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Hepatocellular carcinoma (HCC) is one of the most common tumors worldwide with high
prevalence and lethality. Due to insidious onset and lack of early symptoms, most HCC
patients are diagnosed at advanced stages without adequate methods but systemic
therapies. PI3K/AKT/mTOR signaling pathway plays a crucial role in the progression and
development of HCC. Aberrant activation of PI3K/AKT/mTOR pathway is involved in
diverse biological processes, including cell proliferation, apoptosis, migration, invasion
and angiogenesis. Therefore, the development of PI3K-targeted inhibitors is of great
significance for the treatment of HCC. DHW-208 is a novel 4-aminoquinazoline derivative
pan-PI3K inhibitor. This study aimed to assess the therapeutic efficacy of DHW-208 in
HCC and investigate its underlying mechanism. DHW-208 could inhibit the proliferation,
migration, invasion and angiogenesis of HCC through the PI3K/AKT/mTOR signaling
pathway in vitro. Consistent with the in vitro results, in vivo studies demonstrated that
DHW-208 elicits an antitumor effect by inhibiting the PI3K/AKT/mTOR-signaling pathway
with a high degree of safety in HCC. Therefore, DHW-208 is a candidate compound to be
developed as a small molecule PI3K inhibitor for the treatment of HCC, and our study
provides a certain theoretical basis for the treatment of HCC and the development of
PI3K inhibitors.
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INSTRUCTION

Hepatocellular carcinoma (HCC) is one of the most common malignant tumors in the digestive
tract (1). Chemotherapy is currently the main treatment for HCC (2, 3). However, the overall
survival of some HCC patients after chemotherapy is only prolonged by a few months due to tumor
drug resistance, metastasis and recurrence (4, 5). Therefore, curing HCC remains a challenge in the
medical community (6, 7).
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In the past few years, immunotherapy has made some
progress in treating cancer, and Atezolizumab/Bevacizumab is
the first and only immunotherapy with a proven benefit in HCC
(8–10). However, the treatment options for advanced HCC are
still very limited (11, 12). Sorafenib is a multikinase inhibitor
capable of facilitating apoptosis, mitigating angiogenesis and
suppressing tumor cell proliferation and remains the
representative approved systemic treatment for advanced HCC
(13, 14). The PI3K/AKT/mTOR signaling pathway plays an
important role in physiological processes and is related to cell
growth, survival and other processes (15–17). Abnormal activation
of the PI3K/AKT/mTOR signaling pathway has been found in a
number of cancers affects nearly 50% of malignant tumors,
including HCC, and mediates cancer cell proliferation, migration,
invasion, angiogenesis and other pathological processes in tumor
cells (18–20). Compared with traditional chemotherapy drugs,
molecular-targeted drugs have the advantages of clear targeting,
enhanced efficacy and low toxicity (21, 22). In recent years, the role
of targeted RTK drugs in the treatment of HCC has attractedmuch
attention (23, 24). In response to growth factors or cytokines, RTK
recruits PI3K to the cell membrane and mediates a cascade of
downstream reactions through direct or indirect activation of the
PI3K/AKT/mTORpathway (25, 26).Currently, there arefiveFDA-
approvedPI3K inhibitors and there aremanyPI3K inhibitors are in
clinical studies. But noPI3K inhibitors forHCCare currently on the
market (27, 28).

The PI3K/AKT/mTOR signaling pathway also regulates
multiple biological functions in HCC. One of the important
pathological mechanisms of HCC disease progression is
abnormal activation of the PI3K/AKT/mTOR signaling
pathway (15, 29). Therefore, targeting PI3K to inhibit the
PI3K/AKT/mTOR signaling pathway and its downstream
effector molecules may be critical for HCC treatment (30). The
development of targeted inhibitors of the PI3K/AKT/mTOR
signaling pathway in HCC is very important in understanding
the pathological mechanism of HCC (31–33). The sequential
phosphorylation of PI3K, AKT and mTOR mediates the
activation of a series of related molecular pathways and
participates in the regulation of various biological functions. In
apoptosis, AKT-mediated phosphorylation of proapoptotic
proteins inhibits their activation, and AKT promotes the
phosphorylation of the Bcl-2 family Bax at Ser184, which
regulates the proapoptotic effect of Bax (34, 35). In cell
metastasis, AKT can promote the transcriptional activation of
TGF-b-mediated EMT. Moreover, mTOR can act on the
transcription factor slug and inhibit its expression by binding
to the promoter of E-cadherin (36–38). Slug also promotes the
expression of MMP-9 and MMP-2 to activate EMT (39). In
angiogenesis, mTOR mediates its effects by phosphorylating 4E-
BP1 and disrupting the integrity of the complex formed by
mTOR and 4E-BP1, which is critical for inhibiting the
translation of related genes and enhances HIF-1a translation
(40, 41). HIF-1a promotes transcriptional activation of VEGF,
which stimulates neovascularization (42). Therefore, focusing on
the PI3K/AKT/mTOR signaling pathway is crucial for the
treatment of HCC.
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In recent years, 4-amino-quinazoline derivatives, which are
kinase inhibitors have attracted attention in the field of
pharmaceutical chemistry (43, 44). These 4-amino-quinazoline
derivatives have also been reported to be inhibitors of PI3Ka and
PI3Kd, suggesting that 4-amino-quinazoline derivatives are
potential targeted antitumor drugs (6, 22, 45). DHW-208, a
pan PI3K inhibitor, is a novel 4-amino-quinazoline derivative
containing hydrophilic groups and suppressed the growth of
cancer cells by inhibiting the PI3K/AKT/mTOR-signaling
pathway (Figure 1A). Further research found that DHW-208
showed excellent inhibitory effects on HCC (45) which was a
promising candidate for the treatment of HCC. This study aimed
to explore the mechanism by which DHW-208 inhibited HCC,
and lay a foundation for the development of targeted drugs for
the treatment of HCC.
METHODS AND MATERIALS

DHW-208 was synthesized by Pharmaceutical chemistry
laboratory, Shenyang Pharmaceutical University, Shenyang,
China. Sorafenib was purchased from Solebo Co., LTD
(Beijing, China). For the cellular experiments, DMSO
(dimethyl sulfoxide) was used to dissolve the pure DHW-208
powder (also the other agents), and then use DMEM (Logan, UT,
USA) without FBS to dilute the DHW-208 (also the other agents)
DMSO-solution to prepare solutions containing a series of
concentrations DHW-208. For the animal experiments, DMSO
was used to dissolve the DHW-208 powder, and then PEG400,
Tween 80 and saline (DMSO: Tween 80:PEG400:saline =
1:5:60:34) was used to dilute DHW-208 solutions by a series
of concentrations.

Cell Culture
The Hepatocellular carcinoma cell lines, Hep3B, Bel7402,
HepG2, LM3 and MHCC97H, and hepatocyte HL7702 were
purchased from American Type Culture Collection (ATCC,
Manassas, VA, USA). All cells were cultured in DMEM
supplemented with 10% fetal bovine serum (FBS) and
incubated in an environment at 37°C containing 5% CO2.

Antiproliferative Activity
Cell viability was assessed with MTT assay. Cells were seeded in
96-well plates in complete medium. After being incubated
overnight they were exposed to diverse concentrations of
DHW-208 for 24 h, 48 h and 72 h. The cells were then
analyzed using the MTT (0.5 mg/ml) assay and measured with
microplate-reader (Elx 800 Bio-Tek, USA).

Colony Formation Assay
Hep3B and Bel7402 cells (1×103 cells/well) were seeded into six-
well plates, cultured overnight, and treated with DMSO or
DHW-208 at different concentrations for 72 h. Then washed
with PBS and cultured in full growth medium for another 7 days.
The fresh medium was replaced every 3 days. After fixed with
100% methanol, the cells were stained with 0.1% crystal violet
July 2022 | Volume 12 | Article 955729
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and quantified after being dissolved with glacial acetic acid. The
plates were then analyzed with a microplate reader.

Cell Morphology Analysis
Hep3B and Bel7402 cells were treated with DHW-208 for 48 h,
then stained with Hoechst 33342 (Beyotime, Shanghai, China).
After washed with PBS twice, the samples were photographed
under fluorescence microscope (Olympus, Japan).

Annexin FITC/PI Assay
After treated with DHW-208 for 48h, cells were fixed with 70%
ethanol overnight, and stained with Annexin-V FITC/PI for
30 min in the dark before tested by fluorescence-activated cell
sorting (FACS) (Becton-Dickinson, NJ, USA). Data was analyzed
with Flow Jo.7.6.1 (Tree Star, Ashland, OR, USA).

Transmission Electron Microscopy
Cells were collected and fixed with 3% glutaraldehyde. Then
the samples were postfixed with 1% OsO4, then dehydrated in
ascending series of ethanol, embedded, and sectioned. Stained with
uranyl acetate and lead citrate, the samples were observed under
an H-7650 transmission electron microscope (Hitachi, Japan).

Western Blot Analysis
RIPA buffers, including protease inhibitors, homogenized cells and
tumor tissues. Protein concentrations were determined by BCA
protein detection kit. The proteins were separated by SDS–PAGE
and transferred to PVDF membrane by electrophoresis.
Membranes were immunoblotted using specific primary
antibodies and then incubated the membrane with HRP-
conjugated secondary antibody. The immune response bands
were observed with the ECL assay kit. Blots were imaged by
Image Quant LAS 4000 (GE Healthcare Life Sciences, Piscataway,
NJ, USA).

Wound Healing Scratch Assay
Hep3B (3×105/ml) and Bel7402 cells (5×105/ml) were seeded into
6-well plates. Confluent cells were scraped across the diameter of
the well with a 200-mL pipette tip. The migration ability of the
cells was tested after DHW-208 treatment for 48 h. Then cells were
washed with PBS twice. The migration distance was photographed
under microscope (Olympus, Japan). Image J software was used to
determine the wound area.

Migration, Invasion and Co-Culture Assay
Cells invasion assay was measured with 24-well transwell plate
(Corning Life Sciences, MA, USA). Cells in serum-free medium
were seeded onto the upper chamber uncoated or coated with
Matrigel (Becton Dickinson, CA, USA). The lower chamber was
filled the complete medium containing 10% FBS. In the co-culture
experiment, another cell was added or not added to the lower
chamber. After 48 h, the remaining cells on the upper side of the
membrane were wiped with cotton swabs. The bottom side were
fixed with 4% paraformaldehyde. The cells were stained with 0.1%
crystal violet and counted under a microscope (Olympus, Japan).
Frontiers in Oncology | www.frontiersin.org 3
The In Vivo Anti-Tumor Activation of
DHW-208 via a Nude Mice Model
All animal studies were obtained from Beijing Vital River
Laboratory Animal Technology in accordance with the
guidelines of the Animal Experimental Ethics Committee of
Shengjing Hospital of China Medical University and complied
with the internationally recognized Animal Research: Reporting
of In vivo Experiments guideline. Hep3B cells were cultured and
injected into the nude mice’s subcutaneous tumor position
(5×106 for each nude mice). The mice were randomized into
five groups (n = 8) that administered with 0.2 mL vehicle,
Sorafenib (10 mg/kg), and DHW-208 (10, 20, and 40 mg/kg)
by oral gavage daily for 14 days. At the end of the experiment, all
tumors and organs were removed and measured. The inhibitory
rates of DHW-208 on Hep3B cells’ subcutaneous growth was
calculated according to the tumor volumes or tumor weights.

Hematoxylin and Eosin (H&E) Staining
After the nude mice were sacrificed, an autopsy was performed,
and the main organs were removed. The samples were fixed in
10% neutral buffered formalin. Embedded in paraffin, the tumor
samples were cut into 5 mm thickness and stained with H&E.
Finally, the tumor tissues were observed under a microscope
(Olympus, Japan).
RESULTS

DHW-208 Inhibits HCC Cell Proliferation
First, the inhibitory effects of DHW-208 on the proliferation
of Hep3B, Bel7402, HepG2, LM3 and MHCC97H HCC cells
were investigated. The MTT results showed that after 72 h
of treatment with different concentrations of DHW-208, the
growth of HCC cells, especially Hep3B and Bel7402 cells, was
significantly inhibited (Table 1). The colony formation assay also
showed that DHW-208 inhibited the growth of Hep3B and
Bel7402 cells in a concentration-dependent manner (Figure 1B).
DHW-208 inhibited the growth of Hep3B and Bel7402 cells
in concentration- and time-dependent manners, respectively
(Figure 1C). The IC50 values of Hep3B cells at 24 h, 48 h
and 72 h were 313.61 ± 1.48 nM, 92.85 ± 3.85 nM and 60.68 ±
0.85 nM, respectively. Moreover, the IC50 values of Bel7402 cells at
24 h, 48 h and 72 h were 360.20 ± 4.72 nM, 177.63 ± 1.13 nM and
80.31 ± 1.03 nM, respectively. Next, the cytotoxicity of DHW-208
to human hepatocytes was investigated. The effects of different
concentrations of DHW-208 on the growth of normal human
hepatocytes (HL7702) at 24 h, 48 h and 72 h were analyzed. The
TABLE 1 | The proliferation inhibitory effect of DHW-208 on HCC cells at 72 h.

HCC cell lines IC50 (nM) of 72 h

Hep3B 60.68 ± 0.85
Bel7402 80.31 ± 1.03
MHCC97H 277.19 ± 2.95
LM3 584.15 ± 19.72
HepG2 755.79 ± 17.95
HL7702 2355.86 ± 33.86
July 2022 | Volume 1
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results showed that DHW-208 induced no significant toxicity in
HL7702 cells for 24 h, 48 h and 72 h, suggesting that DHW-208
may have relatively low cytotoxicity (Figure 1D).

DHW-208 Inhibits HCC Tumor
Growth In Vivo
To investigate the inhibitory effect of DHW-208 on HCC cell
proliferation in vivo, a BALB/C xenograft tumor model bearing
Hep3B cells was used. To evaluate the in vivo effects of DHW-208,
Sorafenib, a first-line treatment for HCC, was selected as a positive
control drug. Figure 2A shows a schematic diagram of the tumor
morphology in each experimental group after drug
administration. Figures 2B, C shows the statistical analysis of
tumor weight and tumor volume in each group. The results
showed that DHW-208 (10, 20 and 40 mg/kg) inhibited tumor
growth in nude mice compared with mice in the model group, and
the tumor weight in the high, medium and low concentration
groups was significantly lower than that in the model group.
Compared with those in the model group and DHW-208 (10, 20,
40 mg/kg) groups, the tumor inhibition rates were 19.8%, 50.1%,
and 68.3%, respectively, and the tumor inhibition rate induced by
10 mg/kg Sorafenib was 19.9%.

During the experiment, the mental and activity states of nude
mice were observed each day, and no abnormal conditions were
found. The body weights of nude mice were recorded every three
days, as shown in Figure 3A. No significant toxicity or body
weight change was observed in response to DHW-208 at
concentrations of 10 mg/kg, 20 mg/kg, or 40 mg/kg. Visceral
index statistics showed that there were no significant differences in
visceral indices of the heart, liver, kidney and spleen between the
DHW-208 treatment group, the model group or the positive
control group (Figure 3B). To further clarify the in vivo toxicity
of DHW-208, we examined histological changes in the heart, liver,
spleen and kidney by H&E staining. Compared with those in the
Frontiers in Oncology | www.frontiersin.org 4
model group, no obvious inflammatory infiltration or other
histological abnormalities were observed in the liver,
myocardium, glomerulus or splenic corpuscle in the DHW-208
treatment groups (Figure 3C). The effects of DHW-208 on the
heart, liver and kidney were investigated by measuring
biochemical indices in the orbital blood of nude mice. The
results showed that there were no significant differences in CK,
ALT, AST and CRE in the experimental DHW-208 groups
compared with the model group (Figure 3D). These results
indicated that DHW-208 could effectively inhibit tumor growth
in nude mice without obvious visceral toxicity at the tested dose.
A B

DC

FIGURE 1 | The proliferation inhibitory effect of DHW-208 on Hep3B, Bel7402 and HL7702 cell lines. (A) Structure of DHW-208. (B) Effect of DHW-208 on Hep3B,
Bel7402 cell proliferation as evaluated with the colony formation assay. Bar graphs of the quantitative results were shown right. (C) MTT assay of Hep3B, Bel7402
cells treated with DHW-208 for 24, 48, and 72 h. (D) MTT assay of HL7702 cells treated with DHW-208 for 24, 48, and 72 h. Each value is the mean (± SD) from
triplicate samples. *p < 0.05, **p < 0.01 vs. control.
A B

C

FIGURE 2 | DHW-208 induces a potent antitumor effect in Hep3B nude
mouse xenograft model. Hep3B was cultured and injected in to the
subcutaneous position of the nude mice. Mice were received the DHW-208
and Sorafenib via oral administration. (A) Images of resected HCC tumor
samples. (B) Average tumor weight at the end of the indicated treatment.
(C) Average tumor volumes were measured every 3 days. Data are shown as
mean ± SD (n=8). *p < 0.05, **p < 0.01 vs. Model.
July 2022 | Volume 12 | Article 955729
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DHW-208 Induces Apoptosis in HCC Cells
First, the effect of DHW-208 on Hep3B and Bel7402 cell apoptosis
was investigated. Figure 4A shows that DHW-208 treatment for
48 h significantly increased the proportion of apoptotic Hep3B
and Bel7402 cells in a concentration-dependent manner,
regardless of whether they were early or late apoptotic cells.
Then, the proapoptotic effect of DHW-208 was confirmed by
Hoechst 33342 staining. As shown in Figure 4B, after Hoechst
33342 staining, HCC cells were generally light blue. After DHW-
Frontiers in Oncology | www.frontiersin.org 5
208 treatment for 48 h, the number of cells decreased in a
concentration-dependent manner, and the proportion of bright
blue cells increased. After apoptosis, the HCC cells underwent
nuclear fragmentation and chromatin shrinkage. Transmission
electron microscopy showed that HCC cells exhibited typical
apoptotic characteristics, including chromatin condensation and
margination at the nuclear periphery after DHW-208 treatment
for 48 h. As shown in Figure 4C, Hep3B control cells had clear
spacing and intercellular connections, but the connections were
A B

D

C

FIGURE 3 | DHW-208 has no obvious effect on body weight change and organ toxicity in tumor-bearing nude mice. (A) Body weight change curve of nude mice
after DHW-208 and Sorafenib administrations. (B) The viscera index of organs (heart, liver, spleen, lung and kidney). (C) HE staining of the heart, liver, kidney, and
spleen from orthotopic nude mice. Scale bar = 100 µm. (D) The biochemical parameters of heart (CK), liver (ALT, AST) and kidney (CRE) from the serum of each
group in tumor-bearing nude mice. Data are shown as mean ± SD (n=8). *p < 0.05, **p < 0.01 vs. Model.
A B

DC

FIGURE 4 | DHW-208 treatment causes cell apoptosis in HCC cells. (A) Annexin V-FITC/PI double-staining of cells treated with DHW-208 for 48h. The Annexin V-
FITC/PI double-staining was quantified and plotted down. (B) Changes in cells treated with DHW-208 for 48h visualized by Hoechst 33342 staining (×200
magnification, scale bar = 100 mm). Arrows, apoptotic cells. (C) Morphologic changes in cells treated with DHW-208 were observed after 48h by transmission
electron microscopy (×2500 magnification, scale bar = 5 mm). Red arrow, typical apoptotic micronuclei. (D) Changes in Bcl-2 and Bax in cells treated with DHW-208
48h by western blot. Bar graphs of the quantitative results were shown down. Each value is the mean ( ± SD) from triplicate samples. *p < 0.05, **p < 0.01 vs.
control.
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not tight. Hep3B cells that were treated with DHW-208 showed
increased heterochromatin in the nucleus and had condensed into
apoptotic bodies. Similar results were observed in Bel7402 cells
(Figure 4C). Then, we further investigated the effect of DHW-208
on the BCL-2 family, which are key proteins of the endogenous
apoptosis pathway, by Western blotting (Figure 4D). The results
showed that DHW-208 increased the level of the representative
proapoptotic protein Bax and decreased the level of the
representative antiapoptotic protein Bcl-2 in a concentration-
dependent manner.

DHW-208 Inhibits Migration, Invasion in
HCC Cells
Studies have shown that the PI3K pathway is involved in the
migration, invasion and EMT of HCC cells (39, 46). The effects
of different concentrations of DHW-208 on the migration and
invasion of Hep3B and Bel7402 cells were investigated. Hep3B and
Bel7402 cells were treated with DHW-208, scratch and invasion
assays were performed, and the cells were photographed at 0 h and
48 h, respectively (Figure 5A). The results showed that compared
with those in the control group, the migration and invasion of
HCC cells in the DHW-208 treatment group were significantly
reduced, and the effects on migration and invasion were
concentration-dependent (Figures 5B, C). The results of the
scratch and invasion assays indicated that DHW-208 could
effectively inhibit the migration and invasion of HCC cells.
Next, the effects of DHW-208 on EMT-related protein
expression were investigated. As shown in Figure 5D, DHW-
208 significantly increased the expression of epithelial cell markers
(E-cadherin and Occludin) and downregulated the expression
mesenchymal cell markers (N-cadherin) in Hep3B and Bel7402
Frontiers in Oncology | www.frontiersin.org 6
cells in a concentration-dependent manner. In addition, matrix
metalloproteinase (MMP) can degrade various protein
components in extracellular matrix, accelerate the hydrolysis of
intercellular adhesion proteins, and promote EMT of tumor cells
as the first barrier during tumor metastasis. Therefore, activation
of MMPS indirectly mediates tumor migration, invasion and
angiogenesis. DHW-208 also significantly inhibited the
expression of the tumor metastasis marker MMP9 in Hep3B
and Bel7402 cells in a concentration-dependent manner.

DHW-208 Inhibits Angiogenesis in
HCC Cells
Rapid tumor proliferation could lead to ischemia and hypoxia,
which produced pro-angiogenic factors and hypoxia-inducible
factors, and further promoted the proliferation and migration of
endothelial cells and the formation of new tumor blood vessels.
These factors aggravate the tumor deterioration. HUVECs are
human umbilical vein endothelial cells that are often used in vitro
to examine angiogenesis (47). The results showed that DHW-208
had low toxicity to HUVECs (Figure 6A). The effects of DHW-
208 on the migration and invasion of HUVECs were investigated.
Cell scratch and transwell invasion assays showed that DHW-208
could significantly inhibit the migration and invasion of HUVECs
(Figure 6B). These results suggest that DHW-208 can significantly
inhibit the metastasis of HUVECs at the tested concentrations
without obvious toxicity to vascular endothelial cells, which may
further affect the angiogenesis of HUVECs. Furthermore, we
investigated the interaction between HUVECs and Hep3B cells
by transwell coculture in vitro, which simulates the interaction
between tumor cells and endothelial cells during angiogenesis and
examines the role of the tumor microenvironment. The
A B

DC

FIGURE 5 | Effects of DHW-208 on HCC cells migration, invasion and EMT. (A) The effect of DHW-208 on cell migration of Hep3B and Bel7402 cells was
measured by wound healing assay (×100 magnification). The migration rates were calculated by the formula shown right. (B) Transwell assay was performed to
assess the migration of Hep3B and Bel7402 cells (×200 magnification). Bar graphs showed the quantitative results of the migration (down). (C) Transwell assay was
performed to assess the invasion of Hep3B and Bel7402 cells (×200 magnification). Bar graphs showed the quantitative results of the invasion (down). (D) Western
blot for the levels of EMT-related proteins (E-cadherin, N-cadherin, Occludin and MMP9) in Hep3B and Bel7402 cells treated with DHW-208 (100nM) for 0-72 h. Bar
graphs of the quantitative results were shown down. Each value is the mean ( ± SD) from triplicate samples. *p < 0.05, **p < 0.01 vs. control.
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Wang et al. DHW-208 Inhibits Proliferation of HCC
interaction between HUVECs and Hep3B cells was investigated by
transwell assays. The results showed that HUVECs and Hep3B
cells could interact with each other to mutually promote invasion,
and DHW-208 could significantly inhibit the increase in invasion.
These results showed that HUVECs and Hep3B cells could
promote mutual invasion, while DHW-208 could significantly
inhibit the increase in invasion (Figure 6C).

To further verify the antiangiogenic mechanism of DHW -208,
we investigated whether DHW-208 could inhibit the PI3K
signaling pathway in HUVECs. The Western blot results
suggested that the protein expression levels of p-AKT (Ser473)
and p-mTOR were decreased, while the levels of AKT and mTOR
were not affected. DHW-208 also significantly inhibited the
expression of the angiogenic factors VEGFA and HIF-1a
(Figure 6D). These results suggest that DHW-208 can exert an
antiangiogenic effect through the PI3K pathway.
DISCUSSION

The PI3K/AKT/mTOR signaling pathway is involved in a variety
of pathological mechanisms, including proliferation, apoptosis,
metastasis, invasion, and angiogenesis (40, 48). Deregulation of the
PI3K/Akt/mTOR pathway leading to activation is common in
HCC and is hence the subject of intense investigation and the
focus of current therapeutics. Because this pathway is important in
the pathological mechanism of HCC, the development of small
molecule inhibitors targeting PI3K has attracted much attention
(49–51). Currently many PI3K inhibitors as anti-tumor drugs
Frontiers in Oncology | www.frontiersin.org 7
have been developed, but only five PI3K inhibitors were approved
by FDA. And there are still no marketed PI3K inhibitors for HCC.
Based on the current research progress of PI3K inhibitors, the
anti-hepatocellular carcinoma activity of the novel 4-amino-
quinazoline derivative DHW-208 was explored in our study.
DHW-208 inhibited the proliferation of HCC both in vitro and
in vivo, and the mechanism was further studied. This study
provides ideas and a theoretical basis for the development of
PI3K inhibitors for the treatment of HCC.

HCC is characterized by abnormal cell proliferation caused by
abnormal regulatory signals and proteins (52). Apoptosis is one of
the main modes of cell death and is characterized by a series of
changes in cell morphology and related regulatory enzymes (53).
The Bcl-2 family is a key regulator of endogenous apoptosis, which
is the main mechanism of apoptosis (54). Apoptosis can be
triggered when the regulation of proapoptotic proteins exceeds
that of antiapoptotic proteins (55). Studies have shown that this
process is one of the earliest events in the apoptosis cascade and
occurs before the changes in the nucleus (chromatin
concentration, DNA fragmentation), and once this change
occurs, cell apoptosis is irreversible (56). The PI3K/AKT/mTOR
signaling pathway plays an important role in apoptosis (57). We
found that DHW-208 could significantly inhibit the proliferation
of Hep3B and Bel7402 HCC cells and promote HCC cell apoptosis
by inducing the endogenous apoptosis pathway.

The abnormal activation of the PI3K pathway is also closely
related to migration and invasion in HCC. EMT enhances the
migration and invasion of HCC cells (58, 59). After EMT, HCC
cells lose their epithelial-like morphology, downregulate epithelial
A B

DC

FIGURE 6 | The effect of DHW-208 on cell migration, invasion and angiogenesis in HUVECs. (A) The effect of DHW-208 on cell survival in HUVECs by MTT assay.
(B) The effect of DHW-208 on cell migration and invasion in HUVECs (×100 magnification). Bar graphs showed the quantitative results of the migration and invasion
(right). (C) The role of DHW-208 in cell interaction between Hep3B cells and HUVECs by cell co-culture assay (×200 magnification). Bar graphs showed the
quantitative results of the migration and invasion (down). (D) DHW-208 treatment for 48h observably reduced the expression level of proangiogenic proteins (VEGFA
and HIF-1a) and PI3K pathway-related proteins (p-AKTser473 and p-mTOR). Bar graphs of the quantitative results were shown right. Each value is the mean (± SD)
from triplicate samples. *p < 0.05, **p < 0.01 vs. control.
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marker expression, and reduce intercellular adhesion (60, 61).
Then, HCC cells acquire mesenchymal cell morphology and
upregulate the expression of mesenchymal markers, making
them more prone to migration and invasion (61, 62).
Angiogenesis occurs frequently in tumors. When the tumor
proliferates rapidly, ischemia and hypoxia occur, and angiogenic
factors and hypoxia-inducible factors are produced to promote the
proliferation and migration of endothelial cells, resulting in the
formation of new tumor blood vessels and exacerbating tumor
deterioration (63, 64). Therefore, inhibiting endothelial cell
migration, invasion and angiogenesis is crucial in controlling
tumor progression.

Antiangiogenic drugs can effectively inhibit the growth,
diffusion and metastasis of the primary tumor. We investigated
the inhibitory effect of DHW-208 on the metastasis of HCC cells
and found that DHW-208 could significantly inhibit migration
and invasion in Hep3B and Bel7402 cells. DHW-208 effectively
inhibited the migration and invasion of HUVECs, as shown by the
cell scratch assay and transwell invasion assay. Fast-growing
malignant tumor cells require adequate nutrient and oxygen
transport, so more blood vessels are needed to promote cell
overproliferation. However, due to vascular leakage, tumor cells
can easily invade new blood vessels and form distant metastases
without having to go through a complex process (14, 65).
Therefore, it is necessary to investigate the interaction between
tumor cells and endothelial cells for angiogenesis. In vitro
transwell coculture experiments with HUVECs and Hep3B cells
verified that DHW-208 could significantly inhibit the interaction
between HUVECs and Hep3B cells. The formation of blood
vessels is the result of the coordination between angiogenic
factors and angiogenic inhibitors (66). These factors are in
dynamic balance under normal condition, but once the balance
is broken, excessive angiogenesis will occur (67, 68).

The upregulation of angiogenic factors can activate endothelial
tyrosine kinases and downstream cascades via PI3K, mediating
tumor angiogenesis (30). In the absence of a stable vascular system
to provide adequate oxygen for growing tumors, the rapid
proliferation of cancer cells leads to tumor hypoxia. Tumor
hypoxia can increase the expression of HIF-1a, VEGF and other
angiogenic factors. VEGFA is an angiogenic progenitor, and HIF-
1a is an upstream factor of VEGFA and a key effector in the tumor
microenvironment, both of which regulate angiogenesis (69, 70).
PI3K signaling pathway plays a key role in tumor angiogenesis by
regulating the expression of HIF-1a and VEGF. Activation of the
PI3K/AKT/mTOR pathway in tumor cells can also increase VEGF
secretion, both by hypoxia-inducible factor 1 dependent and
independent mechanisms (11). Numerous inhibitors targeting
the PI3K/AKT/mTOR pathway have been developed, and these
agents have been shown to decrease VEGF secretion and
angiogenesis (70). Hence, the PI3K pathway plays an important
Frontiers in Oncology | www.frontiersin.org 8
role in regulating angiogenesis in cancers. DHW-208 significantly
inhibited the expression of p-AKT (Ser473) and mTOR, as well as
the angiogenic factors VEGFA and HIF-1a, in HUVECs. These
findings suggest that DHW-208 can play an antiangiogenic role
through the PI3K pathway.

In conclusion, as a pan-PI3K inhibitor, DHW-208 can inhibit
the proliferation, migration, invasion and angiogenesis of HCC by
inhibiting the activation of PI3K/AKT/mTOR signaling pathway,
exhibiting robust anti-HCC activity both in vivo and in vitro.
DHW-208 is expected to be a potential selective small molecule
PI3K inhibitor for the treatment of HCC, with certain potential for
further development.
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