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Abstract

Resource availability during development shapes not only adult phenotype but also the phe-

notype of subsequent offspring. When resources are absent and periods of starvation occur

in early life, such developmental stress often influences key life-history traits in a way that

benefits individuals and their offspring when facing further bouts of starvation. Here we

investigated the impacts of different starvation regimes during larval development on life-

history traits and measures of consumption in the turnip sawfly, Athalia rosae (Hymenop-

tera: Tenthredinidae). We then assessed whether offspring of starved and non-starved

parents differed in their own life-history if reared in conditions that either matched that of

their parents or were a mismatch. Early life starvation effects were more pronounced within

than across generations in A. rosae, with negative impacts on adult body mass and

increases in developmental time, but no effects on adult longevity in either generation. We

found some evidence of higher growth rates in larvae having experienced starvation,

although this did not ameliorate the overall negative effect of larval starvation on adult size.

However, further work is necessary to disentangle the effects of larval size and instar from

those of starvation treatment. Finally, we found weak evidence for transgenerational effects

on larval growth, with intra-generational larval starvation experience being more decisive for

life-history traits. Our study demonstrates that intra-generational effects of starvation are

stronger than transgenerational effects on life-history traits and consumption measures in A.

rosae.

Introduction

As a major determinant of growth and developmental trajectories, resource abundance in

early life plays a crucial role in shaping an individual’s phenotype [1], not least because many

of the phenotypic changes that occur in early life persist into adulthood [2,3]. Resource limita-

tion during early life can consequently have long-term detrimental effects on an individual’s

phenotype, negatively influencing key life-history traits and ultimately decreasing fitness [4–
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6]. However, if the resource conditions in early life match those in later life, such alterations in

an individual’s phenotype may confer significant fitness advantages [7,8]. Furthermore, these

phenotypic changes can be inherited by offspring, resulting in adaptive transgenerational

effects if environmental matching persists or the parental condition overall leads to fitness

advantages [9–11]. For many organisms, resources are not just scarce but may be absent at

some point during development [12]. For example, insects frequently go through ‘boom and

bust’ cycles of resource abundance both within and across generations [13]. It is therefore cru-

cial that research into the long-term effects of resource abundance in early life considers not

only variation in resource quality or quantity (low to high), but also these periods of acute

non-lethal starvation.

Individuals are commonly less resistant to periods of starvation in early life due to the high

energetic costs of growth and development [12,14]. However, those individuals that survive

such periods of food absence often demonstrate increased resistance to starvation as adults

[15,16; but see also 17,18], and have descendants that show similarly elevated levels of starva-

tion resistance, as found, for example, in various insect and nematode species [19,20]. This in

turn positively affects the longevity of adults and offspring under certain environmental condi-

tions [15,18,20]. For example, adult honey bees (Apis mellifera) starved in early life live longer

than individuals raised in an environment of plenty when both are exposed to starvation in

adulthood [15].

Enhanced resistance to starvation and consequent knock-on effects on adult longevity, in

response to early life starvation, can be caused by a number of factors, including the differen-

tial storage and utilisation of energy sources within tissues and a lower metabolic rate [21].

However, such changes in metabolism may only have positive fitness effects, if there is a match

between early and late life environments (‘environmental matching’ hypothesis) [22,23], or in

the case of transgenerational effects, between parental and offspring early life environments

[9,24]. Alternatively, in some cases being born under benign (e.g. non-starvation) conditions

and/or to high quality (e.g. non-starved) parents may always be more beneficial for fitness and

performance than being born in resource-poor (e.g. starvation) conditions, regardless of an

environmental match (‘silver-spoon’ hypothesis) [7,25].

In the face of starvation events in early life and the potential fitness costs of a smaller adult

size [26,27], developmental periods are also often extended to enable further growth once

resources become available again, so called ‘catch-up growth’ [21,28,29]. Increasing the dura-

tion spent in early life phases, however, has associated costs such as increased predation risk

[30,31]. These costs may be addressed transgenerationally; for example, in the Glanville fritil-

lary butterfly (Melitaea cinxia) larval starvation prolongs developmental time but this pro-

longation is lower in larvae whose parents also experienced larval starvation, with no impact

on pupal mass [32]. An alternative strategy is to increase feeding and developmental rates to

enhance consumption efficiency and maximise growth whilst minimising any extension of

total development time [33,34]. This so called ‘compensatory’ growth can have associated costs

such as decreases in competitive ability against conspecifics [5], mate attractiveness [35],

reproductive success [36] and longevity [37]. In comparison to these intra-generational effects

much less is known about the transgenerational effects of compensatory growth on offspring

phenotype, for example, whether the parents can buffer the long-term costs of catch-up growth

in their offspring, when parental and offspring developmental environments match [9]. Such

transgenerational effects can be mediated both maternally and paternally [3,38] as well as hav-

ing sex-specific effects on offspring [39–41].

Here we investigated the effects of starvation in early life, i.e. during larval development, on

life-history traits, consumption and growth rates both within and across generations in the tur-

nip sawfly Athalia rosae (Hymenoptera: Tenthredinidae). This insect species has a complex
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life-cycle, where the larvae feed on different species of Brassicaceae, including crop plants on

which they can reach pest status [42,43]. In contrast, the adults take up nectar. Multiple eggs are

laid on one plant and consequently larvae can go through boom and bust cycles of food availabil-

ity. Furthermore, several generations are produced each season, thus offspring may experience

similar environmental conditions as their parents [44]. In our experimental set-up, larvae of the

parental generation (F0) experienced three different regimes of repeated starvation or no starva-

tion. We then used a match-mismatch design to investigate the effects of one of these starvation

treatments and the no starvation control on life-history traits and consumption in the progeny

(F1). We predicted that in the parental (F0) generation increasing starvation will lead to lower lar-

val survival, prolonged larval development time and a reduced adult body mass, reproductive out-

put and longevity, although larvae may show increased consumption and growth rates after

periods of starvation. In the offspring generation (F1), we expected individuals kept under match-

ing conditions to show higher fitness-related trait values than those in mismatching conditions

and that larval starvation in the F0 may enhance larval starvation resistance in the F1.

Materials and methods

Adults of A. rosae were collected at a meadow near Bielefeld University, Germany (latitude:

52˚2.022’N, longitude: 8˚29.718’E; 146 m a.s.l.), and at a number of field margins in the agri-

cultural areas surrounding Bielefeld. Adults were placed together for mating and a culture

maintained for approximately 5 generations in cages at room temperature and 16 h: 8 h light:

dark circle on potted plants of Sinapis alba and Brassica rapa (var. pekinensis). The plants were

grown in a greenhouse (20˚C, 16 h: 8 h light:dark, 70% r.h.). For the experiment, 45 female

and 20 male adults (parent generation) were set up in a cage with flowering S. alba plants,

which is the preferred plant for oviposition (Müller, unpublished). One hundred newly

emerged larvae (F0) were placed individually in Petri dishes (5.5 cm diameter) lined with filter

paper and provided with leaf discs cut from middle-aged leaves of 6–8 weeks old B. rapa
plants, standardising leaf age, and thus plant quality, as much as possible. In contrast to S. alba,

cut leaf discs of B. rapa stay in a good condition at least for 24–48 h and therefore are more

suitable for rearing and consumption experiments. These larvae were kept in a climate cham-

ber at a cycle of 20˚C for 16 h at day:16˚C for 8 h at night and 70% r.h. To test the effects of dif-

ferent starvation regimes on life-history traits, larvae were randomly assigned to one of four

treatment groups (25 larvae per group). The no starvation (NS) group received food ad libi-
tum. Larvae of the low starvation (LS) group were provided with leaf discs in a rotating cycle of

three days ad libitum supply and one day (24 h) of starvation. The moderate starvation (MS)

group received B. rapa leaf discs in a rotating cycle of two days ad libitum supply and one day

(24 h) of starvation. Larvae of the high starvation (HS) group were starved every other day for

24 h (i.e. alternatingly 1 d food, 1 d starvation etc, Fig 1). These treatments were applied until

the larvae entered the eonymph stage (non-feeding, final larval instar).

On reaching the eonymph stage, eonymphs were placed in plastic cups containing ~30 g

soil for pupation and cups were covered with a gauze lid. The cups were checked daily for

emerging adults to measure pupal development time and survival. Freshly emerged adults

were weighed on a microbalance (ME36S, accuracy 0.001 mg; Sartorius, Göttingen, Germany),

kept individually in Petri dishes, provided with a mixture of honey and water (1:10) and adults

checked daily for their status (alive/dead) to measure adult longevity. Within each treatment

group, pairs of one female and one male were set up for mating, which usually occurs within

less than half an hour. Because fewer males than females emerged in the F0 generation, some

males were mated with more than one female. Males were kept afterwards in Petri dishes until

death. Females were placed in plastic cups (0.3 L), provided with the honey-water mix and
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offered leaves of S. alba for oviposition until death. The total number of hatching larvae (F1)

produced by each female (F0) was counted.

To test the combined effects of parental and offspring larval starvation treatment on off-

spring life-history traits, F1 larvae hatching from eggs of F0 females in the NS and LS treatment

groups were used (as the number of surviving larvae was highest in these treatment groups). F1

larvae were then assigned to a starvation treatment in a match-mismatch design [45] where their

rearing environment either matched that of their parents (NS-NS, LS-LS) or did not (LS-NS,

NS-LS), resulting in four different larval rearing treatments (Fig 1). F1 larvae derived from F0

parents of the NS group received either food ad libitum (NS-NS; n = 12) or were reared on B. rapa
leaf discs in a rotating cycle of three days ad libitum supply and one day of starvation (NS-LS;

n = 12). F1 larvae derived from F0 parents of the LS group received either food ad libitum (LS-NS;

n = 19) or reared on B. rapa leaf discs in a rotating cycle of three days ad libitum supply and one

day of starvation (LS-LS; n = 21). Larval survival, larval and pupal development time, adult body

mass and longevity were recorded for the F1 individuals as done for the F0 individuals.

Consumption rates for larvae from both the F0 and F1 generation were measured when lar-

vae were 11 days post hatching. Each larva was weighed (= initial body mass) and supplied

with a defined number of B. rapa leaf discs (surface area of 219.28 mm2, corresponding to a

fresh mass of 64.88 mg, average of 20 weighed leaf discs). After 24 hours, larvae were weighed

again (= final body mass), and the leaf disc remains were scanned (Samsung SAMS M3375FD,

resolution 640 x 480). The remaining leaf area was calculated from images in Image J, using

the thresholding tool to ensure accurate area selection. The remaining area was then used to

calculate the total mass of consumed leaf (mg).

Statistical analysis

Data were analysed using R version 3.4.4 (R Core Team, 2018). The alpha level was set at 0.05

for all tests. Data of the F0 generation were analysed using general linear (lm) and generalised

Fig 1. Scheme of the experimental set-up. Larvae of the F0-generation were assigned to four different treatments. F1-individuals from

the no starvation (NS) and low starvation (LS) treatment were assorted to either of these two treatments in a match-mismatch design

(left). Moreover, details of the starvation regimes and the timing of the consumption assay are depicted (right).

https://doi.org/10.1371/journal.pone.0226519.g001
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linear models (glm) (package:MASS; see below for full model details) and data of the F1 gener-

ation using liner mixed effects models (package:lme4; see below for full description of each

model). Model residuals were checked for normality and variance homogeneity. Stepwise

backwards deletion using Chi-square likelihood ratio tests (package:MASS) was employed to

reach the minimum adequate model [46]. Posthoc analyses were carried out using the package

‘multcomp’ (package:multcomp, [47]).

Parental (F0) generation: The influence of the four different larval starvation treatments on

the total number of surviving larvae in the F0 generation was assessed using a glm with a bino-

mial distribution and logit link. Due to the low number of surviving larvae the HS treatment

was dropped from further analyses of life-history traits and consumption measures in the F0

generation (see Results section for further details). The effects of the three remaining starva-

tion treatment levels (NS, LS and MS), sex and their interaction on larval development time

were tested using a glm with a Poisson distribution and log link. The effects of larval starvation

treatment and sex on adult survival were assessed via a survival analysis (package: Survival,

[48]). The survfit function was used to produce Kaplan-Meier survival curves and the differ-

ence between these curves was tested using a log-rank test with the survdiff function. A linear

model was used to establish the effects of larval starvation treatment (NS, LS and MS), sex and

their interaction on adult body mass (mg). The influence of starvation treatment (NS, LS and

MS), female body mass (mg), and their interaction on the total number of hatched larvae per

female was assessed using a negative binomial glm to account for overdispersion in the model.

We estimated relative growth rate (RGR), relative consumption rate (RCR) and food con-

version efficiency (ECI) of larvae using general linear models [49], to avoid the pitfalls associ-

ated with the use of ratios when calculating nutritional and growth parameters [50,51].

Furthermore, due to reduced feeding time whilst undergoing ecdysis, those larvae that

moulted to the next instar during the consumption assays were excluded from the analyses.

The RGR was estimated via analysis of the change in larval body mass [final mass (mg)—initial

mass (mg)] as the response variable and initial larval body mass, larval starvation treatment,

sex, and two two-way interactions between initial larval body mass and larval starvation treat-

ment or sex as the predictors. The RCR was estimated via the analysis of the log of total fresh

mass of consumed leaf material (mg) as the response variable and the same predictors as for

the RGR analysis. The ECI was estimated via the analysis of the change in larval body mass as

the response variable and the total fresh mass of consumed leaf material, larval starvation treat-

ment, sex, and two two-way interactions between mass of consumed leaf material and larval

starvation treatment or sex as the predictors.

Offspring (F1) generation: Due to the low number of females (n = 6) compared to males

(n = 64) reaching adult eclosion in the F1 generation, the full analysis was carried out only on

males (NS-NS = 11, NS-LS = 10, LS-NS = 17, LS-LS = 17). The influence of starvation treat-

ment in both the parental and offspring generation on larval developmental time was assessed

using a GLM (family = Poisson, link = log; package: BASE), where larval development time

(days) was the response variable, and parental (F0) larval starvation treatment (NS or LS), off-

spring (F1) starvation treatment (NS or LS) and their interaction were the predictors. A sur-

vival analysis (package: Survival, [48]) was used to establish the effect of parental (NS or LS),

offspring larval starvation treatment (NS or LS), and their interaction on adult survival. The

survfit function was used to produce Kaplan-Meier survival curves and the difference between

these curves was tested using a log-rank test with the survdiff function. The effects of parental

(NS or LS) and offspring larval starvation treatment (NS or LS) and their interaction on off-

spring adult body mass (mg) were assessed using a linear model (package: BASE). As with the

parental (F0) generation, we excluded larvae that moulted during consumption assays from

the analysis of RGR, RCR and ECI of larvae. The RGR was estimated via the analysis of the
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change in larval body mass [final mass (mg)—initial mass (mg)] as the response variable and

initial larval body mass, parental (F0) larval starvation treatment (NS or LS), offspring (F1)

starvation treatment (NS or LS) and their interactions (three-way interaction) as predictors.

The RCR was estimated via the analysis of the log of total fresh mass of consumed leaf material

(mg) as the response variable and initial larval body mass, parental (F0) larval starvation treat-

ment (NS or LS), offspring (F1) starvation treatment (NS or LS) and their interactions (three-

way interaction) as predictors. The ECI was estimated via the analysis of the change in larval

body mass as the response variable and the total fresh mass of consumed leaf material, parental

(F0) larval starvation treatment (NS or LS), offspring (F1) starvation treatment (NS or LS) and

their interactions (three-way interaction) as predictors.

Results

In the F0 generation, larvae of the high starvation treatment (HS) had a significantly lower lar-

val survival than larvae of the three other starvation treatment levels (total number of larvae

reaching pupation: HS = 8%, MS = 76%, LS = 92%, NS = 84%; X2
3,96 = 52.08, p< 0.001). Lar-

val development time was significantly longer when larvae had periods of starvation (LS, MS)

than when they were fed ad libitum (NS) (X2
2,60 = 13.17, p = 0.001; pairwise comparisons: NS

vs. MS z = -3.42, p = 0.002; NS vs. LS z = -2.79, p = 0.015; LS vs. MS z = -0.77, p = 0.72; Fig 2A).

However, there was no significant interactive effect of sex with treatment (X2
2,57 = 0.50, p =

0.77) or sex alone on larval developmental time (X2
1,59 = 0.39, p = 0.53). In contrast, sex influ-

enced adult longevity, with females living significantly longer than males (log-rank test X2 =

7.91, p = 0.005), independent of larval starvation treatment (NS treatment � sex interaction

log-rank test X2 = 9.85, p = 0.08 and main treatment effect log-rank test X2 = 0.32, p = 0.9).

Adult females were heavier than adult males and adult body mass decreased with increasing

bouts of starvation (treatment: F2,55 = 57.43, p< 0.001; sex: F1,55 = 234.44, p< 0.001; Fig 2B),

although the interaction between treatment and sex was not significant (treatment � sex:

F2,53 = 3.03, p = 0.057). The total number of hatched larvae per female varied with female body

mass in dependence of the larval starvation treatment (treatment � maternal body mass:

X2
2,29 = 6.98, p = 0.03). Females of the MS or LS treatment showed a decreasing number of

hatched larvae with increasing female body mass, whereas females of the NS treatment showed

the reverse (Fig 3).

The relative growth rate (RGR) differed significantly between F0 larvae of the different star-

vation treatments (larval initial body mass � treatment: F2,33 = 15.04, p< 0.001; Fig 4A). There

was a positive relationship between initial body mass and changing body mass in larvae of

both starvation treatments (LS, MS), but this relationship was negative for larvae of the NS

treatment (Fig 4A). The relationship between initial body mass and changing body mass was

positive for both sexes, although the initial mass and overall mass change was smaller for males

than for females (sex � treatment: F1,33 = 5.85, p = 0.021). Across all treatments there was a sig-

nificant positive relationship between the amount of leaf material consumed by larvae and

their initial body mass, i.e. the RCR (Fig 4B). This relationship also differed significantly

between larvae kept at different larval starvation treatments (larval initial body mass � treat-

ment: F2,37 = 5.76, p = 0.007), with increases in the initial body mass of larvae that had previ-

ously been starved (LS, MS) resulting in larger increases in the amount of consumed leaf

material than equivalent increases in initial mass in larvae of the NS treatment (Fig 4B). There

was no significant effect of sex on either leaf consumption (F1,34 = 0.10, p = 0.76) or on the

relationship between leaf consumption and initial larval body mass (F1,33 = 0.51, p = 0.48).

The ECI differed significantly between F0 larvae of the different treatments (change in body

mass � treatment: F2,37 = 5.39, p = 0.009). In both starvation treatments (LS, MS) larvae that
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had a higher increase in body mass consumed more food over the course of the consumption

assay, while in larvae of the NS treatment there was no apparent relationship between con-

sumption and body mass change (Fig 4C). There was no significant effect of sex on either leaf

consumption (F1,34 = 1.57, p = 0.22) or on the relationship between leaf consumption and lar-

val change in body mass (F1,33 = 0.31, p = 0.58).

In the F1 generation, there was a significant effect of offspring larval diet on larval develop-

mental time, with larvae that were fed ad libitum without any starvation having shorter devel-

opment times than those that had periods of starvation (X2
1,53 = 9.74, p = 0.002; Fig 5A).

Fig 2. Effect of larval starvation treatment on larval development time (a) and effects of larval starvation treatment and

sex on adult body mass (b) of the parental generation (F0) of Athalia rosae. Box plots show the medians and 25th and

75th percentiles; the whiskers indicate the values within 1.5 times the interquartile range and are overlaid with raw data

points.

https://doi.org/10.1371/journal.pone.0226519.g002

Fig 3. Effect of larval food treatment [green circles–no starvation (NS), orange diamonds–low starvation (LS), red triangles–moderate starvation (MS)] on

the relationship between total number of larvae hatching from eggs laid by Athalia rosae F0 females and female body mass (mg). Lines represent model

predictions with associated SE plotted as polygons around each line and overlaid with raw data points.

https://doi.org/10.1371/journal.pone.0226519.g003
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Starvation treatment of the parental larvae had no effect on developmental time of the F1 lar-

vae (parental larval diet � offspring larval diet: X2
1,51 = 0.07, p = 0.79). There was no significant

effect of either offspring larval starvation treatment (log-rank test X2 = 0.61, p = 0.5), parental

larval starvation treatment (log-rank test X2 = 1.11, p = 0.3) or their interaction (log-rank test

X2 = 1.83, p = 0.6) on offspring adult longevity. Male adult body mass differed depending on

starvation treatment; F1 adults were heavier when reared as larvae without starvation (NS)

(F1,53 = 9.51, p = 0.003; Fig 5B), and there was a non-significant trend for this difference to be

higher when the parental larvae also experienced no starvation (parental larval diet � offspring

larval diet: F1,51 = 2.77, p = 0.10; Fig 5B).

There was a significant difference in the relationship between the initial larval body mass

and the change in larval body mass (RGR) between F1 larvae of different treatments in the

consumption assay (larval initial body mass � parental larval diet � offspring larval diet: F1,23 =

4.76, P = 0.04; Fig 6). F1 larvae which were either subject to a starvation treatment themselves

(LS-LS and NS-LS) or whose parents had been starved as larvae (LS-NS) showed a positive

relationship between larval initial body mass and change in body mass, whereas larvae of the

NS-NS treatment showed a negative relationship (Fig 6). However, neither parental larval star-

vation treatment (larval initial body mass � parental larval diet: F1,25 = 2.72, P = 0.11), offspring

larval starvation treatment (larval initial body mass � offspring larval diet: F1,25 = 0.67,

P = 0.42) nor their interaction (larval initial body mass � parental larval diet � offspring larval

diet: F1,23 = 0.56, P = 0.46) influenced the relationship between larval leaf consumption and

larval initial body mass, i.e. RCR. Likewise, these two treatments and their interaction did not

influence the relationship between larval leaf consumption and the change in larval body mass,

i.e. ECI, in the consumption assay (larval change in body mass � parental larval diet � offspring

larval diet: F1,23 = 1.29, P = 0.27; larval change in body mass � parental larval diet: F1,25 = 0.61,

P = 0.44; larval change in body mass � offspring larval diet: F1,25 = 0.58, P = 0.45).

Discussion

Here we aimed to assess the influence of early life starvation on life-history traits and con-

sumption measures both within and across generations in the turnip sawfly A. rosae. Whilst

our results demonstrate the negative impacts of starvation in early life on survival, develop-

ment time and adult body mass, the effects of larval starvation on consumption and growth

were more complex. Furthermore, although there was some weak evidence for transgenera-

tional effects of parental diet on offspring, overall the effects of early life diet on key life-history

traits were more pronounced within than across generations in A. rosae.

F0 generation—Early life effects

In the parental (F0) generation, periods of starvation during the larval phase prolonged larval

developmental time. Increases in developmental time are often linked to starved individuals

‘catching up’ the overall growth achieved by non-starved individuals [33]. However, this was

not the case for starved A. rosae larvae, which despite their prolonged developmental period

Fig 4. Results of consumption assays of larvae of Athalia rosae in the parental (F0) generation; relative growth rate

(RGR; a), i.e. the relationship between their change in body mass during the consumption assay and their initial body

mass at the start of the assay; relative consumption rate (RCR; b), i.e. the relationship between the amount of food

consumed by larvae and their initial body mass; efficiency of food conversion (ECI; c), estimated via the analysis of the

change in larval body mass and the total leaf consumption over the course of the consumption assay. Larvae

experienced either no starvation (green circles), low starvation (orange diamonds) or moderate starvation (red

triangles). Lines represent model predictions with associated SE plotted as polygons around each line and overlaid with

raw data points.

https://doi.org/10.1371/journal.pone.0226519.g004
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were smaller as adults than those individuals raised without starvation. In fact, a prolongation

of developmental time in response to early life dietary manipulation does not always result in a

complete catch-up in terms of adult size [52]. Adult mass also decreased with increasing fre-

quency of larval starvation bouts, although the developmental time of individuals in these

treatments (LS vs. MS) did not differ. These results suggest that there might be a limit to the

prolongation of developmental periods in A. rosae in the face of harsh early life conditions,

resulting in a trade-off with adult body mass. Several factors might select against extended lar-

val development including increased risk of predation and parasitism as well as seasonal pres-

sures such as peak adult food abundance, temperature or mate availability [30,31,53–55].

Fig 5. Development time (a) and male adult body mass (b) of Athalia rosae larvae in offspring (F1) generation split by

parental and offspring larval starvation treatment; larvae experienced either no starvation (NS) or low starvation (LS)

in a match-mismatch design. Box plots show the medians and 25th and 75th percentiles; the whiskers indicate the

values within 1.5 times the interquartile range and are overlaid with raw data points.

https://doi.org/10.1371/journal.pone.0226519.g005

Fig 6. Relationship between the change in mass during the consumption assay and the mass at the start of the assay, or relative growth

rate (RGR), of Athalia rosae larvae in the offspring (F1) generation. Data is split by parental and offspring larval starvation treatments,

combinations of no starvation (NS) and low starvation (LS); LS-LS = red circles, NS-LS = orange diamonds, LS-NS = light green triangles,

NS-NS = dark green circles. Lines and polygons are model predictions and associated standard errors (SE), overlaid with raw data points.

https://doi.org/10.1371/journal.pone.0226519.g006
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Alternatively, for holometabolous species such as A. rosae where only adults have high mobil-

ity, it may be advantageous to complete development at a smaller size to enable dispersal,

whilst differentially allocating available resources during metamorphosis to improve dispersal

abilities [26,56,57]. For example, in the butterfly Bicyclus anynana resource constraints in early

life lead to a lower adult body mass, with these smaller adults having a higher thorax ratio (tho-

rax dry mass/total dry mass) resulting in a better flight performance compared to larger adults

[58].

In terms of treatment effects on the growth rate of A. rosae, those individuals that were

starved appeared to have a higher growth rate than those individuals that did not experience

starvation. Likewise, previously starved larvae also showed more efficient consumption,

despite all individuals consuming a larger amount of leaf material with increasing larval size.

This might indicate ‘compensatory growth’, i.e. an increased growth rate, in starved larvae

once food is available [33], however, one should be cautious of this interpretation [34]. The

assays were carried out 11 days after hatching and consequently the larvae reared under no

starvation conditions were much larger than those in both of the starvation treatments and

were closer to the final larval ecdysis. Growth rate commonly decreases with increasing size

due to the energetic demands of somatic maintenance [59] and therefore may also vary across

larval instars. Thus, further work comparing the consumption and growth of larvae from dif-

ferent starvation treatments at more comparable sizes and instars is needed to conclusively

assess whether A. rosae employs compensatory growth when recovering from larval starvation.

Starvation bouts during development had no effect on adult longevity (F0 generation).

However, empirical work on the relationship between early life starvation and adult longevity

provides a mixed bag of results, spanning the spectrum from positive to negative effects on

adult lifespan [60–62]. Arguably, such variation could partly be attributed to a conflation of

the different ways in which diet is varied across different studies, either by restriction of key

nutrients (diet quality) or general caloric restriction (quantity) [61], resulting in markedly dif-

ferent physiological effects. Severe stress in early life such as that caused by starvation can

carry with it costs associated with somatic damage, e.g., increased telomere attrition [63–66].

The predictions of environmental matching suggest that despite such effects, adult lifespan is

maximised when resource conditions in early and late life match, as is the case in A. mellifera
[15]. In other cases the negative somatic effects of early life resource constraints or other early

life stressors are often more pronounced under stressful adult conditions and increase with the

intensity of the stress, e.g. longer or more frequent bouts of starvation [67]. This may therefore

explain why we found no difference in longevity of adult A. rosae based on early life experi-

ence, as the environment for all adults was benign, with a constant food supply.

Starvation also altered the relationship between female body mass and reproductive output

in the parental generation, with a positive relationship in individuals experiencing no starva-

tion and a negative relationship in individuals starved during development. Starvation and

resource restriction in early life frequently reduce female fecundity [20,29,68], in part due to

enhanced resource allocation to growth and survival opposed to the organs involved in repro-

duction [15,69]. Early life starvation experienced by mothers can also potentially act as a cue

indicating a poor future offspring environment [9]. Maximising offspring size in the face of

such cues results in fitness benefits for offspring [70], especially in the face of adverse environ-

mental conditions such as starvation [71,72]. However, responding to these cues can result in

a trade-off between offspring number and size [73], as, for example, found in females of B. any-
nana that were starved in early life [58]. This trade-off may have contributed to the negative

relationship observed in A. rosae between maternal size and offspring number in the starvation

treatments, although future measurements of offspring size would be necessary to test this

assumption.
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F1 generation—Early life and transgenerational effects

The starvation regime of larvae in the offspring generation (F1) had a more pronounced effect

on offspring life-history traits of A. rosae than the parental starvation treatment. Neither

parental nor offspring larval starvation treatments influenced offspring adult lifespan, but off-

spring larval starvation increased developmental time and decreased male adult body mass

independent of parental conditions. In contrast, in the grasshopper Chorthippus biguttulus
high quality diet of the parental generation had positive effects on the offspring developmental

time and body mass, when diet quality was kept high or low over the entire development of

each generation [74]. In Drosophila melanogaster, offspring of mothers raised as larvae under

poor environmental conditions had a larger size and shorter development time than the off-

spring of mothers that developed in a resource-abundant environment [75]. Thus, intra- versus
transgenerational responses may be highly species- and dietary treatment-specific. Further-

more, both offspring and adult larval starvation treatments interactively affected offspring lar-

val growth rate in A. rosae. The contrasting growth rates in particular between larvae of the

LS-NS and the NS-NS treatment are most striking, as they indicate that the experience of poor

larval conditions in the parental generation enhances the growth rate in offspring. However, as

discussed above for the F0 generation, the different growth trajectories are probably mostly

related to the body size and ontogeny of the larvae, with increasing growth rates up to a certain

larval size and decreases once larvae approach pupation.

The environmental matching hypothesis predicts fitness benefits when the environment

matches between parents and offspring [9,24]. Thus, one might expect starved individuals

from parents that themselves were starved to perform better than progeny from parents not

starved as larvae (i.e. LS-LS > NS-LS). In both a butterfly and a springtail species, for example,

offspring of individuals that had experienced starvation or low food abundance had a shorter

development time and a higher adult body mass when exposed to such conditions themselves

during development than those individuals from parents reared under benign conditions,

although for springtails this was true only for female offspring [41,76]. Alternatively, the silver-

spoon hypothesis predicts that positive effects of high quality parents benefit not only those

offspring in good environments, but also those in poor environments [7,25], thus leading to

the opposite effect (i.e., here expecting LS-LS < HS-LS). Support for the silver-spoon effect has

been found in insects and birds [74,77]. However, no robust support for either of these effects

(environmental matching or silver-spoon) was found in the current study in offspring of A.

rosae, with starved individuals from parents that themselves were starved or not starved as lar-

vae (LS-LS and NS-LS) having similar growth trajectories. One possible explanation is that the

benefits of having high quality parents may mask the benefits of environmental matching,

when offspring are developing in a poor environment. These types of transgenerational effects

can be difficult to disentangle with a match-mismatch design, because the effects of both

parental and offspring environments may not necessarily act in an additive manner [78]. Over-

all, there appears to be only weak evidence for transgenerational effects of parental diet experi-

ence on offspring in A. rosae, with much larger environmental effects of offspring diet.

Conclusion

The effects of early life diet experience on key life-history traits were stronger within than

across generations in A. rosae. Early life starvation negatively influenced adult body mass and

increased individual developmental time, with growth trajectories in this experiment likely

predominantly determined by current body size and ontogeny. Further work is necessary to

disentangle the effects of larval size and instar from that of starvation treatment when studying

consumption and growth rates in this species. Future studies may also consider the effects of
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single acute starvation bouts, simulating alternative field conditions where high numbers of

later larval instars can decimate single host plants before finishing development. As the physio-

logical effects of starvation are known to differ between different rates and duration of starva-

tion bouts, there might also be differences in the intra-generational and transgenerational life-

history responses of individuals to these different types of starvation.
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