012). Identifying these conditions pro-

mises to improve explanations and predictions of collective phenomena.

The remainder of this article is structured as follows. In the following

section, we illustrate the effects of deviations in a very simple, stylized

example and show how predictions about the conditions under which

deviations matter for macropredictions can be derived. The two subsequent

sections summarize the hypotheses, the design, and the results of the two

empirical studies. We conclude with a summary of the results and an agenda

for future research.

A Stylized Example

The notion that microlevel deviations can have profound and systematic

effects on the collective level is counterintuitive, in particular when devia-

tions are random and rare. However, the following stylized example
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illustrates that deviations can have macroeffects even in a setting that is

highly simplistic and easy to analyze. To be sure, this example has not been

chosen with the motivation to study the impact of deviations on a specific

sociological phenomenon, even though very similar settings have been

explored to study the emergence and diffusion of norms and conventions

(Bicchieri 2005; Cialdini, Reno, and Kallgren 1990; Ehrlich and Levin 2005;

Montanari et al. 2010; Opp 2001; Young 1993, 2015). We chose it because it

illustrates the main hypotheses that we tested and because it is possible to

implement it in a laboratory experiment, which in turn makes it possible to

directly test these hypotheses.

Consider the social network shown in Figure 1, a circle network where each

of the 20 nodes is connected to the two closest neighbors to the right and to the

left. Assume furthermore that all nodes simultaneously choose between two

options, labeled “red” and “blue” and that the position on the circle determines

the type of the network node. There are two types, which we denote here

metaphorically as “cats” and “dogs.” Cats receive P ¼ 1 money units (MU)

when choosing blue. Dogs receive the same payoff for selecting red. Further-

more, participants receive 1 MU for each network neighbor who chose the

same color. These payoff rules create a game resembling the battle of the sexes
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Figure 1. Stylized example.

392 Sociological Methods & Research 49(2)



in game theory, a decision problem where actors seek to coordinate with their

interaction partners but have opposing preferences (if P > 0).

Assume furthermore that nodes make decisions based on a simple heur-

istic. When they decide between red and blue for the first time and, thus,

cannot condition their choice on the past choices of their network neighbors,

they simply choose the option that corresponds to their type (cats: blue; dogs:

red). After that, nodes choose the so-called myopic best response, which is a

simple heuristic of boundedly rational decision-making (e.g., Alós-Ferrer

and Netzer 2010; Blume 1993; Fudenberg et al. 1998; McFadden 1973;

McKelvey and Palfrey 1995; Montanari et al. 2010; Young 1993). It assumes

that participants choose the color that promises the highest payoff if the four

neighbors choose the same color as in the previous round. In other words,

actors are not hyperrational maximizers that take into account all possible

future consequences of their behavior. Actors are also not perfectly informed

about all potentially relevant aspects of the decision problem, such as the

network structure and the types of their neighbors. Actors just assume that

their neighbors will stick to their previous choices and then choose the color

that promises a higher payoff in the present round.

These microassumptions imply that dynamics can reach three Nash

equilibria, collective rest points where no individual can increase her payoff

by unilaterally changing color. The first equilibrium is called “anomic coex-

istence” and obtains when all individuals choose the color that corresponds to

their type (cats choose blue and dogs choose red, as in Figure 1). In this situation,

all actors expect to receive a payoff of Pþ 2 ¼ 3 MU when they stick to their

choice. Switching to the other color would lead to a payoff of only 2 MU. Thus,

the best response for all actors is to not change color. Second, when all

individuals choose the same color (either all red or all blue), a descriptive norm

has emerged. This is a rest point, because actors receive a payoff of either 5 MU

or 4 MU, depending on whether the network coordinated on the color that the

respective actor prefers or not. Choosing the opposite color would lead to a

payoff of either 0 or 1, which is always smaller. Thus, in a world where all actors

choose the best response, all actors would follow the descriptive norm. Third,

when P ¼ 1 also “segmented coexistence” is a rest point. Segmented coexis-

tence means that the circle is split into multiple internally coordinated but

mutually anticoordinated segments of at least five players.

Strikingly, the best-response model makes different prediction about

which equilibrium is selected by the dynamics, depending on whether devia-

tions are included or not. First, when all actors deterministically follow the

heuristic described above, then every actor chooses in the very first round the

color that corresponds to her type. In the second round, all actors realize that
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they have two neighbors who chose the same color and, thus, expect to

receive Pþ 2 ¼ 3 MU when they stick to their choice and only 2 MU when

they change color. As a consequence, best responders will not change color

and the collective rest point of anomic coexistence is reached.

Contrary to the deterministic best-response model, however, the stochas-

tic best-response model predicts the emergence of a descriptive norm when

P ¼ 1. In fact, two deviations from the best-response rule suffice to generate

a rapid shift from anomic coexistence to coordination on a descriptive norm

if P ¼ 1, as Figure 2 illustrates. The figure shows that cats choose blue and

dogs choose red at the outset. This aggregates to the collective state of

segmented coexistence, which would be an equilibrium in a deterministic

world. Let us add, however, that in period 1, actors 2 and 20 happen to deviate

from the best-response rule, choosing red instead of blue. All subsequent

decisions are best responses. Nevertheless, the system shifts from anomic

coexistence to a descriptive norm. In period 2, actors 2 and 20 will stick to

red, as this promises a payoff of 3 MU instead of only Pþ 1 ¼ 2. Furthermore,

actors 4 and 18 also choose option red, expecting to receive 3 MU. This is 1

MU more than for option blue. In period 3, actors 6 and 16 face the same

situation as 4 and 18 in the previous period and will also switch to red. This

process continues until all actors have chosen red. Thus, the two initial devia-

tions have sparked a cascade of color changes that moves along the circle until

the whole population coordinated. Two deviations are the minimum require-

ment for coordination to emerge. However, we show in the Online Appendix

that similar dynamics can unfold when the two deviations occur at maximally

distant positions in the network and at different points in time.

The collective state of a descriptive norm is more robust to deviations than

anomic coexistence. Assume, for instance, that the network coordinated on

color blue and again actors 20 and 2 happen to deviate from the best-response

rule. In the next round, the two actors will switch back to red as they expect to

receive Pþ 3 ¼ 4 MU for red and only 1 MU for blue. Actor 1, however,

will be affected by the two initial deviations. Two of her neighbors chose red

in the previous round, making her expect Pþ 2 ¼ 3 MU for red and only 2

MU for blue. However, in the following round, all of her neighbors will have

chosen blue again, motivating also actor 1 to switch back to blue. As a

consequence, the system returned to the collective state of a descriptive

norm, despite the initial deviations.

However, deviations do not always spark cascades like those illustrated in

Figure 2 and, therefore, do not always alter collective outcomes. For

instance, deviations fail to affect collective outcomes when the payoff P that

actors receive for choosing the color that corresponds to their type is
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Figure 2. Example for a cascade sparked off by two deviations (P ¼ 1).
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increased to 3 MU. This is a rather subtle change in the payoff structure, in

particular because anomic coexistence and descriptive norms remain rest

points. In a state of anomic coexistence, all actors expect to receive

Pþ 2 ¼ 5 MU for sticking to the color of their type, which is more than the

expected 2 MU for switching. Likewise, actors will not change color if a

descriptive norm has emerged as switching would decrease their expected

payoff to either 0 or P, which is always less than the expected payoff of

following the norm (either Pþ 4 or 4).

Under P ¼ 3, actors who deterministically follow the simple heuristic will

choose the color of their type in the first round and will then stick to this choice

forever, which aggregates to the collective pattern of anomic coexistence. This

macroprediction does not change when deviations are included. To illustrate

this, assume the same scenario as in Figure 2 where actors 20 and 2 happen to

deviate. When P ¼ 3, both actors will immediately switch back to the color of

their type, as this promises a payoff of Pþ 1 ¼ 4 MU rather than only 3 MU.

What is more, their network neighbors will be unaffected by the two devia-

tions, as choosing the color of their type remains their best response. More

deviations do not change this prediction. For instance, if in addition to actors

20 and 2, 18 and 4 happen to deviate, then actors 20 and 2 have four red

neighbors, which makes red the best response. However, actors 18 and 4 have

only three red neighbors. Thus, their best response is to switch back to their

blue. As a consequence, actors 20 and 2 also have only three red neighbors in

the next round and will, thus, also switch back to blue. In sum, the collective

will return to the pattern of anomic coexistence after only two rounds.

This simple example illustrates the two theoretical insights (Macy and

Tsvetkova 2015) that our studies put to the test. First, sometimes very few

deviations from the otherwise dominant behavioral patterns of individuals

can have profound effects on macrooutcomes. In these cases, even a micro-

theory that perfectly describes the otherwise prevalent behavioral patterns of

individuals will make false macropredictions. Second, microdeviations do

not always have macroeffects, but it is possible to derive testable hypotheses

about the conditions under which they have the potential to spark off cas-

cades that lead the system into another state.

Study 1

Study 1 put two theoretical predictions to the test. First, we tested whether

deviations on the microlevel can affect collective outcomes. Second, we

tested whether a theoretical model that includes random deviations correctly
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predicts under what conditions deviations matter and when they do not affect

macro-outcomes.

To this end, we conducted a laboratory experiment that implemented the

core aspects of the stylized example from the previous section at the Decision

Science Laboratory at ETH Zurich (https://www.descil.ethz.ch). That is, we

arranged a computer network with the structure shown in Figure 1, assigned

participants to the network nodes, and confronted them with the same deci-

sion problem as the actors in the example. Furthermore, it was critical to

create a setting for the participants that would lead them to decide based on

the best-response heuristic, the decision rule that we assumed in the previous

section. As the best-response heuristic is intuitive and simple, providing

participants with all information needed to make a best response and with-

holding crucial information necessary to form decisions based on alternative

decision rules was sufficient to create a setting where 96 percent of partici-

pants’ decisions were best responses. In this setting, we studied the two

experimental treatments that we explored in the previous section. Under

P ¼ 1, the stochastic version of the best-response model makes opposite

macropredictions than its deterministic counterpart, which allowed us to test

whether the model that takes into account deviations makes more accurate

macropredictions. Under P ¼ 3, both micromodels make the same macro-

prediction. This allowed us to test whether or not the stochastic model is able

to correctly predict when deviations matter and when they do not change

macrooutcomes.

Procedures

We invited groups of 20 participants to the laboratory, where they sat in

separate cubicles and interacted in a computer network. Every participant

of an experimental session was randomly assigned to one of the positions in

the circle network shown in Figure 1 and was instructed that per round she

would earn one MU for each interaction partner who chose the same color

and P MUs for selecting the color of their type. All experimental sessions

consisted of 150 interaction rounds, but participants were not informed

about this.

During the experiment, we always updated participants about the color

choices of their four network neighbors in the previous round, which is the

only information needed to identify the best response. We withheld further

information, to ensure that it was impossible to apply other typical decision

rules such as the imitation of successful others (Judd, Kearns, and Vorobey-

chik 2010; Kirchkamp and Nagel 2007; McCubbins, Paturi, and Weller
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2009; Selten and Apesteguia 2005) or forward-looking rules of expected

payoff maximization (Frey, Corten, and Buskens 2012). In particular, parti-

cipants were not informed about their neighbors’ payoff rules and types,

others’ payoffs, the structure of the network, and the number of interaction

periods (Hart et al. 2003).

It turned out that most of participants’ decisions were best responses. As

we studied only values of the payoff parameter P where participants cannot

be indifferent between the two color options, we could determine for every

observed decision whether it was a best response or a deviation. It turned out

that 96 percent of all participants’ decisions in studies 1 and 2 were in line

with the best-response rule, which is in line with similar experiments (Lim

and Neary 2016). In other words, for the setting of our experiments, only 4

percent of the choices deviated from the deterministic best-response rule.

The simple heuristic that we studied in the previous section furthermore

assumes that dogs would choose red and cats would choose blue in the first

found, as this guaranteed them a payoff of P. It turned out that 78 percent of

the participants did this.

Participants were recruited from a general pool of student volunteers

from ETH Zurich and the University of Zurich that was set up for beha-

vioral experiments where deception of participants is strictly forbidden. For

each of the two experimental treatments, we conducted three independent

replications with 20 participants per replication. In total, there were 120

participants in study 1. At the very beginning of the experiment, partici-

pants were informed about the payoff rules and that, at the end of the

experiment, the computer would randomly pick three rounds of the experi-

ment to determine each participant’s payoff. Participants received two

Swiss Francs for every MU earned in these three rounds. On average,

participants earned 33 Swiss Francs. All experimental sessions were

finished within one hour.

Hypotheses

Figure 3 visualizes the hypotheses that follow from the deterministic and the

stochastic versions of the best-response model, showing ideal-typical predic-

tions for each of the two experimental treatments. The figure shows only

typical predictions of the stochastic model, but in section 1.2 of the Online

Supplemental Material, we report results from large-scale simulation experi-

ments, demonstrating the dynamics shown in Figure 3 are indeed typical

outcomes of the stochastic model. The color of the markers in Figure 3 shows

actors’ color choices in the 150 periods. Squares represent best-response
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decisions and circles identify deviations. Furthermore, circle size indicates

the deviation cost, the difference in payoff for choosing the best response and

the payoff the actor actually received when deviating. Bigger circles indicate

higher deviation costs.
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Figure 3. Hypotheses derived from the deterministic and the stochastic version of
the best-response model for the two treatments of study 1.
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The top graph of each panel visualizes the hypothesis derived from the

deterministic best-response model (no deviations). As described in the pre-

vious section, the deterministic model predicts that actors will choose the

color that corresponds to their type in the first period and will then stick to

this color for the remainder of the experiment. Thus, the deterministic model

predicts the collective pattern of anomic coexistence.

To generate predictions for the best-response model with random

deviations, we adopted the standard logit-response model (Alós-Ferrer and

Netzer 2010; Blume 1993; Fudenberg et al. 1998; Montanari et al. 2010;

McFadden 1973; McKelvey and Palfrey 1995; Young 1993). This model

assumes that there is always a positive chance that agents deviate from the

best-response rule and that deviations are more likely when the payoff

difference between the two options is small. In other words, this model

assumes that deviations occur with a higher probability when they imply

small deviation costs. Formally, the probability pblue
i that actor i chooses

option blue in period t is given by:

pblue
i ¼ 1

1þ e�ðbðUiðblueÞ�UiðredÞÞÞ ; ð1Þ

where UiðblueÞ represents the expected payoff of individual i when she

chooses blue and her network neighbors choose the same color as in the

previous period. UiðredÞ is the expected payoff of choosing red. Parameter

b models the degree to which individuals choose the best response or deviate.

For instance, b ¼ 0 models entirely random choices and b ¼ 1 implies

deterministic best-response decisions. Based on the observed decisions dur-

ing the two studies, we statistically estimated a b of 1:5 ðSE ¼ 0:02Þ. This

parameter value was also used to simulate the typical dynamics of the sto-

chastic model shown in Figure 3. However, in the Online Supplemental

Material, we report predictions of the stochastic model with less or more

deviations from the best-response model. We also compare model predic-

tions for the duration of the experiment (150 rounds) and much longer time

frames as well as different initial color distribution.

Supporting the assumption that deviations occur more frequently when

they imply smaller costs, Figure 4 shows the share of red and blue choices

depending on the deviation costs. The gray line is the estimated logistic

function (b ¼ 1:5), showing that the logit-response model is supported by

our data.1 We used this estimate to generate the ideal-typical dynamics of the

stochastic model shown in Figure 3.

Figure 3 (center graph of panel A) shows that under P ¼ 1, deviations

change macropredictions even when deviations are random. The network
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started in a state of anomic coexistence but within only 20 rounds all actors

coordinated on one color, which contradicts the prediction of the determi-

nistic model. Deviations keep occurring also after the descriptive norm has

emerged, but the descriptive norm remains stable.

However, deviations do not always spark cascades. The center graph of

panel B in Figure 3 shows that under P ¼ 3, anomic coexistence remains

stable for the 150 periods of the experiment, despite the deviations (b ¼ 1:5).

Thus, for P ¼ 3, the deterministic and the stochastic best-response model

make the same macroprediction.

Several aspects of our experimental design make the hypothesis that a

descriptive norm will emerge under P ¼ 1 intuitively puzzling. First, unlike

in earlier research (Judd et al. 2010; Kearns, Suri, and Montfort 2010),

participants were not rewarded for reaching certain collective outcomes and

were never informed about the distribution of behavior in the population

(Judd et al. 2010; Kearns et al. 2010; McCubbins et al. 2009). This excludes

that any collective patterns obtained in the laboratory because participants

intended to create it. Second, participants were randomly assigned one of the

two types (cats or dogs), which were given monetary incentives for opposite

behavior. This makes coordination on one color more surprising than in

earlier experiments where all participants received the same monetary payoff

for a given behavioral option (Berninghaus, Ehrhart, and Keser 2002; Cassar

2007; Frey et al. 2012). Third, the two descriptive norms that could emerge

(all red, or all blue) implied the same collective welfare and were equally

risky. Thus, contrary to the design of earlier studies (Berninghaus et al. 2002;

Cassar 2007; Frey et al. 2012), our design made both norms equally focal

(Schelling 1960), which excluded that a norm emerged because participants

share blue share red
estimated probability of choosing blue (β=1.5)

0
.2

5
.5

.7
5

1
-7 -5 -3 -1 1 3 5 7

payoff blue - payoff red

Figure 4. Share of red and blue choices depending on deviation costs (data from both
studies).
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independently from each other chose the most focal option. Fourth, each

participant was involved in only one realization of the experiment in order

to avoid that previous collective outcomes affected decisions and that parti-

cipants learned to create or avoid a certain collective outcome. Finally, the

networks that we studied were perfectly symmetric, excluding that some

participants had a greater impact on the collective dynamics, for example,

because of a more central position in the network (Frey et al. 2012; Judd et al.

2010; Kearns et al. 2010).

What is more, the hypothesis that a descriptive norm will emerge under

P ¼ 1 is risky, as it is built on two implicit but crucial assumptions. First, the

model specified in Equation (1) assumes that actors do not condition their

behavior on whether the choices of their network neighbors were deviations

or not. It appears plausible, however, that a participant who observes a color

change by a network neighbor reasons that this color change resulted, for

example, from a mistake and might therefore decide to not change color

herself even if this would have been the best response. Such behavior would

challenge the prediction of the stochastic model, as it would prevent that

deviations spark cascades that change macrooutcomes. Second, our predic-

tions will be challenged when deviations are not random but follow specific

patterns. The fact that each respondent had a financial interest in one of the

two colors implies that respondents may strategically rather than randomly

deviate from the best-response model. For instance, participants on cat posi-

tions who realize that their neighbors tend to choose red, the color that dogs

prefer, might strategically deviate, choosing blue even though red would be

the best response. These participants would give up short-term payoffs in

order to harvest long-term payoffs arising from the collective pattern that is

most profitable for themselves. Such systematic deviations would make the

coordination on one color unlikely and, thus, challenge the hypothesis

derived from the stochastic model.

Results

The empirical results of study 1 clearly confirmed the hypotheses derived

from the stochastic model. For comparison with the hypotheses derived from

the two theoretical models, the bottom graphs of the two panels in Figure 3

show a typical experimental session from the respective treatment. The

Online Appendix contains the same graphs for the remaining sessions.

In all three replications with P ¼ 1, anomic coexistence was found only at

the beginning of the dynamics. Contrary to the predictions of the determi-

nistic best-response model, all experimental populations coordinated quickly
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on one of the two colors. These descriptive norms were stable until the

experiment ended, as predicted by the stochastic model. The experiment also

confirmed that anomic coexistence is much more stable under P ¼ 3. In all

three replications under this condition, anomic coexistence was found

throughout the 150 periods of the experiment, showing that deviations do

not always change macropatterns and that the stochastic model correctly

predicted when the collective pattern is unstable or not.

Figure 5 reports the statistical tests of the macropredictions. To quantify

which macropattern emerged, we measured the size of the biggest cluster in

the network. A cluster was defined as a set of nodes with adjacent positions

on the circle that chose the same color at a given point in time. This measure

adopts a value of 1 when the system is in a state of anomic coexistence and

adopts its maximal value of 20 when a descriptive norm has emerged.

The green bars in Figure 5 show the average size of the biggest cluster in

the network as predicted by the deterministic best-response model. We have

shown in Figure 3 that the deterministic best-response model predicts the

pattern of anomic coexistence when all participants initially choose the color

of their type. However, when some individuals happen to choose the opposite

color in the very first round, then the deterministic best-response model may

make slightly different macropredictions. For instance, it is possible that the

system happens to start in a collective state of segmented coexistence, which

is also an equilibrium (see section 2). To exclude that our statistical test is

affected by this, we simulated the deterministic best-response dynamics that

follow from the initial color choices observed during the respective sessions

of the experiment. The size of the green bars, thus, shows the average size of

the biggest cluster in the final 100 rounds of the simulated dynamics. The

stochastic model (β=1.5)
deterministic model

observed in experiment
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Figure 5. Test of the hypotheses derived from the deterministic and the stochastic
model.
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error bars were obtained with linear multilevel models to control for the

nestedness of observations in the three experimental sessions. The red bars

show average size of the biggest cluster in the network at the final (150th)

round in 1,000 independent simulations with the stochastic model, assum-

ing b ¼ 1:5. In section 1.2 of the Online Supplemental Material, we show

that predictions of the probabilistic model are robust to changes in b. Also

these simulations started with the initial color distribution observed during

the experiment.

Gray bars show the average outcome in the final 100 periods of the

experiment. Estimates and 95 percent confidence intervals were obtained

with linear multilevel models, controlling for the nestedness of observations

in experimental sessions.2

Figure 5 shows that the experiment confirmed the macrohypothesis

derived from the stochastic best-response model for the treatment with

P ¼ 1 and, thus, did not support the deterministic model. This supports the

theoretical notion that deviations on the level of individuals can have a deci-

sive impact on collective outcomes. A micromodel that takes into account

deviations makes, thus, more accurate macropredictions than a deterministic

version of the same model, even when deviations are assumed to be random.

What is more, deviations do not always change macro-outcomes, but the

stochastic model correctly predicted when deviations matter.

Study 2

Study 1 provided empirical support for the notion that the macropredictions

of a microtheory can become more accurate when deviations are taken into

account. On the one hand, this finding challenges intuition because we

assumed that deviations occur randomly. On the other hand, the assumption

that deviations are random might also be problematic, as Figure 6 suggests.

Figure 6 shows examples of seemingly systematic deviation patterns that

we observed in the two studies. In example a, participant 15 attempted to

enforce her preferred color (see Online Appendix Figure S19). Even though

blue would have been the best response, this participant kept choosing red,

the color of her type. In example b, participant 6 seemed to have attempted to

disrupt the descriptive norm that had emerged, systematically deviating sev-

eral times (see Online Appendix Figure S21). In example c, participant 9

attempted to conserve her preferred color (see Online Appendix Figure S19).

Furthermore, example d suggests that participants who observed that a net-

work neighbor changed color might have deviated with an increased prob-

ability, generating small deviation chains (see Online Appendix Figure S14).
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Study 2 was designed to test the hypothesis that systematic, nonrandom

deviations can lead to very different macropatterns than random deviations,

even when deviations are rare. In study 1, deviation patterns occurred but did

not affect the dynamics to a degree that macrooutcomes differed from the

predictions of the micromodel with random deviations, which suggests that

adding stochasticity suffices to improve macropredictions even when devia-

tions are not entirely random but follow patterns that are not captured in the

microtheory. However, there might be conditions under which systematic

deviations generate dynamics that differ from those generated by random

deviations. We therefore tested whether it may be misleading to assume that

deviations are random if they are actually systematic.

Study 2 differed from study 1 only in one aspect, the structure of the inter-

action network. In study 1, participants were linked to the two closest neighbors

to their left and to their right, which created a mixed network where nodes have

two neighbors of the same type and two neighbors of the opposite type. For study

2, however, we linked actors to their two closest neighbors on the circle and the
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Figure 6. Observed deviation patterns.
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two neighbors with a distance of two, as Figure 7 shows. The resulting network

is very similar to the network of study 1, but actors are connected only to actors

of the opposite type. Like in study 1, we studied two treatments with different

values of parameter P. We conducted three independent replications with P ¼ 1

and four with P ¼ 3. In total, there were 140 participants.

Predictions

Similar to the settings of study 1, coordination on a descriptive norm and

segmented coexistence are also rest points in study 2, but there is a third very

important stable pattern, which we call “dynamic oscillation.” This is a

dynamic pattern where cats and dogs always choose opposite colors but also

swap color in every period. This pattern is stable in that switching is always the

best response to the choices of one’s interaction partners in the previous round.

The fact that best-response behavior generates dynamic oscillation is

important, as it allowed us to study collective outcomes when decision mak-

ers deviate systematically from the best-response rule. When a participant

applies the best-response rule, she assumes that the interaction partners will

stick to their previous choices, an assumption that is obviously false when the
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Figure 7. Network used in study 2.
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system is the dynamic-oscillation phase and color choices alternate every

round. As the participants of our experiment were always informed about the

past choices of their network neighbors, we expected that they would system-

atically deviate from the best-response model whenever the system was in a

state of dynamic oscillation.

Figure 8 visualizes the predictions of the deterministic and the stochastic

(b ¼ 1:5) versions of the best-response model for the two treatments of study

2. For the treatment with P ¼ 1, both theoretical models predict that the

populations will end up in a state of dynamic oscillation. When dogs choose

red and cats choose blue in the first round, then nobody coordinates with any

of her neighbors, leading to a payoff of only P for everybody. Switching

color in Round 2, however, promises a payoff of four MU, which motivates

all individuals to change color. In the subsequent round, however, decision

makers realize again that they countercoordinated with their neighbors and

that their payoff is even smaller (zero MU). As another color change pro-

mises a payoff of Pþ 4, everybody changes back to the initial color. Thus,

the deterministic best-response model predicts that individuals will switch

color until infinity. With random deviations, as assumed by the stochastic

best-response model (equation [1]), the state of collective oscillation is stable

for the duration of the experiment when P ¼ 1, as the center graph of panel A

shows. That is, even when actors sometimes happen to deviate from the best-

response rule, the collective pattern of dynamic oscillation remains stable.

However, even though both the deterministic and the stochastic best-

response model predict the collective pattern of dynamic oscillation when

P ¼ 1, we expected this collective pattern to be very fragile and to disappear

quickly. As just described, it is not plausible that participants apply the best-

response rule when the system is in a state of dynamic oscillation. Therefore,

we expected participants to systematically deviate whenever the system is in

a state of dynamic oscillation and that dynamics would lead the systems into

one of the other equilibrium candidates, either coordination on a descriptive

norm or on a segmented coexistence. Segmented coexistence is stochasti-

cally very unstable, however. In fact, a single deviation by any member of a

segment who has a network connection to another segment member who is of

the type that does not prefer the color of the segment and who is connected to

a node outside the segment will motivate these contacts to also change color.

Coordination on one of the two colors is stochastically much more stable. If,

for instance, the network coordinated on red and a dog happens to deviate,

then even the four connected cats (who prefer blue) will stick to red, as red

promises a payoff three and blue only a payoff of Pþ 1 ¼ 2. As a conse-

quence, the system will return to the state of coordination.
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In sum, for the treatment with P ¼ 1, the deterministic and the stochastic

version of the myopic best-response model predict the pattern of dynamic

oscillation. However, if our intuition is correct that sometimes systematic

deviations can generate different macro-outcomes than random deviations,
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Figure 8. Predictions and typical results for the two experimental treatments of study 2.
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then we would observe coordination on a descriptive norm in the treatment

with P ¼ 1.

For the treatment with P ¼ 3, the deterministic and the stochastic best-

response model make opposite predictions, as Figure 8 illustrates. The deter-

ministic model predicts the pattern of dynamic oscillation, like under P ¼ 1.

According to the stochastic model, however, random deviations lead to

recurrent phase transitions from dynamic oscillations to segmented coexis-

tence to coordination and back (see center graph of panel B in Figure 8). If an

actor deviates in a period with an even number, then all of her contacts will

stop alternating, as this promises a payoff of 1þ P ¼ 4, rather than only 3

MU. If the actor who just deviated sticks to his last color choice, which would

also be a deviation, then the system has reached a new equilibrium (segmen-

ted coexistence). However, segmented coexistence is also stochastically very

unstable, as a deviation by any segment member will motivate other segment

members of also change color. Segments can also grow until the whole

network coordinated on one color, however, as a result of further deviations.

Strikingly, also coordination is stochastically unstable when P ¼ 3. For

instance, if everybody coordinated on option red and a dog happens to

deviate, then her four neighbors will also change color. If the dog who just

deviated sticks to his past choice, which would be a deviation, then a new

equilibrium is reached (segmented coexistence). If, however, the dog who

deviated chooses the best response after the deviation (red), then the segment

of five actors will start the oscillation pattern.

The recurrent phase transitions that the best-response model with ran-

dom deviations generates are intriguing. However, if our intuition is correct

that participants will deviate systematically from the best-response rule

whenever the system is in a state of dynamic oscillation, then the following

prediction can be formulated. The system will start in dynamic oscillation,

but systematic deviations will drive it into another equilibrium (either

coordination or segmented coexistence). But also these equilibria are

unstable and the system will keep switching from coordination to segmen-

ted coexistence. Phases of dynamic oscillation will be very short, as they

lead to systematic deviations.

Results

The two bottom graphs in the two panels of Figure 8 show typical dynamics

from the experiment, showing that our experimental results supported our

prediction that nonrandom deviations can generate different collective pat-

terns than random deviations. Challenging the predictions of both the
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deterministic and the stochastic best-response model, participants coordi-

nated quickly on one of the two colors in all three replications for P ¼ 1.

Likewise, we observed only very short phases of oscillation in the four

replications for P ¼ 3. In line with the predictions of the stochastic best-

response model, participants coordinated on one color. However, this

happened much faster than the stochastic model predicted, which provides

further support for our assumption that dynamic oscillation leads to systema-

tic deviations. Nevertheless, in agreement with the stochastic best-response

model, coordination was unstable when P ¼ 3. In one of the four replications

(the one shown in Figure 8), the descriptive norm broke down as a result of

a deviation and the system entered a state of segmented coexistence.

Figure 9 reports the same statistical tests as those from study 1, but the

result is very different. Unlike in study 1, both best-response models fail to

explain the macropatterns observed in the two treatments of the experiment.

In addition, the analyses reported in section 1.2 of the Online Supplemental

Material show that also a stochastic model with more of less deviations

would not have explained the empirically observed dynamics. In a nutshell,

the results of study 2 challenged the standard assumption that deviations are

random. Systematic deviation has the potential to lead systems into different

collective states than random deviations.

Discussion

The notion that the behavior of individuals can lead to complex and unex-

pected macropatterns when individuals do not act in isolation but interact
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Figure 9. Test of the hypotheses derived from the deterministic and the stochastic
model.
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with each other is, in a nutshell, sociology’s contribution to the understand-

ing of human behavior. Formal models of social processes and theories from

other disciplines suggest that in these settings, even rare and random devia-

tions can have decisive impact on how microbehavior translates into macro-

patterns. Under conditions that theoretical methods allow to identify (Foster

and Young 1990; Freidlin and Wentzell 2012), deviations may spark cas-

cades that have a substantial impact on collective behavior. To test this

notion, we conducted two laboratory experiments.

Our empirical studies support the notion that microdeviations matter for

macrooutcomes. We draw three conclusions from our empirical results. First,

our findings support the notion that even micromodels that very well capture

the prevalent patterns of individual behavior can make false macropredic-

tions. Deviations from the patterns that microtheories describe can spark

behavioral cascades that profoundly change collective outcomes. Second,

the stochastic model correctly predicted the conditions under which devia-

tions have the potential to alter macrooutcomes, even when deviations are

assumed to be random and, thus, unpredictable. Third, when individuals

deviate in a systematic way from otherwise prevalent patterns of behavior,

the resulting macrooutcomes can differ substantially from those generated

by random deviations. In other words, even in settings where deviations are

rare, it can be misleading to assume that deviations are random if they

actually follow a pattern. Including random deviations may thus fail to

improve macropredictions if the modeler failed to take into account an

important deviation pattern. Stochasticity improves macropredictions of

accurate microtheories, but it does not necessarily fix the predictions of

false micromodels.

Future research on the stochastic component of individual behavior is

crucial. Two main challenges lie ahead. First, more theoretical and empirical

work on the conditions of stochastic instability is needed in order to under-

stand better why and when the stochastic component of individual behavior

alters collective dynamics. Crucial methodological tools to analyze the sto-

chastic stability of social systems (Foster and Young 1990; Freidlin and

Wentzell 2012) have been developed, and their usefulness has been demon-

strated on social processes such as the evolution of conventions and norms

(Young 2015, 1993), the spread of innovation (Montanari et al. 2010; Young

2011), the emergence of hierarchies (Axtell et al. 2000), the polarization of

opinions (Mäs et al. 2010; Pineda et al. 2009), and residential segregation

(van de Rijt et al. 2009). Empirical studies are needed to test whether sto-

chastic models outperform deterministic theories also in these contexts. Our

studies have demonstrated that laboratory experiments are a useful approach
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to testing hypotheses about deviation effects. The core advantage of labora-

tory studies is that they allow the researcher to measure whether a given

action was a deviation or not. An important challenge for future empirical

research will be to study deviation effects in the field (an inspirational exam-

ple is the study by Chadefaux 2016).

Second, far too little is known about the conditions of deviations (But-

ler, Isoni, and Loomes 2012; Freidlin and Wentzell 2012; Goeree et al.

2005; McKelvey and Palfrey 1995; Loomes 2005; Lim and Neary 2016;

Wilcox 2008; Naidu, Hwang, and Bowles 2010; Hwang et al. 2014; Pra-

delski and Young 2012). Deviations have been argued to have multiple

sources including mistakes, misperceptions, inertia, or trial-and-error

experiments. These forms of deviations have been incorporated in very

different ways into formal models, which can matter for macropredictions.

One important assumption, for instance, is that deviations occur with a

constant rate (Kandori, Mailath, and Rob 1993; Young 1993), which might

be a good model of deviations resulting from mistakes. Deviations result-

ing from trial-and-error experiments, however, might be better captured by

the logit-response model (Alós-Ferrer and Netzer 2010; Blume 1993; Elli-

son 1993; Young 1998, 2011), as it seems plausible that actors experiment

more likely when it involves low costs. Our studies support the logit-

response model (see Figure 4), but more research is needed to identify the

conditions under which alternative deviation models offer more or less

accurate descriptions of real deviations (Mäs and Nax 2016). It is impor-

tant to point out, however, that from the view of a sociologist interested in

macrophenomena, it is certainly not necessary to develop complex devia-

tion theories seeking to predict individual deviations. Study 1 illustrated

that often even very simple deviation models, such as the logit-response

model, suffice to improve macropredictions. What is needed, however, are

theories that point to the conditions under which deviations are more or

less likely.

Our experimental design was very much tailored to the best-response

heuristic, which is just one of the many candidates for a micromodel. Nev-

ertheless, there is no reason to expect that deviations do not have similar

macroeffects when actors apply even simpler or more complex decisions

rules. For instance, theoretical models predict deviation effects when actors

also use simple reinforcement-learning heuristics (Pradelski and Young

2012) or imitate successful others (Kandori et al. 1993). In fact, cascades

can be sparked whenever decision makers are influenced by the behavior of

others. One can be certain that deviations are irrelevant for collective out-

comes, only when actors act in perfect isolation.
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Notes

1. A detailed analysis of the microlevel deviations during our two experiments has

been published by Mäs et al. (2016). These analyses provided support for the logit-

response model.

2. The simulated dynamics of the deterministic and the stochastic model that started

with the initial color choices observed during the experiment are also reported in

the Online Appendix.
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