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Abstract

Anthropogenic climate change is predicted to have profound effects on species distributions

over the coming decades. In this paper, we used maximum entropy modelling (Maxent) to

estimate the effects of projected changes in climate on extent of climatically-suitable habitat

for two Nepenthes pitcher plant species in Borneo. The model results predicted an increase

in area of climatically-suitable habitat for the lowland species Nepenthes rafflesiana by

2100; in contrast, the highland species Nepenthes tentaculata was predicted to undergo sig-

nificant loss of climatically-suitable habitat over the same period. Based on the results of the

models, we recommend that research be undertaken into practical mitigation strategies, as

approximately two-thirds of Nepenthes are restricted to montane habitats. Highland species

with narrow elevational ranges will be at particularly high risk, and investigation into possible

mitigation strategies should be focused on them.

Introduction

The monotypic Palaeotropical family Nepenthaceae (genus Nepenthes) is the largest family of

pitcher plants, comprising approximately 140 species. Nutrients from prey captured by the

pitchers are used to supplement those taken up from the nutrient-poor substrates on which

Nepenthes predominantly occur [1]. The Nepenthaceae has an extensive geographical range

across the Palaeotropics, from Madagascar through Southeast Asia, to New Caledonia; the cen-

tre of diversity encompasses the islands of Borneo, Sumatra, and the Philippines. The majority

of Nepenthes species fall into two rather broad groupings, defined largely by their altitudinal

distributions: so-called "lowland" species occur in habitats ranging from 0 m to approximately

1100 m above sea level (asl), whereas "highland" species are restricted to cooler, montane habi-

tats, usually above 1100 m asl [2–3]. Beyond these two major groups, a few species occupy

intermediate altitudinal ranges from approximately 700 to 1400 m asl; in addition, some spe-

cies can occasionally be found growing above or below their typical altitudinal thresholds. In
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general terms, the Nepenthaceae can be considered a largely highland family, as approximately

two-thirds of the currently-recognized species occur at altitudes > 1100 m asl [3].

As a genus, Nepenthes is characterized by narrow endemism: the majority of species

have very small extents of occurrence. More than half of the highland species are either

confined to a single mountain summit, or occur on a small number of peaks within a single

mountain range. By contrast, many of the lowland species have extensive ranges. For exam-

ple, Nepenthes mirabilis (Lour.) Rafarin extends throughout the lowlands of Southeast Asia,

as far eastwards as New Guinea and northern Australia. Another widespread lowland spe-

cies is Nepenthes rafflesiana Jack, which is abundant on nutrient-deficient substrates in the

lowlands of the Malay Peninsula, Borneo, and parts of Sumatra. However, some lowland

species also have highly circumscribed ranges. For example, Nepenthes campanulata Sh.

Kurata is an obligate limestone endemic from Borneo, and occurs in a small geographical

area determined by the very limited distribution of a particular type of limestone formation

[4]. Although there appear to be multiple drivers of narrow endemism within Nepenthes (few of

which are well-understood), the overwhelming pattern is one of species being confined to rela-

tively small geographical areas, where they occupy specialized niches. Unfortunately, narrow

endemics are thought to be at greater risk from stochastic and deterministic disturbances than

widespread species [5]. Many parts of Southeast Asia, the insular regions in particular, continue

to experience unprecedented levels of anthropogenic habitat disturbance and destruction [6].

Thus, there is an urgent need to assess the consequences of these threats to narrow endemic

species.

Anthropogenically-driven climate change is one such threat, and is expected to have pro-

found effects on ecosystems worldwide in the coming century. Climate-driven changes in spe-

cies distributions, community structure and vegetation dynamics, are already being observed

in several ecosystems [7–9]. Tropical montane ecosystems (including the cloud forests that

support more than half of all known Nepenthes species) house a substantial proportion of

global biodiversity, and are at particularly high risk of species extinction [10–14].

Given the established vulnerability of tropical highland taxa to the effects of climate change,

the current study was undertaken to compare the possible consequences of these effects on the

extent of climatically-suitable habitat for two Nepenthes—one highland and one lowland spe-

cies—from the island of Borneo. Specifically, we posed the following question: How will pre-

dicted anthropogenically-driven climate change affect the areas of climatically-suitable habitat

for the two species examined?

Materials and methods

Study species

The two Bornean species included in this study where chosen to represent lowland and mon-

tane Nepenthes. The widespread lowland species N. rafflesiana has an altitudinal range between

0 and ca. 1200 m asl, although the vast majority of populations occur below 100 m asl [2].

Nepenthes tentaculata Hook. f. is a highland species, inhabiting mossy forest between 700 and

2400 m asl, with the vast majority of localities lying above 1200 m asl [2]. In Borneo, it is widely

distributed in suitable montane habitat.

Geographical coordinates (10 m accuracy) were obtained by direct observation of popula-

tions of both species in the field by one of the authors (CC) from 1987–2012, supplemented

with herbarium records. For the latter, locality data were obtained from the Global Biodiversity

Information Facility (http://www.gbif.org/), with erroneous records and localities outside Bor-

neo being discarded. For N. rafflesiana, 36 records were retrieved, and 25 retained. Added to

the original field observations (CC), this gave a total of 164 localities; for N. tentaculata, 55
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points were retrieved and 38 retained. Combined with the original field observations, this gave

a total of 54 localities. The retained records were cross-checked against personal observations

of locations of both species made in the field by CC from 1987 to 2012. Only records that have

been ground truthed were used in the study. The Maxent modelling software (see below)

treated all data points within a 1 km polygon as a single datum. Therefore, the total effective

numbers of localities were 139 and 52 for N. rafflesiana and N. tentaculata, respectively. The

location data are available in S1 and S2 Datasets.

Climate data

Nineteen bioclimatic variables were used as predictors of suitable habitat [15]; we chose to use

the Bioclim variables rather than meteorological data (e.g. mean monthly rainfall or tempera-

ture), as the former have been shown to be more useful for describing the meteorological con-

straints on the distributions of species [16–18], and have been used successfully to model

distributions of many plant taxa [19–22]. They are publicly available as global climate grids at

30 arc-seconds (~ 1 km) resolution from the WorldClim dataset Version 1.4 (http://www.

worldclim.org/bioclim) [15, 23]. The variables are summarized in Table 1.

Table 1. Maxent model results.

Bioclimatic Variable Permutation Importance (%) a

N. rafflesiana

(n = 139)

N. tentaculata

(n = 52)

Bio1 Annual mean temperature 0 0

Bio2 Mean diurnal temperature range 1.72 0.39

Bio3 Isothermality b 0.15 0

Bio4 Temperature seasonality c 8.36 0.64

Bio5 Max. temperature of warmest month 0 0

Bio6 Min. temperature of coldest month 0 30.57

Bio7 Annual temperature range d 2.99 0

Bio8 Mean temperature of wettest quarter 1.23 0

Bio9 Mean temperature of driest quarter 2.30 0.04

Bio10 Mean temperature of warmest quarter 26.50 0

Bio11 Mean temperature of coldest quarter 0 37.85

Bio12 Annual precipitation 0.02 22.31

Bio13 Precipitation of wettest month 0.34 5.90

Bio14 Precipitation of driest month 6.66 0.25

Bio15 Precipitation seasonality e 3.44 0.07

Bio16 Precipitation of wettest quarter 30.23 0

Bio17 Precipitation of driest quarter 8.00 0.76

Bio18 Precipitation of warmest quarter 4.80 0.64

Bio19 Precipitation of coldest quarter 3.26 0.58

Test AUC f 0.88 0.97

a % decrease in training AUC resulting from randomly permuting values of a given variable during the training phase of model development.
b (Bio2/Bio7)*100.
c (Standard deviation)*100.
d (Bio5-Bio6).
e Coefficient of variation of precipitation.
f Area under curve. A value of 1 represents a perfect fit of the model.

https://doi.org/10.1371/journal.pone.0183132.t001
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Maxent modelling and evaluation

We used Maxent v. 3.3.3k [24–26] to model habitat suitability on the island of Borneo inde-

pendently for each species. Model outputs present an estimate of the probability of presence

for a given species between 0 and 1 for each 30 arc-second pixel, with lower values indicating

that the pixel represents less suitable habitat. Sample size for N. tentaculata was below the min-

imum of 80 observations necessary for the use of product or threshold feature types [27];

therefore, we adopted a conservative approach, using only linear and quadratic features for

our model execution for both species. By excluding product features, we created a more easily-

interpreted additive model [27].

In order to allow the model a sufficient number of iterations for convergence, we increased

the maximum number of iterations from 500 (the default) to 5000. This reduced the likelihood

of Maxent either over- or under-predicting habitat suitability. In addition, we accounted for

potential geographic sampling bias in the data (which may have occurred due to differing

degrees of accessibility between sampling locations), by selecting pseudo-absences from back-

ground data with a similar sampling bias to the occurrence data [28]. Bias layers for each spe-

cies were constructed using the smallest administrative unit for each of the three countries on

the island of Borneo (Malaysia, Brunei and Indonesia); an administrative unit was selected for

the bias file if a species observation occurred within its boundary [29]. The inclusion of the

bias file in each species model ensured that the default 10,000 pseudo-absences used in model

calculations were selected from the small-scale geographic units in which species observations

were recorded, and not from the whole study area.

The performance of each species model was evaluated by setting the random test percentage

to 30; seventy percent of the observations were randomly selected as a training data set and the

remaining 30% were used to test the model. In order to estimate the robustness of model out-

puts, the replicates option was set at 10, so that the selection of training and test data from the

species observations, as well as the calculation of performance statistics, were repeated. Model

fit was evaluated as the average area under the curve (AUC) of the receiver operating charac-

teristic (ROC) across all ten model replicates. AUC is a widely-used, threshold-independent

measure of model evaluation, which represents the probability that the model classifier will

correctly identify a randomly-chosen true presence [30–31]. AUC values range from 0 to 1,

with a value of 0.5 representing a model that correctly identifies true species occurrences equal

to a random guess, and a value of 1 indicating a perfect model fit. While an alternative jack-

knife or "leave-one-out" procedure has been suggested to evaluate model accuracy for small

sample sizes [32], the number of observations for both species in the current study is at least

one and a half times greater than in the study for which that procedure was recommended.

Thus, to prevent overoptimistic estimates of predictive power, we opted to use the standard

AUC calculations.

For examination of which bioclimatic variables were driving the models, we used "Permuta-

tion Importance". This represents a measure of decrease in training AUC resulting from ran-

domly permuting values of that variable during the training phase of model development;

thus, the decrease in training AUC is proportional to the importance of that variable to the

model [25]. All modified parameters listed above were common across each species’ Maxent

model, with the exception of the bias files.

Model future projections

Using Maxent, the models for each species were projected onto climate surfaces for the 2020s,

2050s, and 2080s, which represent forecasted climate trends over individual 30-year periods

(2001–2040, 2041–2070, and 2071–2100). These surfaces were obtained from the EDENext
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Data Management Team (EDENext DMT; http://www.edenextdata.com/). For each time

period, the EDENext DMT utilized climate projections generated from WorldClim climate

grids at 30 arc-seconds (~ 1km) resolution, prepared by four modeling groups for the IPCC

4th Assessment [33], and incorporating three SRES emission scenarios: A1b, A2s, and B2a

[34–35]. The modeling groups included HADLEY (Hadley Centre of the UK Met Office,

United Kingdom), CSIRO (Commonwealth Scientific and Industrial Research Organization,

Australia), CCCMA (Canadian Centre for Climate Modelling and Analysis), and CCSR/NEIS

(Center for Climate System Research and National Institute for Environmental Studies,

Japan). To account for the variation in projected climate and provide a consensus average set

of projections, EDENext DMT developed composite ensemble grids across all modelling

groups and emission scenarios for each bioclimatic variable in each time period, using the

mean value of the inputs for each pixel. Graphical outputs were produced using ArcMap v.

10.1 (Esri Inc., Redlands, CA, USA).

Results

Model evaluation

Model evaluation statistics for both species are presented in Table 1. Mean AUC values from

model replicates were high for both species (0.88 and 0.99). The AUC value is a measure of

model accuracy, where, for instance, a value of 0.88 indicates that 88% of the time a random

sample from presence predictions will have a greater probability of presence than a random

selection from absence predictions across all available probability thresholds. In general, AUC

values greater than 0.7, 0.8, and 0.9 are considered fair, good and excellent, respectively [31].

Results from the Permutation Importance analyses (Table 1) show that the model for the

lowland N. rafflesiana is driven primarily by mean temperature of the warmest quarter

(26.5%) and precipitation of the wettest quarter (30.23%). In contrast, the model for the high-

land N. tentaculata is driven primarily by minimum temperature of the coldest month

(30.57%), mean temperature of the coldest quarter (37.85%), and annual precipitation

(22.31%).

N. tentaculata shows a higher model accuracy than N. rafflesiana (Table 1). These results

are likely to be related to the more limited range of the former, which is a highland species:

many studies have found that species distribution models for species with smaller ranges or

narrower ecological tolerances have higher prediction accuracy than models developed for

more widespread species [36–39]. These studies conclude that the higher predictive accuracy

is a result of the fact that it is easier to separate suitable from unsuitable habitat for species

with restricted environmental tolerances or very specific habitat requirements. In addition,

although anecdotal accounts of additional Bornean N. rafflesiana and N. tentaculata popula-

tions exist, we did not have sufficiently accurate geographical coordinate data to include them

in the current study. Consequently, the estimated ranges of both these species are somewhat

conservative and exclude patches of currently suitable, occupied habitat elsewhere in Borneo.

This confers a high degree of conservatism upon the current and predicted distributions of

suitable habitat.

While the sampling points do appear clustered in some areas (Figs 1 and 2), spatial autocor-

relation was not deemed a significant concern in the current study. It has been argued that spa-

tial autocorrelation in species distribution models is a concern when, for example, ecological

or evolutionary processes prevent taxa from shifting their distributions [40]. For both N. raf-
flesiana and N. tentaculata, their relatively widespread observed occurrences suggest that such

processes have not exerted strong constraints on these species shifting their distributions over

time.
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Predicted habitat suitability and changes in area of climatically suitable

habitat

Graphical representations of modeled habitat suitability are presented in Figs 1 and 2 for N.

rafflesiana and N. tentaculata, respectively. Modeled habitat suitability is presented for the

periods 1960–1990 (current climate surfaces), 2011–2040, 2041–2070, and 2071–2100 (EDE-

Next projections). The model results have been overlaid onto an elevation layer from the

SRTM 90 m resolution Digital Elevation Database v. 4.1 [41]. The elevation layer was not used

as a predictor variable in the Maxent modelling, and has been included in the Figs solely to

illustrate the topographic characteristics of locations where each of the species currently occurs

or may occur in the future. Probability of habitat suitability, ranging from 0 to 1, is plotted on

a color scale, where orange represents values of 0.3–0.4 and dark blue represents values of 0.9–

1. Areas with< 30% probability of being suitable habitat are not illustrated. The inset boxes

show higher resolution maps for areas of high occurrence for each species. The estimated

Fig 1. Modeled habitat suitability on the island of Borneo for the lowland species Nepenthes rafflesiana, using Maxent (n = 139

localities). Habitat suitability is presented for the periods 1960–1990 (left panel), 2011–2040 (second panel), 2041–2070 (third panel), and 2071–

2100 (right panel). Model results are overlaid onto an elevation map for illustration purposes. Probability of habitat suitability, ranging from 0 to 1, is

plotted on a color scale, with orange representing values of 0.3–0.4, and dark blue representing values of 0.9–1. Areas with < 30% probability of

habitat suitability are not illustrated. Inset boxes show higher resolution maps for areas of high occurrence. Scale bar refers to center row of images.

https://doi.org/10.1371/journal.pone.0183132.g001
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effects of climate change on variables identified by Permutation Importance analysis as driving

the models are presented in Fig 3.

Projected changes in area of climatically-suitable habitat (defined here as area denoting

habitat suitability of�60%) are presented in Table 2. The 60% value represents a conservative

approach [42]. N. rafflesiana is predicted to experience a small decrease in climatically-suitable

area to 2040 and 2070 (-8 and -11%, respectively), then an increase of 111% by 2100. Climati-

cally-suitable habitat for N. rafflesiana is constrained primarily by precipitation of the wettest

quarter and mean temperature of the warmest quarter (Table 1). Comparisons of shifts in

these two bioclimatic variables over our projection periods show that habitat losses along the

northwestern coast are likely associated with an increase in mean temperature of warmest

quarter of approximately 2˚C in that region (Fig 3). Conversely, the projected increase in pre-

cipitation of the wettest quarter by 2100 in the southeastern corner of Borneo corresponds to

where the expansion of climatically-suitable habitat for N. rafflesiana is the greatest (Fig 3). In

Fig 2. Modeled habitat suitability on the island of Borneo for the montane species Nepenthes tentaculata, using Maxent (n = 52

localities). Habitat suitability is presented for the periods 1960–1990 (left panel), 2011–2040 (second panel), 2041–2070 (third panel), and 2071–

2100 (right panel). Model results are overlaid onto an elevation map for illustration purposes. Probability of habitat suitability, ranging from 0 to 1, is

plotted on a color scale, with orange representing values of 0.3–0.4, and dark blue representing values of 0.9–1. Areas with < 30% probability of

habitat suitability are not illustrated. Inset boxes show higher resolution maps for areas of high occurrence. Scale bar refers to center row of images.

https://doi.org/10.1371/journal.pone.0183132.g002
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Fig 3. Projected changes in important Bioclim variables on the island of Borneo identified in Table 1. Images

represent changes in Bioclim variables relative to the 1961–1990 climate surfaces, projected to 2040, 2070, and 2100.

Changes in temperature variables (Bio6, Bio10, and Bio11) are presented as ˚C; changes for precipitation variables

(Bio12, Bio16) are presented as percentages.

https://doi.org/10.1371/journal.pone.0183132.g003
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contrast to N. rafflesiana, climatically-suitable habitat for N. tentaculata is predicted to

undergo a 50% reduction by 2040, and an 89% reduction by 2100 (Table 2).

Discussion

Comparison of predicted effects on lowland and highland Nepenthes

species

A recent review of the threats to carnivorous plants worldwide cited habitat loss to agriculture

as the dominant anthropogenic pressure; other threats included over-collection of specimens,

and pollution [43]. Neither species in the current study are significantly threatened by over-

collection, land clearing or logging: the soils that support N. rafflesiana are too nutrient-poor

to support agriculture, and much of the range occupied by N. tentaculata is in topography that

precludes extensive logging, or in forest formations that are not desirable for harvest (CC,

pers. obs.). However, our results suggest that climate change should be added to the list of

threats to montane Nepenthes species. The degree of risk posed by climate change will be

dependent to a large degree upon the elevational distributions of individual species and the

characteristics of the niches they occupy on high mountain summits and ridges.

In the case of the lowland N. rafflesiana, the predicted increase in climatically-suitable habi-

tat by 2100 based on climate projections needs to be viewed with a degree of caution. This spe-

cies is not encountered in the lowland dipterocarp forests that typify the original natural cover

of much of Southeast Asia; the requirements for botanical carnivory (low soil nutrient avail-

ability, high water availability and high incident radiation [44]) are seldom met in these forests

[3]. Thus, much of the climatically-suitable habitat predicted by the model will be unavailable

for colonization, due to edaphic and other constraints (however, see below for an exception to

this general rule). N. rafflesiana is restricted largely to heath forest formations that have devel-

oped on acidic, nitrogen-poor sandy soils [2,45], and many—though by no means all—of these

formations occur in low-lying, coastal areas. Projected increases in sea level as a result of cli-

mate change are predicted to have significant negative effects on the extent of coastal land in

Borneo and other parts of Southeast Asia [46–47]. In a recent study, it was estimated that

coastal land losses of 1% and 15% might be expected for Borneo and the Philippines, respec-

tively, in the event of a 1m rise in sea level [48]. Indeed, islands are at particularly high risk of

inundation: a recent analysis of the exposure of island biodiversity hotspots to this particular

risk, identified the islands of Sundaland (Borneo, Sumatra, and Java) and the Philippines as

particularly vulnerable in this respect [49]. This region circumscribes the centre of diversity

for Nepenthes. Thus, species that are restricted to the coastal lowlands of this area may be at

risk of habitat loss, despite favorable future trends in suitable climate. That said, N. rafflesiana
occurs up to ca. 1100 m asl, as do the majority of the lowland Bornean Nepenthes [3], and so is

unlikely to face extinction as a direct result of sea level rise. Furthermore, the creation of new

nutrient-deficient substrates, due to the removal of nutrient-rich top soil when lowland forest

Table 2. Predicted net % change in area of climatically-suitable habitat relative to the 1961–1990 cli-

mate surfaces, for the periods 2011–2040, 2041–2070, and 2071–2100 for N. rafflesiana and N.

tentaculata.

Species Net change in area of climatically-suitable habitat (%) a

to 2040 to 2070 to 2100

N. rafflesiana -8 -11 +111

N. tentaculata -50 -82 -89

a Climatically-suitable habitat is defined as area denoting habitat suitability of�60%.

https://doi.org/10.1371/journal.pone.0183132.t002
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formations are cleared for development, can give rise to a vegetation type known as "Adinan-

dra belukar", which resembles heath forest in many respects and supports many species that

naturally occur in that forest type [50]. In many parts of Malaysia, Adinandra belukar is

aggressively colonized by N. rafflesiana, as well as by Nepenthes gracilis Korth. Recent field

observations conducted by CC demonstrate that N. rafflesiana is now conspicuous at a number

of locations where it was rare or absent in the 1980s.

With regards to the montane N. tentaculata, the predictive models generated in the current

study should come as little surprise, as similar reductions in suitable habitat for montane spe-

cies have been predicted across multiple taxa and geographic regions [51–54], and several

studies have demonstrated changes in altitudinal distributions of plant and animal species at

multi-decadal or even decadal scales [8,12,55–56].

The effects of elevational range

Elevational range (ER) is the breadth of altitude encompassing the distribution of a species

(i.e., the range between the lowest and highest elevations at which the species occurs), and has

an effect on the vulnerability of montane taxa to climate change. For example, one recent

study identified a strong negative relationship between ER and extinction risk in birds [57].

Elevational range can be thought of as providing an inverse measure of thermal specialization,

and likely reflects the degree of inherent plasticity of a species (physiological and/or behav-

ioral) in response to fluctuations in ambient conditions [58]. An exception to this may be spe-

cies that are restricted to the summit of one mountain, as it is not possible to test whether or

not the low ER for such species is due to lack of plasticity with regards to climatic conditions,

or lack of upslope habitat. A frequency histogram of ERs of Nepenthes species is presented in

Fig 4. It can be seen that the distribution is skewed heavily towards narrow ranges: out of 134

species, 28 (21% of the total) are confined to ranges� 100 m, and 70 species (52%) have ranges

of� 500 m. It must be stressed that not all of the Nepenthes species with narrow ERs are mon-

tane; however, those that are, are likely to be subject to greater risk of extinction due to climate

change. In this respect, several montane species appear to be at particularly high risk, including

Nepenthes macrophylla (Marabini) Jebb & Cheek, which occurs only around the summit of

Mount Trusmadi (ER ca. 450 m; JM pers. obs.), Nepenthes deaniana Macfarl, a species that is

endemic to Thumb Peak (ER 110 m; CC pers. obs.), and Nepenthes murudensis Culham ex

Jebb & Cheek, which is endemic to Mount Murud (ER 300 m [2]). Although high mountains

such as Mount Kinabalu (Borneo, 4095 m asl) and Mount Doorman (New Guinea, 3557 m

asl), may serve as refugia for montane endemic Nepenthes species during periods of elevated

global temperatures, lower mountains are liable to act as "summit traps", which prevent suffi-

cient uphill migration towards climatically-suitable zones to allow populations to persist [59].

Nepenthes species that are endemic to low mountains are thus at particular risk in a warming

climate. The most prominent examples of this are in the mountains of Palawan (e.g., Mt. Vic-

toria (Nepenthes attenboroughii A.S. Rob., S. McPherson & V.B. Heinrich), Thumb Peak (N.

deaniana) and Sultan Peak (Nepenthes palawanensis S. McPherson, Cervancia, Chi. C. Lee,

Jaunzems, Mey & A.S. Rob.)), the majority of which are < 1500 m in height.

Limitations of the models

It is important to acknowledge the potential limitations on model accuracy imposed by an

analysis carried out at 30 arc-second resolution in areas of high topographic variability. A 30

arc-second polygon (~ 1 km2) projected onto mountainous terrain, will almost certainly

encompass a heterogeneous mix of highly-localized microhabitats that have been shaped by

unique combinations of aspect, slope, prevailing winds, etc. Not all of these microhabitats will
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necessarily be suitable for a given highland Nepenthes species, many of which are almost exclu-

sively confined to stunted vegetation on mountain summits and ridge tops (CC, pers. obs.).

Thus, it is feasible that the area of habitat occupancy of a montane narrow endemic Nepenthes
may be constrained not only by climatic conditions, but by highly localized environmental fac-

tors and processes that operate at levels below the scale of a 30 arc-second polygon. This has

two broad implications: first, suitable niche habitats that are extremely restricted in area may

not be detected and/or could persist (or arise) at spatial scales that are too fine to be captured

by the model; and second, other environmental factors and processes may operate at very fine

spatial scales and may have more or less influence over the distribution of a species than the

temperature and rainfall patterns that can be detected at 30 arc-second resolution. Despite

these potential sources of error, we believe that the models nonetheless provide valid predic-

tions of the overall patterns regarding changes in the extent of climatically-suitable habitat.

Conclusions

The results of the current study suggest a rather bleak outlook for N. tentaculata, and a similar

future could await several other montane Nepenthes species from the higher mountains of Bor-

neo, such as Nepenthes lowii Hook.f., Nepenthes rajah Hook.f., Nepenthes villosa Hook. f. and

N. macrophylla. Although the current study uses Bornean examples, it is important to note

that the findings are applicable to Nepenthes species endemic to mountainous areas through-

out the extensive geographical area occupied by the Nepenthaceae. It is worth reiterating the

fact that the Nepenthaceae is largely a montane family, and particularly rich in cloud forest

Fig 4. Frequency histogram of elevational range (ER) for 134 Nepenthes species. Data from Clarke and Moran

(2015) [3].

https://doi.org/10.1371/journal.pone.0183132.g004
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endemic species; in fact, only about one-third of Nepenthes species are restricted to lowland

habitats [3]. Therefore, many montane endemic Nepenthes species outside of Borneo are

potentially at risk from anthropogenic climate change. For instance, a number of species from

Palawan are confined to the uppermost parts of the island’s highest mountains. An example is

N. attenboroughii, which is confined to the uppermost 100 m around the summit of a single

mountain. Even a slight change to local temperature and rainfall patterns could be sufficient to

threaten this species with extinction. By contrast, we believe that the genus as a whole is

unlikely to succumb completely to the predicted effects of anthropogenically-driven climate

change. Nepenthes are thought to have been in existence for tens of millions of years [2,60]. If

this timescale is correct, the genus has likely endured equivalent or perhaps even greater cli-

matic upheavals than those currently predicted.

In the long term, uphill forcing of montane species due to climate change will help to drive

allopatric speciation. It can be expected that widely-dispersed populations on tropical moun-

tain ranges will be forced upslope, causing them to split into discrete, thermally-isolated sub-

populations [53]. This may be followed by genetic drift if the isolated populations persist for a

sufficient number of generations, leading in some instances to reproductive barriers and con-

sequent speciation [61–62]. That the same process has occurred in Nepenthes in the past, is

suggested by the current distribution of closely-related Bornean montane species such as N.

villosa and N. macrophylla. The former occurs on Mount Kinabalu and Mount Tambuyukon,

while the latter is restricted to Mount Trusmadi, 55 km to the south. A similar example is pro-

vided by the closely-related Bornean species N. lowii and Nepenthes ephippiata Danser [3].

Such separation into small subpopulations via uphill migration during past periods of elevated

global temperatures, is probably responsible for the high degree of montane endemism cur-

rently observed in Nepenthes. However, this long-term prospect will be scant consolation for

observers in the coming century, as several montane Nepenthes species with restricted ERs face

increased risk of extinction, unless measures are taken to address the problem.

Possible future actions

We believe that there are a number of possible courses of action with regards to highland

Nepenthes species with narrow ERs. These are not mutually exclusive, and a combination of in
situ and ex situ approaches might be required to maintain sufficient genetic variability to allow

persistence of a given species [63]. The possible options include:

1. Collection of seeds of vulnerable species for long term storage in germplasm banks, planned

so as to collect representative genetic variation of endangered populations. This ex situ
approach has been suggested for vulnerable Mexican Quercus spp. and Pinus spp., as well as

South American montane endemic plant species [51,63]. There are a number of large-scale

seed banks in operation, such as the Millennium Seedbank [64]. However, the systematic

collection, preparation (e.g. in situ drying) and long-term storage of seeds, would require

considerable logistical resources; further, the administrative and legal hurdles associated

with the collection of seeds from multiple regional and state jurisdictions, would be consid-

erable. In the absence of suitable habitat for reintroduction, this strategy alone will be less

than optimal. We emphatically do not recommend that private/individual initiatives be
undertaken;

2. Assisted upslope migration of seeds or seedlings of vulnerable highland species. Assisted

migration has a highly controversial history [65–71]. Although policy with regard to assis-

ted migration is beyond the scope of this article, a number of papers provide frameworks

that may be adaptable to Nepenthes conservation [72–74]. Given the possibility of
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unintended ecological consequences from assisted migration, then if this strategy is to be

considered at all, we recommend that small-scale trials be carried out, as has been done for

North American forest tree species [75–76]. In the case of montane Nepenthes species that

have mutualistic associations with terrestrial mammals (N. lowii, N. macrophylla, and N.

rajah [77–79]), decisions regarding assisted migration will need to take into account the

presence/absence of the mammalian partner(s) at sites selected for seed or seedling translo-

cation. There is also the possibility that translocated Nepenthes populations may not

encounter the spectrum of potential prey taxa that they have evolved to attract and capture;

3. Establishment of metapopulations that include patches of suitable habitat not currently

inhabited by the target species [80]. Species that are currently restricted to the summit areas

of lower mountains (and thus, potentially headed for "summit traps" [59]) would be poten-

tial candidates for this strategy. This third option would entail the establishment of new

populations, for instance on mountains that do not currently support the target species.

New populations established in climatically-suitable habitat would need to be close enough

to other populations (existing or newly-established) to allow free gene flow, and research

would need to be undertaken into seed dispersal ranges for the target species to ensure this.

However, a significant danger of this approach is the very real possibility of hybridization

with congeners already present at the new sites [81]. Given the facility with which Nepenthes
species hybridize under natural conditions [2,82], the potential for introgression exists, espe-

cially if both species flower at the same time of year. Should hybrid progeny be allowed to per-

sist at the new site, the potential exists for the generation of a reproductively-independent

hybrid swarm. Intervention to remove unwanted hybrid progeny would be time-consuming,

logistically difficult, and expensive. In the case of highland Nepenthes that have resource-

exchange mutualistic associations with small terrestrial mammals (N. lowii, N. rajah, and N.

macrophylla), pitcher shape, proportions, scent and color are finely tuned to the geometry and

sensory modalities of their mammalian partners [77–79,83]. It is unlikely that hybrids between

these and more "typical" species would produce pitchers of the required geometry to maintain

this association. Thus, introgression would result in the reduction in number of these specialist

pitchers, potentially causing local collapse of the mutualistic association.

Consequently, investigations into the feasibility of this third option should focus on identi-

fication of suitable patches of future habitat within protected areas, as well as constraints on

seed dispersal by target species, and possible negative consequences to the receiving ecosystem

(especially the potential for hybridization). Option 3 would be the riskiest of the potential

actions outlined here, and investigation into its feasibility would need to be undertaken with a

commensurately high degree of caution. We include this option in order to stimulate discus-

sion, not as an endorsement.
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