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ABSTRACT Infectomics, a novel way to globally and comprehensively understand the interactions
between microbial pathogens and their hosts, has significantly expanded understanding of the microbial
infections. The infectomics view of viral–host interactions on the viral perspective principally focuses on
gene acquisition, deletion, and point mutation, while traditional antiviral drug discovery concentrates on
viral encoding proteins. Recently, high-throughput technologies, such as mass spectrometry-based pro-
teomics, activity-based protein profiling, microarray analysis, yeast two-hybrid assay, small interfering
RNA screening, and micro RNA profiling, have been gradually employed in the research of virus–host
interactions. Besides, signaling pathways and cellular processes involved in viral–host interactions provide
new insights of infectomics in antiviral drug discovery. In this review, we summarize related infectomics
approaches in the studies of virus–host interactions, which shed light on the development of novel antiviral
drug targets screening. Drug Dev Res 73 : 365–380, 2012. © 2012 Wiley Periodicals, Inc.
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INTRODUCTION

Viruses, as small infectious agent, infect nearly all
organisms and can cause severe infectious diseases in
human. The use of chemical therapy (e.g., ribavirin) or
vaccines has proved effective in protecting against viral
infections, but some infections like human immunode-
ficiency virus (HIV) [Cohen et al., 2011], hepatitis B
virus (HBV) [Dienstag, 2008], and influenza viruses
[Lambert and Fauci, 2010] remain a great challenge.
With progress in Genome Sequencing Project, the
whole-genome complete genomes of 2,837 viruses have
been sequenced at the time of writing this review (http://
www.ncbi.nlm.nih.gov/genomes/GenomesGroup.cgi?
taxid=10239&opt=Virus), leading to a new era of viral
genomics and proteomics [Burley et al., 1999; Pandey
and Mann, 2000; Dongre et al., 2001; Collins et al.,
2003; Tyers and Mann, 2003]. Previous studies, mainly
based on genomic and proteomic approaches, have
made significant progress in establishing the founda-
tion of network-based investigations on viral–host

interactions [Chakravarti et al., 2000; Wilson and Rich-
ardson, 2005; Wu et al., 2005].

Infectomics, a term first introduced by Huang
et al., 2002], is a novel means to globally and compre-
hensively understand interactions between microbial
pathogens and their hosts rather than microbial patho-
gens themselves. Three types of infectomics approa-
ches have been developed for antimicrobial drug
discovery: ecological infectomics, immunoinfectomics,
and chemical infectomics [Huang et al., 2007]. Among
them, the accelerated development of chemical-based
infectomics approaches has greatly contributed to drug
discovery efforts. High-throughput approaches that
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include mass spectrometry (MS)-based proteomics,
activity-based protein profiling (ABPP), microarray
analysis, yeast two-hybrid (YTH) assays, small interfer-
ing RNA (siRNA) screening, and micro RNA (miRNA)
profiling, are used to study the infectomes related to
viral infection, leading to detailed mechanisms of viral–
host interactions, including HIV [Brass et al., 2008;
König et al., 2008; Naji et al., 2012], hepatitis C virus
(HCV) [Supekova et al., 2008; Peng et al., 2009], influ-
enza virus [König et al., 2009], and dengue virus
(DENV) [Khadka et al., 2011].

Recent progress in antiviral drug research based
on infectomics approaches has greatly revolutionized
existing strategies. New antiviral compounds targeting
host gene-encoding proteins or enzymes are in preclini-
cal research, e.g., PRO2000 [McCormack et al., 2010]
and bisindolylmaleimide [Ludwig et al., 2003]. As
nuclear receptors play a combinatorial role in inflam-
mation and immunity [Glass and Ogawa, 2005], novel
drugs targeting these represent a potential strategy for
antiviral therapy. Targeting infectome cellular proteins
or molecules may lead to reduced host drug resistance,
as the human genes encoding targeted cellular proteins
are less likely to mutate in response to therapy [Tan
et al., 2007]. Infectomics approaches can be used to
study complex viral–host interactions to facilitate
screening novel antiviral drug targets. In this review, we
focus on high-throughput infectomic approaches in the
study of virus–host interactions and their potential in
antiviral drug discovery.

THE VIRAL PERSPECTIVE IN DRUG DISCOVERY

In the past few decades, many publications involv-
ing viral infections have focused on genomic and pro-
teomic approaches from a viral perspective. The gene
acquisition, deletion, and point mutation are three
major events leading to the evolution of microbial
pathogens or commensals. Point mutation is the most
frequent leading to the promotion of viral replication
and drug resistance. The survival ability of some viruses
is enhanced due to viral point mutation, indicating that
point mutations may play a critical role in virus spread.
For example, in spite of the presence of antibodies
against e antigen in the serum, patients infected with
HBV still have a high titer of HBV DNA. Akahane et al.
[1990] by sequencing the precore region of HBV, iden-
tified a point mutation at nucleotide 83 that was present
in 98% clones of HBV propagated from the sera of
seven patients, and another mutation at nucleotide 86
in 29 clones from two patients, which were responsible
for dysfunctional secretion of e antigen. This point
mutation is not limited to HBV, but is a general viral
phenomenon that has been identified in a variety of

viruses, including HIV [Emiliani et al., 1996], HCV
[Heilek and Peterson, 1997], DENV [Hanley et al.,
2003], influenza virus [Melikyan et al., 2000], and
herpes simplex virus (HSV) [Hwang et al., 1992].

Using genomic and proteomic approaches, signifi-
cant progress in drug discovery based on viral encoding
proteins has occurred. Gel electrophoresis and liquid
chromatography-MS/MS technologies resulted in the
discovery of many proteins that may represent potential
drug targets and include viral enzymes like reverse
transcriptase (RT), integrase, and protease, which are
involved in virus binding, reverse transcription, integra-
tion, and budding. For instance, the use of HIV-1 pro-
tease inhibitors, like saquinavir, ritonavir, indinavir, and
nelfinavir have improved the treatment of HIV-infected
patients [Deeks et al., 1997; Eron, 2000]. However,
many patients treated with HIV-1 protease inhibitors
developed tolerance [Condra et al., 1995; Yerly et al.,
1999] requiring an enhanced knowledge of the land-
scape of viral infections. Furthermore, host factors that
play essential roles in viral infections could also serve as
novel antiviral drugs.

THE HOST PERSPECTIVE IN DRUG DISCOVERY

To date, virus–host interactions require additional
characterization, as previous studies of viral infections
focused mainly on the viruses themselves leading to
antiviral drugs that targeted viral proteins with inherent
limitations, e.g., rapid resistance due to the viral type
and low fidelity of viral replication, especially for the
RNA viruses [Drake et al., 1998]) [Friedel and Haas,
2011]. Furthermore, viral genomes represent a limited
number of drug targets [Tisoncik et al., 2009]. With
novel high-throughput technologies, host factors essen-
tial for viral infections have been identified. A summary
of the currently used high-throughput technologies and
their contributions to antiviral drug discovery follows.

MS-Based Proteomics

Proteome analysis (primary sequence, protein–
protein interactions, posttranslational modifications,
etc.) can be used to study cellular states and determine
molecular aspects of cellular function. Owing to the
complexity of proteins and their low abundance,
MS-based proteomics [Rabilloud, 2002; Monteoliva
and Albar, 2004; Righetti et al., 2004] is an indispens-
able tool in viral systems biology (Fig. 1A) [Aebersold
and Mann, 2003]. Ion traps [Fenn et al., 1989; Pitteri
et al., 2005; Makarov et al., 2006; Second et al., 2009;
Shaner et al., 2009], time-of-flight (TOF) [Marklein
et al., 2009; Seng et al., 2009; Prod’hom et al., 2010],
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quadruple [Abzalimov and Kaltashov, 2010;
Ramanathan et al., 2011], and Fourier transform-MS
ion cyclotron analyzers [Leon et al., 2009; Allwood
et al., 2012] are thee four basic types of mass analyzers

used in proteomic investigation. There are multiple
options available to collect data and analysis including
isotope-coded affinity tag [Haqqani et al., 2005], stable
isotope labeling with amino acids in cell culture [Asara
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Fig. 1. High-throughput technologies and omics approaches currently used in novel drug target screening. Six technologies are commonly used
in drug discovery. (A) MS-based proteomic approach. (B) Schematic view of activity-based protein profiling (ABPP). Cell lysates are mixed with
activity-directed chemical probes targeting candidate proteins, and then the tags of the probes could be detected by in-gel analysis.
(C) Schematic view of protein microarray analysis. First, the artificial antigens are attached on the solid substrate. Then, the primary antibodies are
deposited to the hapten. Finally, the primary antibodies bind to the secondary antibodies with the labels for detection. (D) Schematic view of yeast
two-hybrid assay (YTH). The protein of interest (bait) is fused to a DNA-binding domain and transfected in a yeast host cell that contains a reporter
gene controlled by this DNA-binding domain. The functional transcription factor (TF) will reconstitute upon the physical interaction between bait
and prey proteins, leading to the activation of the reporter gene. (E) Schematic view of siRNA screening. Step I, preparation of siRNAs; step II, rearray
siRNAs into 384-well plates for high-throughput screening; step III, transfection of siRNAs into target cell lines; and step IV assay phenotype by
identifying the plate position (see black cell). (F) Schematic view of miRNA profiling. The total RNAs are hybridized with the miRNAs. Then the
RNAs are labeled with the pCp-Cy3 for detection. [Color figure can be viewed in the online issue which is available at wileyonlinelibrary.com]
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et al., 2008], and N15 [Osserman et al., 1957]. As more
viral and host genomes are sequenced, MS-based
proteomics is employed in research on virus–host inter-
actions. Two-dimensional electrophoresis (2DE)/MS-
based proteomics are powerful tools in infectomics
research. Matrix-assisted laser desorption/ionization-
TOF-MS has been successfully used in combination
with 2DE for infectomics analyses of the Chlamydia
pneumonia elementary body in Hep-2 cells and C. tra-
chomatis reticulate body in HeLa 229 cells [Huang
et al., 2002]. Of the HCV nonstructural proteins, non-
structural protein 5A (NS5A) plays a critical role in
RNA binding [Huang et al., 2005] and replication
[Tarao et al., 2005; Targett-Adams et al., 2008], but its
exact role remains unknown, particularly in virus–host
interactions. Choi et al., 2004] identified heat shock
protein 27 (HSP27) as a protein that specifically
co-immnoprecipitated with NS5A but not with NS5B
using MS analysis and other approaches. Moreover, the
N-terminal regions of NS5A (aa 1–181) was found to
interact with the 1–122 amino acid domain of HSP27.
When heat shocked, HSP27 and NS5A co-localize to
the endoplasmic reticulum suggesting an important role
during heat shock. Kou et al., 2006] examined the pos-
sibility of host factors, that inhibit translation in cul-
tured cells, to interact with NS4A [Libbus et al., 2002;
Stasko et al., 2002]. Glutathione S-transferase-NS4A
interacting protein was found to be congruent with
human translation eukaryotic elongation factor 1A
(eEF1A). Furthermore, the central domain from resi-
dues 21–34 of NS4A interacted with eEF1A, causing
inhibition of both cap-dependent and HCV internal
ribosomal entry site-mediated translation activities.

In HIV-1 infectious disease, MS-based proteomic
research has also made significant progress. HIV-1
trans-activating (Tat) protein is necessary for viral rep-
lication and may play a critical part in HIV-1-associated
diseases [Rasheed et al., 2009]. Interestingly, after
HIV-1 infection, T cells were protected against apopto-
sis and survive longer bearing virions. Although the
precise mechanism is unclear, it appears likely that
HIV-1 Tat protein is responsible for such protection
[Coiras et al., 2006]. Using MS–based proteomics, a
number of cytoskeletal proteins, e.g., b-tubulin, actin,
gelsolin, cofilin, annexin II, and Rac/Rho-GDI (Rac
and Rho-guanine nucleotide dissociation inhibitor)
complex, were found to be downregulated by Tat
protein. Reduced expression of these proteins limited
the cytoskeletal changes induced by apoptosis and thus
maintained HIV-1 virions. MS-based approaches have
been used to screen potential inhibitors of Tat protein
as novel therapeutic agents. Using nuclear magnetic
resonance and MS/MS studies, [Jayasuriya et al., 2002
discovered durhamycin A as an inhibitor of Tat trans-

activation. MS-based proteomics have explored other
common viruses, including dengue [Pattanakitsakul
et al., 2007; Higa et al., 2008], influenza [Williams et al.,
2008; Schwahn et al., 2010], severe acute respiratory
syndrome-associated coronavirus [Zeng et al., 2004;
Jiang et al., 2005], and human respiratory syncytial virus
[Brasier et al., 2004; Munday et al., 2010].

ABPP

ABPP technologies can monitor proteins or
enzymes in their native environment, thus eliminating
the need for recombinant expression, purification, and
the development of a specific assay. Activity-directed
chemical probes, which target many members of a given
enzyme class or protein family, can be used to evaluate
the activity of candidate compounds directly in complex
proteomes. Identifying protein function and validating
its biologic role is a prerequisite to lead discovery
(Fig. 1B). The discovery of reversible enzyme inhibitors
can be simplified with this chemical proteomic
approach. In order to characterize the specific cellular
functions of the cysteine proteases required for survival
of the malaria parasite Plasmodium falciparum, a chemi-
cal proteomic screen was used to characterize these
predominant proteases. Falcipain 1 was identified as the
only active protease during the invasive merozoite stage.
Specific inhibitors for falcipain 1 were then identified by
the screening and were able to block parasite invasion of
host erythrocytes, suggesting that falcipain 1 played a
specific role in host cell invasion with the inhibitor for
this enzyme representing a potential new agent for anti-
malarial therapeutics [Greenbaum et al., 2002].

Microarray Analysis

Microarray analysis, a 2D array on a solid substrate
using high-throughput screening methods to assay large
amounts of biological material [Barbulovic-Nad et al.,
2006], was first used to study the small mustard plant
Arabidopsis thaliana [Schena et al., 1995] and was then
used to study yeast [Shalon et al., 1996], human [Schena
et al., 1996], and mouse [Lockhart et al., 1996]. Com-
pared with traditional approaches, the principal advan-
tage of microarrays is that a large number of targets can
be analyzed in parallel measurements with low sample
consumption (Fig. 1C). Similar to recombinant DNA
[Jackson et al., 1972] and polymerase chain reaction
(PCR) [Mullis and Faloona, 1987], microarray is a
seminal technology with broad application [Stears et al.,
2003], including genomics [DeRisi et al., 1997; Hughes
et al., 2000; Sudarsanam et al., 2000] and proteomics
[Geiss et al., 2000; MacBeath and Schreiber, 2000; Eick-
hoff et al., 2002]. The two commonly used microarrays
are those for DNA and protein [Templin et al., 2002]
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where enzyme-substrate [Bulyk et al., 1999; Arenkov
et al., 2000; MacBeath and Schreiber, 2000; Zhu et al.,
2000], DNA-protein [Bulyk et al., 1999], protein-ligand,
and different types of protein–protein interactions [Ge,
2000] are studied. DNA microarrays shifted direct anti-
viral screening programs to rational and genome-wide
target-based strategies [Schmid, 2001; Chan et al., 2002;
Fritz and Raczniak, 2002; McDevitt et al., 2002; Parkin-
son, 2002; Cheng et al., 2003]. Since the first report of
microarray-based investigations of HIV-induced alter-
ations in host gene expression [Geiss et al., 2000],
microarrays have been used in HIV studies [Izmailova
et al., 2003; Khodakov et al., 2008] to investigate mac-
rophage responses of infection by African swine fever
virus [Zhang et al., 2006]. Genomic comparison of
tuberculosis vaccine strain variants (Bacillus Calmette-
Guérin), Mycobacterium tuberculosis H37Rv, Helico-
bacter pylori, and methicillin-resistant Staphylococcus
aureus has been conducted using DNA microarray
analysis providing new information on the evolution of
these human pathogens suggesting rational approaches
to the design of improved diagnostics and antimicrobial
agents. However, bridging the gap between genomes
and therapeutics is a challenging and time-consuming
research process that is rate-limiting [Falb and Jindal,
2002; Zanders et al., 2002]. Protein microarrays also
provide a high-throughput platform for target identifi-
cation. A cluster of secreted proteins (a-defensins 1, 2,
and 3) were identified as cell anti-HIV factors (CAFs)
[Zhang et al., 2002] that were secreted by cluster of
differentiation 8 T-lymphocytes from certain immuno-
logically stable HIV-1 patients to suppress HIV-1 repli-
cation. The specific antibody recognition and amino acid
sequencing were used to confirm the identity of CAF.
Protein microarrays using malaria parasite surface
proteins have been developed for studies of parasitic
diseases [Bacarese-Hamilton et al., 2002]. The receptor-
binding characteristics of two isolates of the novel pan-
demic H1N1 virus, Cal/09, and A/Hamburg/5/2009
(Ham/09), which were compared directly by carbohy-
drate microarray analysis [Childs et al., 2009].

YTH Assay

The YTH assay [Fields and Song, 1989] is a high-
throughput technology to study protein–protein inter-
actions [Fields, 2005]. In YTH, a protein of interest is
fused to a DNA-binding domain and transfected in a
yeast host cell with the reporter gene controlled by this
DNA-binding domain. This fusion protein can be used
as a “bait” or “target” to screen a library of cDNA clones
fused to an activation domain. The functional transcrip-
tion factor will reconstitute upon the physical interac-
tion between bait and prey proteins, activating a

reporter gene (Fig. 1D). YTH has been widely used
in studying virus–host protein–protein interactions,
including Escherichia coli bacteriophage 7 [Bartel
et al., 1996], HIV [Rossi et al., 1996], and HCV [Mat-
sumoto et al., 1997; Mamiya and Worman, 1999; Kittle-
sen et al., 2000]. Khadka et al. [2011] used a YTH assay
to study network interactions between DENV and
human proteins and validated a subset of these interac-
tions through split-luciferase, siRNA, and colocalization
experiments, resulting in the first genome-wide analysis
of DENV–human protein–protein interactions. They
identified 93 proteins required for DENV replication,
60 of which that were not been linked to any other
viruses, and showed that some of proteins involved in
DENV infection also linked to other viruses, particu-
larly HCV [Khadka et al., 2011]. This study has pro-
vided new light on DENV–host interactions as well as
new potential drugs targeting host proteins. Mouse
hepatitis virus (MHV)-68, a useful model for the study
of human g-herpes viruses, has been studied using YTH
with 23 intraviral protein interactions and 243 virus-
cellular protein interactions being identified, most of
which have never been reported before [Lee et al.,
2011]. Such studies may reveal potential cellular pro-
teins that are utilized by MHV-68 or DENV, which
may serve as new targets for therapeutic intervention.
Studies on stomatitis virus [Moerdyk-Schauwecker
et al., 2011], Sesbania mosaic virus [Chowdhury and
Savithri, 2011], flavivirus [Le Breton et al., 2011], influ-
enza virus [Sharma et al., 2011; Tafforeau et al., 2011],
human cytomegalovirus [To et al., 2011], and human
T-lymphotropic virus (HTLV) types 1 and 2 retrovi-
ruses [Simonis et al., 2012] also provided novel insights
into virus–host interactions.

Variants of YTH include membrane YTH system,
split-tobacco etch virus system, and mammalian
protein–protein interaction trap [Suter et al., 2008].
Compared with YTH, new technologies like reverse
YTH and the yeast three-hybrid system, can provide
more integrative data to understand of viral–host inter-
actions and provide new strategies for antiviral drug
discovery. For instance, inhibitors of dimerization can
be used to disrupt protein–protein interactions induced
by viral infections, which may prevent viral infection or
replication. Protease, RT, invertase of HIV, and DNA
polymerase of HSV, which play critical roles in HIV and
HSV infections, are drug targets for HIV and HSV
therapies [Archakov et al., 2003].

siRNA Screening

RNA interference (RNAi) is a mechanism within
living cells to modulate gene activity [Fire et al., 1998]
It is widely used to study gene function and associated
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molecular mechanisms [Hannon, 2002; Mello and
Conte, 2004]. Since initial studies on large-scale RNAi
screening in Caenorhabditis elegans [Fraser et al.,
2000; Gönczy et al., 2000], RNAi screening has been
routinely used to study of pathogen–host interactions,
enabling genome-scale loss of function screening in
host cells (Fig. 1E) [Echeverri and Perrimon, 2006;
Boutros and Ahringer, 2008; Mohr et al., 2010; Ou
et al., 2012]. Genome-wide RNAi screening identified
287 human host cell genes influencing influenza A virus
replication [Karlas et al., 2010] with host protein p27, a
cell cycle regulator, being identified as key for influenza
virus replication. A small molecule inhibitor of cell divi-
sion cycle-like kinase 1 reduced influenza virus replica-
tion. Another study identified 295 cellular cofactors
required for early-stage influenza virus replication with
23 factors necessary for viral entry confirmed [König
et al., 2010]. Some 250 host cellular factors influencing
HIV-1 infection have been identified 40 factors partici-
pating in the early stage of HIV infection [Brass et al.,
2008; König et al., 2008]. High-throughput RNAi
screening has identified host factors involved in virus
progression, including those for HCV [Li et al., 2009;
Tai et al., 2009], West Nile virus [Krishnan et al., 2008],
DENV [Sessions et al., 2009], and drosophila C virus
[Cherry et al., 2005].

miRNA Profiling

miRNAs [Lee et al., 1993] play important roles in
the control of stress signaling [Mendell and Olson,
2012], metabolism [Rottiers and Naar, 2012], tumori-
genesis [Chen, 2005], and viral–host interactions
[Jopling et al., 2005; Lecellier et al., 2005]. High-
throughput miRNA profiling technologies, including
quantitative reverse transcription PCR-based methods,
hybridization-based methods, RNA-seq, and pri- and
pre-miRNA quantification [Pritchard et al., 2012] have
greatly enhanced knowledge regarding the role of
miRNA in viral–host interactions (Fig. 1F). miRNA
profiling technologies combined with messenger RNA
(mRNA) profiling have provided new insight into
HCV–host interactions. Investigation of miRNAs and
mRNAs involved in HCV infection identified 43 differ-
entially expressed miRNAs and 6,850 differentially
expressed mRNAs expression levels of which were
changed during HCV infection [Liu et al., 2010; Steuer-
wald et al., 2010]. These altered expression levels of
miRNAs and mRNAs were involved in metabolism, cell
growth, apoptosis, and cytokine/chemokine pathways,
and in the progression of HCV-induced chronic hepa-
titis. Another study revealed 10 miRNAs that were
downregulated in Hep-394 cells with 23 miRNAs
upregulated [Braconi et al., 2010]. The identified

miRNAs and their putative targets may be used as the
basis for anti-HCV therapies, suggesting that combined
miRNA and mRNA profiling may represent a novel
approach to understand HCV infection and design new
anti-HCV strategies.

Antisense inhibitors of miRNA function, that are
biovailable in vivo, e.g., antagomirs, represent a good
starting point for the development of miRNA inhibitory
drugs [Krutzfeldt et al., 2005; Gottwein et al., 2007].
However, antisense inhibitors targeting cellular
miRNAs have been predicted to have side effects, as
these inhibitors could also disrupt cellular functions of
these miRNAs. Moreover, like treatment with other
antiviral drugs, the virus may become resistant, e.g.,
through mutation of the viral miRNAs or viral binding
sites for cellular miRNAs [Gottwein and Cullen, 2008].
In this case, miRNA-based therapeutics would be
needed to be used in combination with other antiviral
drugs.

NEW INSIGHTS OF INFECTOMICS IN ANTIVIRAL
DRUG DISCOVERY

Because of their relatively small genome, viruses
must interact with host-encoding proteins to “hijack”
host cellular signaling pathways and cellular processes,
e.g., apoptosis, autophagy, and metabolism, to evade
the host defense system and create a suitable microen-
vironment for their rapid replication [Bowie et al.,
2004; Iannello et al., 2006; Galluzzi et al., 2010; Kamin-
skyy and Zhivotovsky, 2010]. Many groups have thus
focused on host perspective to identify host factors
involved in viral infection using system or network
biology approaches have been used in studying viral
infection and many cellular signaling pathways [de
Chassey et al., 2008; Pauli et al., 2008; Shapira et al.,
2009; Jia et al., 2010].

Signaling Pathways Involved in
Viral–Host Interactions

Using high-throughput technologies (Table 1),
new insights into virus–host interactions have occurred
that suggest that host cellular signaling pathways may
be hijacked or promoted by virus infection, making
viral–host interactions more complex than previously
thought. Receptors on the cell membrane, adaptor mol-
ecules in the cytoplasm, and nuclear transcription
factors [Dai et al., 2011] represent three categories of
host signaling molecules that play important roles in
virus–host interactions [DeLarco and Todaro, 1976;
Albritton et al., 1989; Doria et al., 1995; Choe et al.,
1996; Yoneyama et al., 1998; Waris et al., 2001; Hemmi
et al., 2004; Perry et al., 2004] (Fig 2). The phosphoi-
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nositide 3-kinases, a family of lipid kinases, are involved
in intracellular signaling cascades that play essential
roles in apoptosis, autophagy, and tumorigenesis [Wong
et al., 2010; Bartholomeusz and Gonzalez-Angulo,
2012]. Influenza virus can interrupt this pathway to
create a suitable environment for replication. Over the
past few decades, nearly all classical signaling pathways
were reported to participate in viral infections. Trans-
forming growth factor-b (TGF-b) signaling initiates its
cascades by binding to specific cell surface receptors
that have intrinsic serine/threonine kinase activity [ten
Dijke and Hill, 2004] and can modulate HCV infection
[Lee et al., 2002; Rowan et al., 2008]. For virus-induced
tumorigenesis, hepatitis B virus X protein and liver
cancer-derived hepatitis C virus core proteins play
essential roles in shifting TGF-b signaling from
tumor suppression to tumorigenesis and epithelial-
mesenchymal transition [Battaglia et al., 2009; Murata
et al., 2009]. The nuclear factor kappa B (NF-kB), a
family of transcription factors, plays a key role orches-
trating innate and acquired host immune responses to
pathogen infection [Rahman and McFadden, 2011].
Bovine foamy virus can activate the NF-kB pathway via
action of its transactivator and enhanced viral transcrip-
tion [Wang et al., 2010]. Other viral proteins involved in
NF-kB activation include Tax of HTLV-1. Viral pro-
teins can inhibit the NF-kB pathway and include
Epstein-Barr nuclear antigen 1 and open reading frame
2 of Torque teno virus. Kaposi’s sarcoma-associated
herpes virus (KSHV) encodes a miRNA that controls
viral replication by activating the NF-kB pathway dem-
onstrating an important role of KSHV miRNAs in regu-
lating viral latency and lytic replication via manipulation
of the host survival pathway [Lei et al., 2010]. This
suggests that not only the viral proteins but also
miRNAs could participate in the regulation of host sig-
naling pathways.

Cellular Processes Participated in
Viral–Host Interactions

Virus–host interactions have indicated that cellu-
lar processes play important roles in viral infection.
Autophagy, which can be divided into three categories:
microautophagy, chaperone-mediated autophagy, and
macroautophagy [Cecconi and Levine, 2008], have
been linked to both innate and adaptive immunity
versus viral infection [Lee and Iwasaki, 2008; Orvedahl
and Levine, 2009]. Autophagy can be both activated
[Ait-Goughoulte et al., 2008; Alavian et al., 2011] or
inhibited [Zhou and Spector, 2008; Gannagé et al.,
2009] by viral infection. In turn, autophagy can also
promote [Lee et al., 2008] or inhibit [Orvedahl et al.,
2010] viral infection. Therefore, unraveling the role of
autophagy during viral infection is important for target-
ing autophagy and may provide new strategies for anti-
viral therapies. Apoptosis and glucose metabolism are
also involved in viral infection. Noch et al., 2012] dem-
onstrate the role of JC virus (John Cunningham virus)
T-antigen in regulating glucose metabolism in brain
tumor cells. T-antigen was downregulated by 2-deoxy-
D-glucose, 6-aminonicotinamide, and oxythiamine.
T-antigen can also modulate expression of the glycolytic
enzyme, hexokinase 2, and the pentose phosphate
enzyme, transaldolase 1 Epstein-Barr virus can inhibit
induction of a pro-apoptotic B-cell lymphoma 2 homol-
ogy 3-only containing protein (NOXA) by ionomycin
inhibiting apoptosis in B cells [Yee et al., 2011]. In addi-
tion, HCV NS4B protein, a component of a membrane-
associated cytoplasmic HCV replication complex
[Hugle et al., 2001], has been reported as an inducer of
apoptosis via a mitochondrila pathway [Zhao et al.,
2012]. These findings suggested that cellular processes
of the host cells could be altered during viral infection,
which could contribute to the development of new

Fig. 2. Overview of host signaling and cellular processes involved in viral infection. Integrated signaling networks functionally regulate the
cellular processes of viral infection; implicated signaling pathways include NF-kB pathway, apoptotic pathway, autophagic pathway, and glucose
metabolic pathway. Lines with an arrowhead indicate functional activation. Lines with a blunt end indicate functional inhibition. Ad12, human
adenovirus 12; ATP, adenosine-5′-triphosphate; BFV, bovine foamy virus; CASP, capsase; CD4, cluster of differentiation 4; CXCR4, chemokine
(C-X-C motif) receptor 4; EHV, equine herpes virus; EMP, Embden–Meyerhof–Pamas pathway; EV, ectromelia virus; FADD, Fas-associated
protein with death domain; HCMV, human cytomegalovirus; HPV, human papillomavirus; HRSV, human respiratory syncytial virus; ICP34.5,
neurovirulence factor infected cell protein 34.5; IkBa: nuclear factor kappa B inhibitor alpha; IKK, IkB kinase; IRAK, interleukin-1 receptor-
associated kinase; LC3, microtubule-associated protein 1 light chain 3; LGV, Langat virus; LPS, lipopolysaccharide; MDA5, melanoma
differentiation-associated gene 5; MdBV, microplitis demolitor bracovirus; MEKK1, mitogen-activated protein kinase/ERK kinase kinase-1; MHC,
major histocompatibility complex; mTOR, mammalian target of rapamycin; MYD88, myeloid differentiation primary response gene 88; NIK,
NF-kB inducing kinase; NS3, nonstructural protein 3; PKAc, protein kinase A catalytic subunit; PKR, double-stranded RNA-activated protein
kinase; ProCASP, procaspase; Prot, gag-pol polyprotein; RIGI, cytoplasmic retinoic acid-inducible gene I; RIP, receptor-interacting protein;
SPI-2, serine proteinase inhibitor 2; TAK, transforming growth factor b–activated kinase; TLR, toll-like receptor 1; TNF, tumor necrosis factor;
TNFR, TNF receptor; TRADD, TNF receptor type 1-associated death domain protein; TRAF, TNF receptor-associated factor; UL36, uncharac-
terized protein 36; VACV, vaccinia virus; vFLIP, viral Fas-associated death domain-like IL-1b-converting enzyme inhibitory protein; VZV,
varicella-zoster virus. [Color figure can be viewed in the online issue which is available at wileyonlinelibrary.com]
�
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strategies to target these processes for combating viral
infections (Fig. 2).

CONCLUSION

With the many novel technology platforms
becoming available, omics approaches have been
widely used in drug discovery. Studies based on genom-
ics and proteomics approaches have established the
foundation of network-based investigations for viral–
host interactions, creating opportunities for the devel-
opment of novel antimicrobial agents. Six infectomics
technologies commonly used for drug discovery have
been described in this review: MS-based proteomics,
ABPP, microarray analysis, YTH assays, siRNA screen-
ing, and miRNA profiling. Together, they have the
potential to elucidate and integrate the dynamic inter-
actions between microbial pathogens and their hosts
during the development of infectious diseases. Chemi-
cal infectomics, which has the advantages of both high-
throughput chemistry and infectomics, is an emerging
method for validating drug targets and will revolution-
ize approaches to infectious diseases. The infectomics
view provides: (i) a global detection and integrative
dissection of microbial and host infectomes, that is criti-
cal to understanding the process of microbial pathogen-
esis and developing better diagnostic or therapeutic
approaches for infectious diseases; (ii) a powerful tool to
investigate microbial and human genomes to address
the present crisis in antibiotic resistance; (iii) a new
method of utilizing pharmacomes (lipid-based drug
delivery systems) for optimal drug therapy; and (iv) the
opportunity to exploit probiotics as ecological
approaches to infectious diseases. With such tools, pre-
vention and treatment of microbial infections will even-
tually enter an era when holistic solutions to health
problems can be efficiently individualized.
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