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Abstract: The availability of antigen tests for SARS-CoV-2 represents a major step for the mass
surveillance of the incidence of infection, especially regarding COVID-19 asymptomatic and/or
early-stage patients. Recently, we reported the development of a Bioelectric Recognition Assay-based
biosensor able to detect the SARS-CoV-2 S1 spike protein expressed on the surface of the virus in
just three minutes, with high sensitivity and selectivity. The working principle was established by
measuring the change of the electric potential of membrane-engineered mammalian cells bearing the
human chimeric spike S1 antibody after attachment of the respective viral protein. In the present
study, we applied the novel biosensor to patient-derived nasopharyngeal samples in a clinical set-up,
with absolutely no sample pretreatment. More importantly, membrane-engineered cells were pre-
immobilized in a proprietary biomatrix, thus enabling their long-term preservation prior to use as
well as significantly increasing their ease-of-handle as test consumables. The plug-and-apply novel
biosensor was able to detect the virus in positive samples with a 92.8% success rate compared to RT-
PCR. No false negative results were recorded. These findings demonstrate the potential applicability
of the biosensor for the early, routine mass screening of SARS-CoV-2 on a scale not yet realized.

Keywords: Bioelectric Recognition Assay (BERA); membrane engineering; public health surveillance;
Point-of-Care (POC); S1 spike protein; rapid antigen test; screening; serological assay; severe acute
respiratory syndrome-coronavirus 2 (SARS-CoV-2)

1. Introduction

Assays targeting antigenic moieties of the respiratory syndrome-coronavirus 2 (SARS-
CoV-2) have been recognized as one of the most promising approaches to successfully
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identify asymptomatic carriers of the virus, especially during the first two weeks following
infection [1–3] and taking into consideration the fact that asymptomatic infection rates
range globally between 18% and 42% [4]. In practical terms, screening for viral antigens
differentiates itself from antibody-targeting serology tests since it does not depend on host
antibody accumulation to detectable levels in the second and third week of illness [5]. The
interest in screening individuals for COVID-19 infection in point-of-care (POC) settings is
concomitant with the wide vaccination against the virus [6]. Although nucleic acid-based
tests are considered the golden standard for SARS-CoV-2, they are prone to false-negative
or even contradictory results, especially before or at symptom onset [7–9]. In the context of
immunological assays, antigen-detecting methods are advantageous over serology-based
ones, since no prior seroconversion (usually peaking around one to two weeks after the
onset of symptoms) is required [10,11]. Among the four major surface protein types, spike
proteins have a prominent role in the development of diagnostic assays, since they are
directly involved in the mechanism of host cell entry through their ability to bind to the
angiotensin-converting enzyme 2 (ACE2), in turn determining the level of infectiousness
and virulence of the virus. More significantly, although the most abundant protein of the
virus is the nucleocapsid one (N), spike (S) proteins, being the host attachment ones, are
considered more specific [12].

Currently, the overwhelming majority of antigen rapid tests for SARS-CoV-2 are tar-
geting the nucleocapsid protein, usually coupled with lateral flow assay configurations [13].
They are usually characterized by high (>90%) specificity and clinical accuracy [14]; how-
ever, they suffer from poor sensitivity, at least compared to RT-PCR (Real-Time Polymerase
Chain Reaction) [15]. For this reason, they are mainly used in symptomatic patients [16,17].
On the other hand, a more promising target for antigen assays is the S1 spike protein
of SARS-CoV-2, since it is centrally involved in the early stages of infection and, thus,
is the major antigen recognized by humoral and cellular immune responses as a mirror
of the whole virus [18,19], as well as a molecular tool to discriminate between different
coronaviruses (e.g., SARS-CoV-2 vs. SARS-CoV) [20].

In spite of its attractiveness as a basis for the development of coronavirus antigen
tests, extremely few reports are available on the sensitive and reliable detection of the
SARS-CoV S1 protein [21–23]. Even more rare are reports on clinical validation and/or
practical application of such approaches [24].

Our team has recently reported the proof-of-concept development of a novel biosensor
for the ultra-rapid (3 min) and sensitive detection of the SARS-CoV-2 S1 spike protein [25],
with a limit of detection of 1 fg/mL and a semilinear range of response between 10 fg
and 1 µg/mL. The biosensor was based on mammalian cells, which were engineered by
electroinserting the human chimeric spike S1 antibody. According to a well-established
process known as Molecular Identification through Membrane Engineering [26–28], bind-
ing of the SARS-CoV-2 S1 protein to complementary membrane-based antibodies resulted
in a considerable and selective change in the membrane-engineered cell bioelectric prop-
erties, which was measured with a customized portable read-out device operated via
smartphone/tablet [29,30]. This is a broad methodology based on the electroinsertion of
antibody molecules on the cell surface of mammalian cells. The attachment of a specific anti-
gen to its respective antibody causes a measurable change in the cell membrane structure,
leading to a change in the cell membrane potential. Moreover, membrane-engineered cells
have been utilized as biorecognition elements in various sensors applied for the detection
of human viruses such as Hepatitis B Virus [31], Hepatitis C Virus [29], SARS-CoV-2 [25,32],
as well as several plant viruses such as Cucumber mosaic virus (CMV) [28], Potato virus Y
(PVY), and Tobacco rattle virus (TRV) [33]. Very recently, our system has been validated by
another independent research team on 110 positive and 136 negative SARS-CoV-2 samples
tested by RT-PCR [32]. A total sensitivity of 92.7% and a specificity of 97.8% was demon-
strated. However, it should be emphasized that samples assayed with the biosensor were
processed according to the specifications for molecular (RT-PCR) testing, i.e., the samples
were considerably pretreated before testing.
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In the present study, we report on the first clinical application of an improved version
of our novel biosensor, configured as ready-to-use. Positive patient-derived samples were
identified with a 92.8% score compared to RT-PCR, while no false-negative results were
recorded. We demonstrated that, following further validation, our approach could be
applied for early and routine population testing for SARS-CoV-2 with minimal sample
processing, easy use, and at a scale of application not realized so far.

2. Materials and Methods
2.1. Cell Culture Conditions

The SK-N-SH neuroblastoma cells (ATCC® HTB-11™) were cultured under standard
conditions (37 ◦C, 5% CO2), in 1x Minimum Essential Medium (MEM) with Earle’s balanced
salt (Biowest, Nuaillé, France). Fetal bovine serum (FBS) (10%) (Thermo Fisher Scientific,
Waltham, MA, USA) was added to the culture medium, as well as 2 mM of l-glutamine,
0.1 mM nonessential amino acids, 1.0 mM sodium pyruvate (Biowest, Nuaillé, France) and
1 U µg−1 antibiotics (penicillin/streptomycin). Cells were subcultured once or twice per
week in a 1:10 ratio. Trypsin–EDTA (0.05% trypsin, 0.02% EDTA) (Biowest, Nuaillé, France)
was used for cell dissociation from the culture flasks, after treatment for 3–10 min.

2.2. Sensor Fabrication from Membrane-Engineered Cells (SK-N-SH/Anti S1)

Membrane engineered cells were fabricated after the electroinsertion of SARS-CoV-
2 Spike S1 antibody (Recombinant Anti-SARS-CoV-2 Spike Glycoprotein S1 antibody
[CR3022]—Chimeric, Cambridge, United Kingdom) into the cell membrane, according
to the prior publication of Mavrikou et al. [25]. The SK-N-SH cells were harvested from
a culture vessel by trypsinization. Cells were resuspended in phosphate-buffered saline
(PBS) (pH 7.4), at a final density of 2.5 × 106/mL, alongside the antibody (0.5 µg/mL) and
maintained at 4 ◦C for 20 min. The cell suspension was then subjected to electroporation
with two pulses of an electric field at 1800 V/cm (Eppendorf Eporator, Eppendorf AG,
Hamburg, Germany) and was immediately transferred in a Petri dish (60 × 15 mm)
enriched with cell culture medium and placed in the incubator overnight.

The next day, the membrane-engineered cells were detached from the petri dish with
pipetting and collected with PBS (pH 7.4) in Eppendorf tubes in desirable concentrations.
The interactions of membrane-engineered cells with the spike S1 protein were then recorded
either in cell suspensions (50 × 103 cells per sensor) or in three-dimensional (3D) cell
cultures (25 × 103 cells per sensor). In the case of 3D cultures, a custom-made extracellular
collagen-based (at least 0.5% w/v) hydrogel matrix was used for cell immobilization (the
formulation is subjected to patent submission) (Figure 1).
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Figure 1. Cells were mixed with the hydrogel matrix (A) and were placed onto the working electrode’s
surface. The electrodes were put in petri dishes and were incubated overnight at 37 ◦C, 5% CO2 (B).
The next day the modified electrodes with the 3D cultures were ready for use (C).

2.3. Bioelectric Real-Time Measurements: Biosensor Set-Up and Experimental Design

It is well documented that the alterations of the membrane potential of membrane-
engineered cells due to the interactions between the electroinserted receptor molecules and
analyte anions, cause the production of electric signals that can be recorded, according to
the principle of the Bioelectric Recognition Assay (BERA) [29,30]. Our method of choice for
measuring potential changes was the determination of Open Circuit Potential (OCP) values.
OCP is the potential established between the working electrode and the environment, with
respect to a reference electrode, which will be placed in the electrolyte close to the working
electrode. OCP is a passive method, meaning that the counter electrode (necessary to pass
current through the cell) circuitry of the potentiostat is bypassed. In this mode, only the
resting potential between reference and working electrode is measured [34].

For this purpose, a customized potentiometer with an eight-channel configuration was
used to record the membrane-engineered cells’ electric properties. Carbon screen printed
multichannel electrodes were used (working electrode: carbon, reference: Ag/AgCl) on a
disposable sensor strip (iMiCROQ S.L., Tarragona, Spain) (Figure 2A,B).

Samples (10 µL) were added to the top of each carbon electrode containing membrane
engineered cells either in suspension or 3D culture by using a multichannel automatic
pipette (Figure 2C). Upon the addition of the sample, a time series of cell responses was
recorded for 180 s by potentiometric measurements in volts (360 values, sampling rate
2 Hz). The recorded measurements were uploaded via a tablet/Bluetooth communication
to a cloud server and further analyzed (Figure 2D) [35].

Each sample was tested eight times using a set of eight individual sensors and each
experiment was performed in triplicate, while each experimental set was repeated at
three different dates (n = 24). The biosensor measurements are expressed as normalized
responses according to the following equation:

Normalized Biosensor Response =
Control − Sample

Control
(1)

The results are expressed as mean ± SEM, whereas the differences between the means
were tested for statistical significance using an analysis of variance and Student’s t-test.
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The present study was carried out in three experimental steps. Initially, we investi-
gated our system’s lower limits of detection. For this purpose, we spiked SARS-CoV-2
negative patient nasopharyngeal samples with several low concentrations of SARS-CoV-2
spike S1 protein (2 fg/mL, 20 fg/mL, 200 fg/mL, 2 pg/mL, 20 pg/mL, 200 pg/mL, and
2 ng/mL) to reflect the usual concentrations of viral protein ranging from asymptomatic to
moderately ill patients in vivo. Then, we tested the spiked samples with the membrane
engineered cells in suspension or in 3D culture.

In the second experimental step, we evaluated the BERA biosensor based on 3D
membrane-engineered cell culture with SARS-CoV-2 negative and positive patient na-
sopharyngeal samples. Finally, in the third experimental step, cell viability in 3D cultures
was assessed for long-term storage as part of the biosensors’ consumable components.

Figure 2. Experimental set-up of the membrane-engineered cell-based biosensor’s assembly. Eight-
channel carbon screen-printed electrodes were prepared with custom-made hydrogel-immobilized
membrane-engineered cells (A). The electrode containing the 3D cell cultures was placed to the mea-
surement device (B). Each sample was applied (8×) to the testing positions (cell-covered electrodes)
while the electrode strip was connected to a bespoke portable potentiometer which is connected to a
tablet device for the recording of the measurements immediately after the sample application (C).
The electric signal is continuously visualized through a voltage vs. time graph on the screen of a
smartphone connected via Bluetooth to the device (D).

2.4. Viability Monitoring of Membrane-Engineered Cells in 3D Extracellular Immobilization
Matrix

To access the proliferation and viability of the cell membrane engineered with the
SARS-CoV-2 Spike S1 antibody in the hydrogel immobilization matrix, we microscopically
observed cell viability for two weeks within three days intervals. The Trypan Blue Exclusion
Assay was performed in order to determine cell death [36]. Cell viability changes were
captured (from Day 1 = 24 h after electroporation) by an inverted microscope (ZEISS
Axio Vert.A1, Carl Zeiss Microscopy, LLC, White Plains, NY, USA), and the pictures were
processed by ZEN lite and ImageJ software.

2.5. Patient Recruitment, Clinical Examination and Specimen Collection

All patients included in the study had a positive RT-PCR test on nasopharyngeal
swabs for SARS-CoV-2 at the time of hospital admission and prior to sample collection
for antigen detection with the biosensor. Overall, the severity of their disease was mild
to moderate, except for one patient who was finally intubated. Nasopharyngeal swabs
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for antigen detection were collected, following a standardized procedure, using Dacron
swabs (FIRATMED, 8870000244, Albacete, Spain). Fourteen patients and fourteen healthy
volunteers consented to have two replicate specimens collected. Healthy volunteers had
already received two doses of COVID-19 mRNA vaccine and were matched to patients.
Matching parameters included sex, age, and medical history. All specimens for antigen
testing were collected at 12 March 2021. Each specimen was transported in a sterile
centrifuge tube (Greiner 15 mL centrifuge tube). For each patient or volunteer, the first
swab was placed into 10 mL of sterile 0.9% saline solution and the second one into 10 mL
of PBS at pH 7.4 (Gibco PBS, 10010023, Thermo Fisher Scientific, Waltham, MA, USA).
Specimens were stored on ice for transport to the clinical laboratory for testing. Upon
receipt, the specimens were stored at –80 ◦C, until the process [37,38].

The clinical characteristics of patients with COVID-19 as well as their medical history
are described in Supplementary Table S1 of the supporting information.

3. Results

In a previous study, we demonstrated the proof-of-concept detection of the SARS-CoV-
2 spike S1 protein by means of a Bioelectric Recognition Assay recording the alterations
of the cellular bioelectric properties of membrane-engineered mammalian cells bearing
the human chimeric spike S1 antibody [25]. As a next step, in the present investigation we
tried to evolve our technology: (i) using new cellular biorecognition elements to augment
the biosensor’s sensitivity, (ii) by the integration of the biorecognition elements into a
collagen-like hydrogel for increasing storage time, and (iii) by the evaluation of the assay’s
performance with the use of clinical samples.

3.1. Membrane-Engineered SK-N-SH/Anti-S1 Cells Have a Distinct Response against the
SARS-CoV-2 Spike S1 Protein in Suspension and 3D Culture Conditions

Membrane-engineered cells with 0.5 µg/mL human monoclonal anti-S1 antibodies
were exposed to increasing concentrations (2 fg/ML–2 ng/mL) of the SARS-CoV-2 spiked
S1 protein. A clearly observable and very rapid response was produced, measurable within
3 min of cell-protein interaction. The generated signal from the membrane-engineered cells
cultured either in suspension (Figure 3) or in the 3D extracellular matrix (Figure 4) was
clearly distinguishable.

A 10 µL sample volume of various concentrations of the S1 protein was administered
to a population of 25 × 103 membrane engineered cells. Measurements at each S1 protein
concentration were distinctly and significantly different from the control solutions (i.e.,
zero S1 concentration). Results were quite reproducible, with a very low limit of detection
(LOD) at two (2) fg/mL.

A concentration-dependent linear pattern was observed after the administration
of increasing concentrations of the SARS-CoV-2 spike S1 protein, in the range of 2 fg–
20 pg/mL. Additionally, the responses of the cells in 3D cultures as well as in suspension,
upon the addition of the S1 protein solution, were similar. The 3D cultured cells produced
more reproducible responses for each applied concentration of S1 protein, in comparison
with the respective responses of the cell suspensions. This conclusion is based on the
relative standard error comparison (RSE), since in all assayed concentrations that are
equal or higher than 20 fg/mL, the RSEs of the normalized 3D cultured cells’ responses
(average RSE: ±9.4%) were lower than those obtained from the cells in suspension (average
RSE: ±14.3%).



Biosensors 2021, 11, 224 7 of 14

Figure 3. Normalized (vs. control) cell biosensor’s responses in suspension against the SARS-
CoV-2 spike S1 protein. SK-N-SH/anti-S1 cells membrane-engineered with 0.5 µg/mL of human
monoclonal antibodies were used as the biorecognition elements. Results (mean ± SE) are presented
after three minutes (columns) of sample–cell interaction. Results are expressed as normalized
biosensor responses ([control-sample response]/control, n = 24).

Figure 4. Normalized (vs. control) 3D immobilized cell biosensor’s response to the SARS-CoV-2 spike
S1 protein. SK-N-SH/anti-S1 cells membrane engineered with 0.5 µg/mL of human monoclonal
antibodies, were used as the biorecognition element. Results are presented after three minutes
(columns) of sample–cell interaction. Results are expressed as normalized biosensor responses
([control–sample response]/control, n = 24).

3.2. Ultra-Rapid Detection of the SARS-CoV-2 S1 Spike Protein Antigen in Clinical Samples by
the Membrane-Engineered SK-N-SH/Anti-S1 Cells in Suspension and 3D Conditions in
Comparison with RT-PCR Results

Two different approaches were applied, based on membrane engineered cells in
suspension and in 3D cultures. Comparison of the performances of suspension and 3D
cultures to those of RT-PCR with samples from all categories of patients gave similar results
regardless of the methodology used. In total, 14 (58.33%) of the 24 samples were positive
for SARS-CoV-2 virus. Our cell-based biosensor successfully detected the virus in 13 out of
14 specimens (92.8%) confirmed to be positive by RT-PCR. In addition, no false-positive
results were observed in the case of negative samples (n = 10).
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As can be seen in Figure 5, the normalized cell biosensor’s responses derived from
membrane engineered cells in suspension successfully identified six specimens (42.8%)
with statistical significance p < 0.001, three specimens (21.4%) with statistical significance
p < 0.01 and four specimens (28.5%) with statistical significance p < 0.05. Non- statisti-
cally significant results were observed in the case of specimen 14. When we used cells
immobilized in a hydrogel-based extracellular matrix (Figure 6), the biosensor identified
12 specimens (85.7%) with statistical significance p < 0.001 and one specimen (7.1%) with sta-
tistical significance p < 0.05. In this case, non-statistically significant results were observed
for specimen 5.

Figure 5. Normalized cell biosensor’s responses to clinical samples from patients (n = 14) and
healthy donors (mean of 10 samples—black column). The membrane engineered cells with the
Anti-SARS-CoV-2 Spike S1 antibody were added onto the electrode’s surface in suspension. Results
are presented after three minutes of sample–cell interaction. Results are expressed as normalized
biosensor responses ([control–sample response]/control). Significant differences (Student’s T-test)
between normalized biosensor responses * < 0.05, ** < 0.01, *** < 0.001.

Figure 6. Normalized 3D cell biosensor’s responses against clinical samples from patients (n = 14)
and healthy donors (mean of 10 samples—black column). Results are presented after three minutes
of sample–cell interaction. Results are expressed as normalized biosensor responses ([control–sample
response]/control). Significant differences (Student’s T-test) between normalized biosensor responses
* < 0.05, ** < 0.01, *** < 0.001.
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3.3. Membrane Engineered Cells Can Be Maintained in the Hydrogel-Based Matrix for a Minimum
Two Week Interval

The day after electroporation, cells were detached from the Petri dish and transferred
to the hydrogel extracellular matrix. The assessment of cell proliferation started after 24 h.
Fresh medium was added every two days. Pictures of the cells were taken every 3 days.
Figure 7 shows the microscopic observations of the 3D cultures after 15 days of incubation
in a cell culture chamber, whereas Figure 8 depicts the graphical representation of cell
viability as the percentage of live cells of the total number of cells. As can be seen, the
immobilization matrix did not seem to negatively affect cell viability up to day 15. This
also coincided with the highly reproducible biosensor responses against clinical samples
throughout the observation period.

Figure 7. Panoramic view of membrane-engineered cells cultured in the hydrogel matrix after
incubation for 15 days. Pictures were taken every 3 days. Scale bars = 50 µm.

Figure 8. The graph depicts the percentage of cell viability during time.
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4. Discussion

Due to the brief history of the COVID-19 epidemic and in spite of its global dimension,
diagnostics of the disease are still evolving. RT-PCR tests on nasopharyngeal and throat
swabs are considered the current golden standard for the reliable identification of positive
samples, although problems related to the costs of mass application, occasional false-
negative results and lack of detection of the virus during the early phase of the infection [1].
Another drawback of molecular testing is the fact that detection of viral RNA does not
always equal a viable virus [7]. On the other hand, the focus of antigen tests is steadily
increasing thanks to a number of clinical trials demonstrating their high level of specificity
and sensitivity, and a high agreement rate with RT-PCR (depending on the viral load) at
least as far as the nucleocapsid protein is concerned [3,39–41]. An additional advantage of
antigen assays is their lower variability since they are independent of aberrant changes
in viral load per stage of infection [42]. Furthermore, antigen-based tests are superior to
SARS-CoV-2 serology because they avoid the pitfall of false-negative results due to possible
weak host immune responses [43]. That said, several challenges are still associated with
the achievement of a reliable testing process, for example, minimizing the variation of
results between different types of samples as well as the timing of sample collection relative
to the onset of the illness and the method of sample collection [44]. Antigen tests are
advantageous in this respect, too, since viral RNAs are much less stable during transport
and storage than proteins.

As already mentioned in the Introduction, there are very few antigen-based assays
for the detection of spike SARS-CoV-2 S1 antigen that have been clinically tested so far.
For example, Lee et al. [24] very recently reported the development of a lateral flow
immunoassay based on the S1-binding SARS-CoV-2 receptor ACE2 with a limit of detection
of 1.86 × 105 copies/mL. Their method was clinically validated on nasopharyngeal swab
samples from four COVID-19 patients and four healthy subjects. The subsequent analysis
showed three positive results from confirmed clinical specimens with RT-PCR analysis,
while no false-positive results were recorded. Our cellular biosensor-based approach is
the second example of a clinically validated method in the rapidly expanding field of
technology targeting coronavirus spike proteins as a strategy for global surveillance of
COVID-19 and diseases possibly related to other respiratory viruses.

One of the major challenges for the broad application of cell-based assays (CBAs) in
routine analytical and diagnostic needs is their potential for practical applicability, often
limited by specific requirements for the availability of custom cell cultures (as the primary
consumable) and associated equipment at the site of the assay/testing process. This
condition renders the wide use of cell-based biosensor principles practically impossible,
especially in resource-limited environments. Overcoming the hurdle of limited cell viability
by using specific cell types (e.g., fish gills) or integrating microfluidic/organ-on-chip circuits
in the consumable modules of biosensing platforms is only one of the potential areas for
improving the performance of advanced CBAs [45–47]. Equally important is the ability
to achieve highly reproducible test results within the linear range of responses; this is not
always guaranteed when using cell suspension cultures, in particular when cell densities
are not kept constant or are not clearly defined. For example, a common problem for cells
removed from optimal incubation conditions (e.g., 37 ◦C, 5% CO2) to be used under field
conditions is their gradual loss of viability over a period of hours or days, which in turn
may lead to major inconsistencies of their response to a certain analyte. Finally, handling
cell cultures at the testing site demands the engagement of technically skilled operators
and can be time-consuming.

In the present study, we improved our previously developed [25] and clinically vali-
dated [30] biosensor for the detection of the SARS-CoV-2 S1 spike antigen giving emphasis
on the following priorities: (i) increasing the practical ease of application of the novel
system in view of its potential large scale use; (ii) ensuring the derivation of reproducible,
cell batch-independent test results; and (iii) reducing the duration of each assay as well as
the time between subsequent assays, as an additional measure to reach a high throughput
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performance. Our major intervention to achieve these goals was the use of a cell immo-
bilization approach. This not only enabled the vertical extension of cell viability (at least
up to two weeks) (Figures 7 and 8) but also the considerable increase of ease of use and
speed of each test, with the lag period between subsequent assays being reduced to just a
few seconds and practically corresponding to the time required for changing the cartridge
containing the electrode strip of the 3D-immobilized cells. It is also worth mentioning
that the consumable cartridges were batch stored during the whole experimental period
with no impact on the reproducibility of the test results. It has been previously reported
that cell immobilization is one of the most favorable methods for increasing cell viabil-
ity [48,49] (up to a few weeks [50]), an approach that has also been successfully applied on
membrane-engineered mammalian cells [51].

Our results indicate that as concentrations of analyte increase, the signal from im-
munoassays increases as well; thus, the proposed biosensor can quantitatively determine
the S1 protein to concentrations up to 20 pg/mL (especially in the case of the 3D cultures).
The increase in the response should be linear in accordance with the increase of the analyte’s
concentration. However, as the concentration of analyte increases above a certain point,
the system gets saturated and the signal begins to decline. This phenomenon is known as
the hook effect [52]. In this case, a concentration-dependent linear pattern was observed
after the administration of increasing concentrations of the SARS-CoV-2 spike S1 protein,
in the range of 2 fg/mL–20 pg/mL. Additionally, the responses of the cells in 3D cultures
as well as in suspension, upon the addition of the S1 protein solution, were similar. The 3D
cultured cells produced more reproducible responses for each applied concentration of S1
protein, in comparison with the respective responses of the cell suspensions.

On the performance side, the biosensor was able to successfully identify positive
samples with 93% accuracy, while no false negative samples were recorded. Our results
are in accordance with a previous study with the BERA method conducted by Apostolou
et al. [32]. The biosensor showed a sensitivity of 92.7% (102/110) against RT-PCR with
clinical samples. In our case, a rather remarkable reproducibility (average RSE%: 3.6%)
was determined, once again demonstrating the merits of the cell immobilization approach
when compared to cells in suspension (average RSE%: 6.8%).

The selection of clinical samples was based on matching factors, such as age and
sex, that are commonly used in clinical studies. This process was performed in order to
improve study efficiency by generating a comparable group of negative samples selected
from the same population as the positive cases [53]. As can be seen in Table S1, patients 2,
7, 8, 10, 11, and 12 had a positive RT-PCR test a few days prior or after specimen selection.
Furthermore, patients 1, 4, 6, 9, and 11 had been positive for SARS-CoV-2 almost one
month prior to the sample collection, indicating that the biosensor (with both cell culture
approaches) is able to detect the disease even at very low concentrations of the virus. Even
though patient 5 was initially found positive for COVID-19 at 20 February 2021, the second
RT-PCR test performed at 17 March 2021, five days after specimen selection for antigen
detection, was negative. The lack of viral copies might be a possible explanation for the
ambiguous results of both cell-based biosensor systems used in the study (Figures 5 and 6).
Moreover, the biosensor using cell suspensions as the bioelectric recognition part was not
able to identify as positive for SARS-CoV-2 specimen collected from patient 14. This result
could be attributed to the biosensor’s interference with the complicated medical treatment
he was receiving, indicating once again the value of cell immobilization (p < 0.05).

Based on our current laboratory-scale protocol for manufacturing consumable cell-
bearing electrodes containing the cellular biorecognition material and the electrode in-
terface, as well as our extended experience with commercial applications of membrane-
engineered cells, we have calculated a capacity of at least 1000 test kits each day from
a small production line operated by a single person. Furthermore, immobilization of
cells at a much lower density compared to the previously reported cell suspension-based
approach [24] is directly associated with a drastic reduction of the consumable costs. To
our best knowledge from current collaborations with national and international partners,
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consumable cartridges containing electrodes with immobilized cells can be shipped by
common methods of transport to remote end-users with no loss in functionality for at least
2–3 weeks.

5. Conclusions

In this report, we demonstrated the clinical applicability of a practically improved
and readily employable version of our previously published cell-based biosensor for the
detection of COVID-19 in nasopharyngeal swabs. Since the completion of the proof-of-
concept development of the original assay, we have launched an optimization process
including the expansion of the number of cell lines to be membrane-engineered with the
human chimeric spike S1 antibody and by further investigating the cross-reactivity and
specificity of the biosensor, in particular against the S proteins of other coronaviruses.
In addition, among our immediate next research goals is the development, using our
methodological approach, of a biosensor for the detection of the NC antigen and its
subsequent application in saliva samples together with the present S1-specific biosensor.
In this way, we expect that both the sensitivity and the selectivity of the assay will be
increased [9].

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/bios11070224/s1, Table S1: The timeline of patients’ personal and medical history.

Author Contributions: Conceptualization, S.K.; methodology, S.K. and S.M.; formal analysis, S.K.,
S.M., F.P., K.H., V.T., P.B., A.M., A.K., E.K. (Elissavet Konstantellou), G.I.L., E.K. (Eleni Koniari),
E.-B.T., J.P., D.I. and G.P.C.; investigation S.M., F.P. and S.K.; data curation, S.M., K.H., V.T. and A.M.;
writing—original draft preparation, S.K., K.H., A.M., V.T. and S.M.; writing—review and editing,
S.K.; supervision, S.K. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Helsinki, and approved by the Ethics Committee of the Agricultural University of
Athens (protocol code 35 and date of approval 10 June 2021).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to medical confidentiality and privacy.

Acknowledgments: The authors acknowledge the administrative support of Evangelos Koukouna-
soulis and Stavros Ousios.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Sethuraman, N.; Jeremiah, S.S.; Ryo, A. Interpreting Diagnostic Tests for SARS-CoV-2. JAMA 2020, 323, 2249–2251. [CrossRef]
2. Baharun, B.N.B.; Safuan, S. Effectiveness of antibody vs antigen based detection method and the screening approaches to combat

COVID-19. J. Sustain. Sci. Manag. 2021, 16, 29–37. [CrossRef]
3. Chaimayo, C.; Kaewnaphan, B.; Tanlieng, N.; Athipanyasilp, N.; Sirijatuphat, R.; Chayakulkeeree, M.; Angkasekwinai, N.;

Sutthent, R.; Puangpunngam, N.; Tharmviboonsri, T.; et al. Rapid SARS-CoV-2 antigen detection assay in comparison with
real-time RT-PCR assay for laboratory diagnosis of COVID-19 in Thailand. Virol. J. 2020, 17, 177. [CrossRef]

4. Sims, M.D.; Maine, G.N.; Childers, K.L.; Podolsky, R.H.; Voss, D.R.; Berkiw-Scenna, N.; Oh, J.; Heinrich, K.E.; Keil, H.; Kennedy,
R.H.; et al. COVID-19 seropositivity and asymptomatic rates in healthcare workers are associated with job function and masking.
Clin. Infect. Dis. 2020. [CrossRef] [PubMed]

5. Xiang, F.; Wang, X.; He, X.; Peng, Z.; Yang, B.; Zhang, J.; Zhou, Q.; Ye, H.; Ma, Y.; Li, H.; et al. Antibody Detection and Dynamic
Characteristics in Patients With Coronavirus Disease 2019. Clin. Infect. Dis. 2020, 71, 1930–1934. [CrossRef]

6. Schuler, C.F.I.V.; Gherasim, C.; O’Shea, K.; Manthei, D.M.; Chen, J.; Giacherio, D.; Troost, J.P.; Baldwin, J.L.; Baker, J.R., Jr. Accurate
point-of-care serology tests for COVID-19. PLoS ONE 2021, 16, e0248729. [CrossRef]

7. Wölfel, R.; Corman, V.M.; Guggemos, W.; Seilmaier, M.; Zange, S.; Müller, M.A.; Niemeyer, D.; Jones, T.C.; Vollmar, P.; Rothe, C.;
et al. Virological assessment of hospitalized patients with COVID-2019. Nature 2020, 581, 465–469. [CrossRef] [PubMed]

8. Sitjar, J.; Liao, J.D.; Lee, H.; Tsai, H.P.; Wang, J.R.; Liu, P.Y. Challenges of SERS technology as a non-nucleic acid or -antigen
detection method for SARS-CoV-2 virus and its variants. Biosens. Bioelectron. 2021, 181. [CrossRef] [PubMed]

https://www.mdpi.com/article/10.3390/bios11070224/s1
https://www.mdpi.com/article/10.3390/bios11070224/s1
http://doi.org/10.1001/jama.2020.8259
http://doi.org/10.46754/jssm.2021.01.004
http://doi.org/10.1186/s12985-020-01452-5
http://doi.org/10.1093/cid/ciaa1684
http://www.ncbi.nlm.nih.gov/pubmed/33150375
http://doi.org/10.1093/cid/ciaa461
http://doi.org/10.1371/journal.pone.0248729
http://doi.org/10.1038/s41586-020-2196-x
http://www.ncbi.nlm.nih.gov/pubmed/32235945
http://doi.org/10.1016/j.bios.2021.113153
http://www.ncbi.nlm.nih.gov/pubmed/33761416


Biosensors 2021, 11, 224 13 of 14

9. Kucirka, L.M.; Lauer, S.A.; Laeyendecker, O.; Boon, D.; Lessler, J. Variation in False-Negative Rate of Reverse Transcriptase
Polymerase Chain Reaction-Based SARS-CoV-2 Tests by Time Since Exposure. Ann. Int. Med. 2020, 173, 262–267. [CrossRef]

10. van Kasteren, P.B.; van der Veer, B.; van den Brink, S.; Wijsman, L.; de Jonge, J.; van den Brandt, A.; Molenkamp, R.; Reusken, C.;
Meijer, A. Comparison of seven commercial RT-PCR diagnostic kits for COVID-19. J. Clin. Virol. 2020, 128, 104412. [CrossRef]
[PubMed]

11. Serrano, M.M.; Rodríguez, D.N.; Palop, N.T.; Arenas, R.O.; Córdoba, M.M.; Mochón, M.D.O.; Cardona, C.G. Comparison of
commercial lateral flow immunoassays and ELISA for SARS-CoV-2 antibody detection. J. Clin. Virol. 2020, 129, 104529. [CrossRef]

12. Van Elslande, J.; André, E.; Van Ranst, M.; Lagrou, K.; Vermeersch, P. Immunoassays for anti-SARS-CoV-2 antibodies: Recent
insights. Lancet Infect. Dis. 2020, 21, e120. [CrossRef]

13. Kotsiou, O.S.; Pantazopoulos, I.; Papagiannis, D.; Fradelos, E.C.; Kanellopoulos, N.; Siachpazidou, D.; Kirgou, P.; Mouliou, D.S.;
Kyritsis, A.; Kalantzis, G.; et al. Repeated Antigen-Based Rapid Diagnostic Testing for Estimating the Coronavirus Disease 2019
Prevalence from the Perspective of the Workers’ Vulnerability before and during the Lockdown. Int. J. Environ. Res. Public Health
2021, 18, 1648. [CrossRef]

14. Anonymous. Antigen-detection in the diagnosis of SARS-CoV-2 infection using rapid immunoassays. WHO Int. Guid. 2020, 11,
1–9.

15. Reno, C.; Lenzi, J.; Golinelli, D.; Gori, D.; Signorelli, C.; Kraemer, J.; Stoto, M.A.; Avitabile, E.; Landini, M.P.; Lazzarotto, T.; et al.
SARS-CoV-2/COVID-19 Testing: The Tower of Babel. Acta Bio-Medica Atenei Parm. 2020, 91, e2020144. [CrossRef]

16. Matsuda, E.M.; de Campos, I.B.; de Oliveira, I.P.; Colpas, D.R.; Carmo, A.M.D.S.; Brígido, L.F.D.M. Field evaluation of COVID-19
antigen tests versus RNA based detection: Potential lower sensitivity compensated by immediate results, technical simplicity,
and low cost. J. Med. Virol. 2021, 93, 4405–4410. [CrossRef] [PubMed]

17. Li, H.; Liu, S.M.; Yu, X.H.; Tang, S.L.; Tang, C.K. Coronavirus disease 2019 (COVID-19): Current status and future perspectives.
Int. J. Antimicrob. Agents 2020, 55, 105951. [CrossRef] [PubMed]

18. Aiello, A.; Fard, S.N.; Petruccioli, E.; Petrone, L.; Vanini, V.; Farroni, C.; Cuzzi, G.; Navarra, A.; Gualano, G.; Mosti, S.; et al. Spike
is the most recognized antigen in the whole-blood platform in both acute and convalescent COVID-19 patients. Int. J. Infect. Dis.
2021, 106, 338–347. [CrossRef]

19. Sheridan, C. Fast, portable tests come online to curb coronavirus pandemic. Nat. Biotechnol. 2020, 38, 515–518. [CrossRef]
[PubMed]

20. Mboumba Bouassa, R.S.; Veyer, D.; Péré, H.; Bélec, L. Analytical performances of the point-of-care SIENNA™ COVID-19 Antigen
Rapid Test for the detection of SARS-CoV-2 nucleocapsid protein in nasopharyngeal swabs: A prospective evaluation during the
COVID-19 second wave in France. Int. J. Infect. Dis. 2021, 106, 8–12. [CrossRef]

21. Kirchdoerfer, R.N.; Wang, N.; Pallesen, J.; Wrapp, D.; Turner, H.L.; Cottrell, C.A.; Corbett, K.S.; Graham, B.S.; McLellan, J.S.; Ward,
A.B. Stabilized coronavirus spikes are resistant to conformational changes induced by receptor recognition or proteolysis. Sci.
Rep. 2018, 8, 15701. [CrossRef]

22. Song, W.; Gui, M.; Wang, X.; Xiang, Y. Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host
cell receptor ACE2. PLoS Pathog. 2018, 14, e1007236. [CrossRef]

23. Hulswit, R.J.G.; Lang, Y.; Bakkers, M.J.G.; Li, W.; Li, Z.; Schouten, A.; Ophorst, B.; van Kuppeveld, F.J.M.; Boons, G.-J.; Bosch, B.-J.;
et al. Human coronaviruses OC43 and HKU1 bind to 9-O-acetylated sialic acids via a conserved receptor-binding site in spike
protein domain A. Proc. Natl. Acad. Sci. USA 2019, 116, 2681–2690. [CrossRef]

24. Lee, J.H.; Choi, M.; Jung, Y.; Lee, S.K.; Lee, C.S.; Kim, J.; Kim, J.; Kim, N.H.; Kim, B.T.; Kim, H.G. A novel rapid detection for
SARS-CoV-2 spike 1 antigens using human angiotensin converting enzyme 2 (ACE2). Biosens. Bioelectron. 2021, 171, 112715.
[CrossRef] [PubMed]

25. Mavrikou, S.; Moschopoulou, G.; Tsekouras, V.; Kintzios, S. Development of a Portable, Ultra-Rapid and Ultra-Sensitive Cell-
Based Biosensor for the Direct Detection of the SARS-CoV-2 S1 Spike Protein Antigen. Sensors 2020, 20, 3121. [CrossRef]
[PubMed]

26. Kokla, A.; Blouchos, P.; Livaniou, E.; Zikos, C.; Kakabakos, S.E.; Petrou, P.S.; Kintzios, S. Visualization of the membrane
engineering concept: Evidence for the specific orientation of electroinserted antibodies and selective binding of target analytes. J.
Mol. Recognit. 2013, 26, 627–632. [CrossRef] [PubMed]

27. Kintzios, S. Molecular Identification through Membrane Engineered Cells. EPO Patent 1974211, 26 July 2007. Eur. Pat. Appl.
28. Moschopoulou, G.; Vitsa, K.; Bem, F.; Vassilakos, N.; Perdikaris, A.; Blouhos, P.; Yialouris, C.; Frosyniotis, D.; Anthopoulos, I.;

Mangana, O.; et al. Engineering of the membrane of fibroblast cells with virus-specific antibodies: A novel biosensor tool for
virus detection. Biosens. Bioelectron. 2008, 24, 1033–1036. [CrossRef]

29. Kintzios, S.; Pistola, E.; Panagiotopoulos, P.; Bomsel, M.; Alexandropoulos, N.; Bem, F.; Ekonomou, G.; Biselis, J.; Levin, R.
Bioelectric recognition assay (BERA). Biosens. Bioelectron. 2001, 16, 325–336. [CrossRef]

30. Kintzios, S.; Pistola, E.; Konstas, J.; Bem, F.; Matakiadis, T.; Alexandropoulos, N.; Biselis, I.; Levin, R. The application of
the bioelectric recognition assay for the detection of human and plant viruses: Definition of operational parameters. Biosens.
Bioelectron. 2001, 16, 467–480. [CrossRef]

31. Perdikaris, A.; Alexandropoulos, N.; Kintzios, S. Development of a Novel, Ultra-rapid Biosensor for the Qualitative Detection of
Hepatitis B Virus-associated Antigens and Anti-HBV, Based on “Membrane-engineered” Fibroblast Cells with Virus-Specific
Antibodies and Antigens. Sensors 2009, 9, 2176–2186. [CrossRef]

http://doi.org/10.7326/M20-1495
http://doi.org/10.1016/j.jcv.2020.104412
http://www.ncbi.nlm.nih.gov/pubmed/32416600
http://doi.org/10.1016/j.jcv.2020.104529
http://doi.org/10.1016/s1473-3099(20)30846-x
http://doi.org/10.3390/ijerph18041638
http://doi.org/10.23750/abm.v91i4.10911
http://doi.org/10.1002/jmv.26985
http://www.ncbi.nlm.nih.gov/pubmed/33788270
http://doi.org/10.1016/j.ijantimicag.2020.105951
http://www.ncbi.nlm.nih.gov/pubmed/32234466
http://doi.org/10.1016/j.ijid.2021.04.034
http://doi.org/10.1038/d41587-020-00010-2
http://www.ncbi.nlm.nih.gov/pubmed/32203294
http://doi.org/10.1016/j.ijid.2021.03.051
http://doi.org/10.1038/s41598-018-34171-7
http://doi.org/10.1371/journal.ppat.1007236
http://doi.org/10.1073/pnas.1809667116
http://doi.org/10.1016/j.bios.2020.112715
http://www.ncbi.nlm.nih.gov/pubmed/33099241
http://doi.org/10.3390/s20113121
http://www.ncbi.nlm.nih.gov/pubmed/32486477
http://doi.org/10.1002/jmr.2304
http://www.ncbi.nlm.nih.gov/pubmed/24277607
http://doi.org/10.1016/j.bios.2008.06.039
http://doi.org/10.1016/S0956-5663(01)00127-0
http://doi.org/10.1016/S0956-5663(01)00161-0
http://doi.org/10.3390/s90302176


Biosensors 2021, 11, 224 14 of 14

32. Apostolou, T.; Kyritsi, M.; Vontas, A.; Loizou, K.; Hadjilouka, A.; Speletas, M.; Mouchtouri, V.; Hadjichristodoulou, C. Develop-
ment and performance characteristics evaluation of a new Bioelectric Recognition Assay (BERA) method for rapid SARS-CoV-2
detection in clinical samples. J. Virol. Methods 2021, 293, 114166. [CrossRef]

33. Perdikaris, A.; Vassilakos, N.; Yiakoumettis, I.; Kektsidou, O.; Kintzios, S. Development of a portable, high throughput biosensor
system for rapid plant virus detection. J. Virol. Methods 2011, 177, 94–99. [CrossRef]

34. Charoenkitamorn, K.; Tue, P.T.; Kawai, K.; Chailapakul, O.; Takamura, Y. Electrochemical Immunoassay Using Open Circuit
Potential Detection Labeled by Platinum Nanoparticles. Sensors 2018, 18, 444. [CrossRef]

35. Apostolou, T.; Loizou, K.; Hadjilouka, A.; Inglezakis, A.; Kintzios, S. Newly Developed System for Acetamiprid Residue Screening
in the Lettuce Samples Based on a Bioelectric Cell Biosensor. Biosensors 2020, 10, 8. [CrossRef] [PubMed]

36. Strober, W. Trypan Blue Exclusion Test of Cell Viability. Curr. Protoc. Immunol. 2015, 111, A3.B.1–A3.B.3. [CrossRef] [PubMed]
37. Kline, A.; Putnam, N.E.; Youn, J.-H.; East, A.; Das, S.; Frank, K.M.; Zelazny, A.M. Dacron swab and PBS are acceptable alternatives

to flocked swab and viral transport media for SARS-CoV-2. Diagn. Microbiol. Infect. Dis. 2021, 99, 115209. [CrossRef]
38. Clerici, B.; Muscatello, A.; Bai, F.; Pavanello, D.; Orlandi, M.; Marchetti, G.C.; Castelli, V.; Casazza, G.; Costantino, G.; Podda, G.M.

Sensitivity of SARS-CoV-2 Detection With Nasopharyngeal Swabs. Front. Public Health 2021, 8, 593491. [CrossRef] [PubMed]
39. Ciotti, M.; Maurici, M.; Pieri, M.; Andreoni, M.; Bernardini, S. Performance of a rapid antigen test in the diagnosis of SARS-CoV-2

infection. J. Med. Virol. 2021, 93, 2988–2991. [CrossRef] [PubMed]
40. Colavita, F.; Vairo, F.; Meschi, S.; Valli, M.B.; Lalle, E.; Castilletti, C.; Fusco, D.; Spiga, G.; Bartoletti, P.; Ursino, S.; et al. COVID-19

Rapid Antigen Test as Screening Strategy at Points of Entry: Experience in Lazio Region, Central Italy, August-October 2020.
Biomolecules 2021, 11, 425. [CrossRef]

41. Gili, A.; Paggi, R.; Russo, C.; Cenci, E.; Pietrella, D.; Graziani, A.; Stracci, F.; Mencacci, A. Evaluation of Lumipulse®G SARS-CoV-2
antigen assay automated test for detecting SARS-CoV-2 nucleocapsid protein (NP) in nasopharyngeal swabs for community and
population screening. Int. J. Infect. Dis. 2021, 105, 391–396. [CrossRef]

42. Hirotsu, Y.; Maejima, M.; Shibusawa, M.; Nagakubo, Y.; Hosaka, K.; Amemiya, K.; Sueki, H.; Hayakawa, M.; Mochizuki, H.;
Tsutsui, T.; et al. Comparison of automated SARS-CoV-2 antigen test for COVID-19 infection with quantitative RT-PCR using 313
nasopharyngeal swabs, including from seven serially followed patients. Int. J. Infect. Dis 2020, 99, 397–402. [CrossRef]

43. Bélec, L.; Péré, H.; Mboumba Bouassa, R.S.; Veyer, D.; Jenabian, M.A. Potential pitfalls of routine SARS-CoV-2 serology for mass
screening. J. Med. Virol. 2020, 92, 2345. [CrossRef] [PubMed]

44. Wang, W.; Xu, Y.; Gao, R.; Lu, R.; Han, K.; Wu, G.; Tan, W. Detection of SARS-CoV-2 in Different Types of Clinical Specimens.
JAMA 2020, 323, 1843–1844. [CrossRef]

45. Schopow, N.; Kallendrusch, S.; Gong, S.; Rapp, F.; Körfer, J.; Gericke, M.; Spindler, N.; Josten, C.; Langer, S.; Bechmann, I.
Examination of ex-vivo viability of human adipose tissue slice culture. PLoS ONE 2020, 15, e0233152. [CrossRef] [PubMed]

46. Banerjee, P.; Kintzios, S.; Prabhakarpandian, B. Biotoxin detection using cell-based sensors. Toxins 2013, 5, 2366–2383. [CrossRef]
47. Kintzios, S.E. Cell-based biosensors in clinical chemistry. Mini Rev. Med. Chem. 2007, 7, 1019–1026. [CrossRef]
48. Hasturk, O.; Kaplan, D.L. Cell armor for protection against environmental stress: Advances, challenges and applications in micro-

and nanoencapsulation of mammalian cells. Acta Biomater. 2019, 95, 3–31. [CrossRef] [PubMed]
49. Sablatura, L.K.; Bircsak, K.M.; Shepherd, P.; Queiroz, K.; Farach-Carson, M.C.; Constantinou, P.E.; Saleh, A.; Navone, N.;

Harrington, D.A. Enhanced Viability for Ex vivo 3D Hydrogel Cultures of Patient-Derived Xenografts in a Perfused Microfluidic
Platform. J. Vis. Exp. 2020, 10, e60872. [CrossRef]

50. Kintzios, S.; Yiakoumetis, I.; Moschopoulou, G.; Mangana, O.; Nomikou, K.; Simonian, A. Differential effect of the shape of
calcium alginate matrices on the physiology of immobilized neuroblastoma N2a and Vero cells: A comparative study. Biosens.
Bioelectron. 2007, 23, 543–548. [CrossRef] [PubMed]

51. Katsanakis, N.; Katsivelis, A.; Kintzios, S. Immobilization of electroporated cells for fabrication of cellular biosensors: Physiologi-
cal effects of the shape of calcium alginate matrices and foetal calf serum. Sensors 2009, 9, 378–385. [CrossRef] [PubMed]

52. Namburi, R.; Kancherla, V.; Ponnala, A. High-dose hook effect. J. NTR Univ. Health Sci. 2014, 3, 5–7. [CrossRef]
53. Pearce, N. Analysis of matched case-control studies. BMJ 2016, 352, i969. [CrossRef] [PubMed]

http://doi.org/10.1016/j.jviromet.2021.114166
http://doi.org/10.1016/j.jviromet.2011.06.024
http://doi.org/10.3390/s18020444
http://doi.org/10.3390/bios10020008
http://www.ncbi.nlm.nih.gov/pubmed/31991561
http://doi.org/10.1002/0471142735.ima03bs111
http://www.ncbi.nlm.nih.gov/pubmed/26529666
http://doi.org/10.1016/j.diagmicrobio.2020.115209
http://doi.org/10.3389/fpubh.2020.593491
http://www.ncbi.nlm.nih.gov/pubmed/33575241
http://doi.org/10.1002/jmv.26830
http://www.ncbi.nlm.nih.gov/pubmed/33527409
http://doi.org/10.3390/biom11030425
http://doi.org/10.1016/j.ijid.2021.02.098
http://doi.org/10.1016/j.ijid.2020.08.029
http://doi.org/10.1002/jmv.26034
http://www.ncbi.nlm.nih.gov/pubmed/32484942
http://doi.org/10.1001/jama.2020.3786
http://doi.org/10.1371/journal.pone.0233152
http://www.ncbi.nlm.nih.gov/pubmed/32453755
http://doi.org/10.3390/toxins5122366
http://doi.org/10.2174/138955707782110141
http://doi.org/10.1016/j.actbio.2018.11.040
http://www.ncbi.nlm.nih.gov/pubmed/30481608
http://doi.org/10.3791/60872
http://doi.org/10.1016/j.bios.2007.07.003
http://www.ncbi.nlm.nih.gov/pubmed/17719216
http://doi.org/10.3390/s90100378
http://www.ncbi.nlm.nih.gov/pubmed/22389606
http://doi.org/10.4103/2277-8632.128412
http://doi.org/10.1136/bmj.i969
http://www.ncbi.nlm.nih.gov/pubmed/26916049

	Introduction 
	Materials and Methods 
	Cell Culture Conditions 
	Sensor Fabrication from Membrane-Engineered Cells (SK-N-SH/Anti S1) 
	Bioelectric Real-Time Measurements: Biosensor Set-Up and Experimental Design 
	Viability Monitoring of Membrane-Engineered Cells in 3D Extracellular Immobilization Matrix 
	Patient Recruitment, Clinical Examination and Specimen Collection 

	Results 
	Membrane-Engineered SK-N-SH/Anti-S1 Cells Have a Distinct Response against the SARS-CoV-2 Spike S1 Protein in Suspension and 3D Culture Conditions 
	Ultra-Rapid Detection of the SARS-CoV-2 S1 Spike Protein Antigen in Clinical Samples by the Membrane-Engineered SK-N-SH/Anti-S1 Cells in Suspension and 3D Conditions in Comparison with RT-PCR Results 
	Membrane Engineered Cells Can Be Maintained in the Hydrogel-Based Matrix for a Minimum Two Week Interval 

	Discussion 
	Conclusions 
	References

