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Abstract

Background: In recent years, high-throughput microscopy has emerged as a powerful tool to analyze cellular
dynamics in an unprecedentedly high resolved manner. The amount of data that is generated, for example in long-
term time-lapse microscopy experiments, requires automated methods for processing and analysis. Available software
frameworks are well suited for high-throughput processing of fluorescence images, but they often do not perform
well on bright field image data that varies considerably between laboratories, setups, and even single experiments.

Results: In this contribution, we present a fully automated image processing pipeline that is able to robustly
segment and analyze cells with ellipsoid morphology from bright field microscopy in a high-throughput, yet time
efficient manner. The pipeline comprises two steps: (i) Image acquisition is adjusted to obtain optimal bright field
image quality for automatic processing. (ii) A concatenation of fast performing image processing algorithms robustly
identifies single cells in each image. We applied the method to a time-lapse movie consisting of ∼315,000 images of
differentiating hematopoietic stem cells over 6 days. We evaluated the accuracy of our method by comparing the
number of identified cells with manual counts. Our method is able to segment images with varying cell density and
different cell types without parameter adjustment and clearly outperforms a standard approach. By computing
population doubling times, we were able to identify three growth phases in the stem cell population throughout the
whole movie, and validated our result with cell cycle times from single cell tracking.

Conclusions: Our method allows fully automated processing and analysis of high-throughput bright field
microscopy data. The robustness of cell detection and fast computation time will support the analysis of high-content
screening experiments, on-line analysis of time-lapse experiments as well as development of methods to
automatically track single-cell genealogies.

Background
Advances in high-throughput microscopy
In the last decade, improvements in automated micro-
scopy have enabled researchers to conduct two new types
of experiments. On the one hand, high-content screening
approaches allow to automatically quantify phenotypic
changes of cells under a large range of different envi-
ronmental conditions [1]. This technique is extensively
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used in pharmaceutics, for example in drug development
and evaluation [2]. On the other hand, high-throughput
time-lapse microscopy is a powerful tool to follow hun-
dreds of single cells over many days and has been suc-
cessfully applied in the field of hematopoietic research
[3-5]. Equipped with appropriate cell tracking and image
processing capabilities, this approach allows to analyze
single cell dynamics in a quantitative and time-resolved
manner [6,7].

A bottleneck in the analysis of high-throughput micro-
scopy is the availability of suitable automatic process-
ing tools that make the huge amount of information that
is hidden in the data accessible [8]. Most experimental
setups are highly specialized for the study of a single
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process of interest. Thus, different combinations of objec-
tives, cameras or cell culture plates are used for different
experiments, leading to great variability of images even for
similar experimental setups. In addition, the large amount
of images that is taken in high-throughput microscopy,
either of many different cell culture plates or over a long
time range adds to this variability. Since no standard-
ized methods for the acquisition of long-term single cell
microscopy exist, bioimage informatics methods have to
be adapted for each setup. However, even in a single
long-term experiment, images can vary to a degree that
makes a unique parameterization for the whole movie
challenging. In order to receive robust results from auto-
mated image processing it is advantageous to develop the
methodology in close collaboration with experimentalists,
resulting in an approach that performs best on the given
data set.

Fluorescence-based high-throughput image processing
Several computational methods for automatic processing
of high-throughput microscopy experiments have been
proposed. For example, Fenistein and colleagues [9] devel-
oped an automatic method for the segmentation of cell
nuclei in fluorescence images for different cell lines in
dilution experiments and report an average cell recogni-
tion rate of 95%. Knapp et al. [10] employed a method to
identify single cells in two-channel RNAi screens and used
this information to improve the statistical power of the
analysis. Both applications demonstrated the feasibility of
automatic high-throughput image processing methods on
large amounts of fluorescent images.

The framework CellProfiler [11] is a great example of
how automated image analysis can be made accessible
for a broad range of users, not only specialists. The intu-
itive GUI and wealth of different implemented methods
has led to frequent usage (601 citations, as of January
2013), where most applications relate to the analysis of
fluorescence images.

Analysis of bright field images in the context of
high-throughput experiments
In general, analyzing cells in the bright field channel holds
several benefits: (i) Since acquisition of fluorescent images
over longer time spans (days) and with short intervals
(minutes) is difficult due to photo toxicity, in long-term
time-lapse experiments it is useful to employ bright field
images to track cell genealogies [5]. (ii) Quantifying cell
morphology in bright field images yields the possibil-
ity to measure more descriptive features such as texture
and shape simultaneously. In addition, the fluorescence
staining of e.g. the cytoplasm could be incomplete or
less reliable on a special cell type, which would intro-
duce bias in the later analysis. (iii) Due to the limited
number of different fluorescent dyes that can be detected

simultaneously, it is desirable to use as many channels
as possible for fluorescence detection. Instead of losing a
channel for nuclear staining to identify cells, one could
observe expression of several fluorescent proteins or lin-
eage markers and detect cell outlines in the bright field
channel [3].

A few publications have already shown that incorporat-
ing data from bright field microscopy can yield interest-
ing results. By quantifying the morphological behavior of
tracked neural progenitors over time, Cohen et al. [12]
could predict the most likely lineage decision of those
cells. Scherf et al. [13] recently published a method to
quantify changes in morphology of colonies of embry-
onic stem cells under different environmental conditions.
In the field of high-content screening, Waehlby et al. [14]
developed a toolbox based on CellProfiler to automati-
cally quantify effects of different treatments to C. elegans
populations. Adiga and colleagues [15] classified the infec-
tion state of macrophages by segmentation and morpho-
logical quantification in amplitude contrast bright field
images.

Challenges in high-throughput processing of bright field
images
However, the development of an automated process-
ing method for high-throughput bright field experiments
is more demanding than in the fluorescence case and
holds several challenges. Cells imaged by bright field
microscopy exhibit heterogeneous intensity levels and are
often badly contrasted. In addition, differences in illumi-
nation over time and across the cell culture plate hamper
the ability to specify a global set of parameters for cell
detection algorithms over the whole experiment. This
prevents the application of available automatic image pro-
cessing frameworks, which are mostly developed to per-
form well on fluorescent images. Despite the large amount
of methods that are implemented in frameworks like
CellProfiler, the available algorithms for illumination cor-
rection and segmentation do not perform well enough to
achieve satisfying results on many high-throughput bright
field microscopy experiments.

By employing active contour and level set methods,
many issues of cell segmentation in bright field or phase
contrast images have already been solved [16,17]. For
example, Ambuehl et al. [18] demonstrated the very accu-
rate tracking of a single cell in phase-contrast microscopy
images. Ali et al. [19] developed a method that com-
bined out of focus image acquisition and segmentation by
level sets to identify outlines of adherent cells. However,
these approaches are computationally expensive and often
highly parameter-depended, which prevents the applica-
tion in high-throughput image processing, where millions
of objects have to be processed in reasonable time and
without user interaction.
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Our contribution
In this contribution, we describe the development and
application of a fully automatic image acquisition and pro-
cessing pipeline. Initialized with a set of 10 intuitively
interpretable parameters, the method performs robustly
on long-term high-throughput experiments which exhibit
a variety of cell shapes (e.g. due to differentiation), numer-
ous cell densities (e.g. due to cell proliferation), and
changing image qualities (due to different fields of view
and technical alterations during long-term imaging). The
strength of this protocol is the combination of changes in
image acquisition that are optimal for automatic compu-
tation and a set of robust yet fast methods, which allow the
processing of hundreds of thousands of images with high
accuracy without changing the parameter settings. The
protocol has been optimized for parallelized computing
of single images. We demonstrate the robustness in cell
detection and computational efficiency of our method by
processing and analyzing a 6 day high-throughput time-
lapse experiment of differentiating hematopoietic stem
cells. Using 150 nodes of a computation cluster, we were
able to process ∼315,000 images in ∼72 hours, result-
ing in identification of ∼270,000,000 cells. We evaluate
the method on a manually inspected test set of bright
field images as well as statistically on the full time lapse
experiment. Compared to a pipeline of algorithms avail-
able in CellProfiler, our method outperforms the standard
approach with an overall cell detection accuracy of at
least 82%. To demonstrate the predictive power of our
approach, we derive population doubling times directly
from the computed cell numbers over the whole exper-
iment, which are in accordance to previously reported
cycle times for these cell types [20]. In addition, we show
that the computed doubling times match up with cell cycle
times of 1600 manually tracked cells.

Results and discussion
Image acquisition and processing steps
For the development of a method to analyze high-
throughput microscopy data, it is especially important to
incorporate algorithms that are (i) robust against hetero-
geneities between images that are processed and (ii) able
to process single images in the range of seconds up to a few
minutes at maximum in order to finish a full experiment
in reasonable time. In this work, we chose the algorithms
used in every step according to these requirements. The
complete pipeline is visualized in Figure 1.

The first step in our method concerns image acquisi-
tion. Adapted from Selinummi et al. [21], we recorded
every image with the microscope’s auto focus set 18μm
below the optimal focal plane. In the case of bright
field image acquisition with a 10x fluar objective (Zeiss),
the change of the focal plane resulted in enhanced con-
trast of single cells, yet with a loss of textural complexity

(see Figure 1A). The cell body was evenly illuminated and
much darker than the background. In addition, every cell
exhibited a bright halo that is supporting the identification
of touching cells.

After all images were acquired in the proposed manner,
differences in illumination across the images had to be
resolved. We used an adapted version of the method pro-
posed by Schwarzfischer et al. [22]. This machine learn-
ing based algorithm estimates the background for every
image, using a grid of image patches that are classified
as showing only background or a mixture of background
and foreground pixels. In comparison to standard correc-
tion methods like Gaussian filtering that is parametrized
on the average foreground object size, the machine learn-
ing based method is able to estimate the background
more robustly. As shown in Figure 1B, every cell body
was clearly separated from the background. The halo sur-
rounding each cell was corrected, yet clumped cells still
exhibited a change in illumination at their touching edges.
Due to the time-consuming feature calculation during
machine learning, this algorithm was occupying nearly
50% of total computing time for a single image, which was
in our case 30 to 50 seconds on a standard laptop (Intel
Core i7 dual-core, 2.8GHz, 8GB RAM, Windows 7 64bit).

In the next step, all foreground objects had to be sepa-
rated from the background. In our method, we used the
maximally stable extremal regions (MSER) algorithm [23].
An advantage compared to thresholding methods such
as Otsu’s method is its robustness in segmentation when
there are inhomogeneities in object illumination or huge
differences of cell densities between different images. As
shown in Figure 1C, MSER correctly identifies nearly all
cell bodies. The used implementation of MSER has linear
time complexity, thus it is able to process a single image
(i.e. 1000x1000 pixels) in milliseconds [24].

Eventually it was necessary to split clusters of multiple
cells that were segmented as a single foreground object
(i.e. under-segmentation). We used a two-step approach
consisting of an initial marker-based watershedding, fol-
lowed by merging of cells that were erroneously split
into fragments (i.e. over-segmentation). In this step (see
Figure 1D), the earlier conducted out of focus acquisition
was very advantageous: the homogeneous illumination of
cell bodies and the slightly brighter interfaces of touching
cells simplified the task to find cell centers by ultimate ero-
sion, which then served as seed points for the watershed
algorithm. Depending on the number of cells in an image
this step occupies 10 to 50 seconds of processing time.

Application
We applied our method on a time-lapse experiment
of hematopoietic stem cells (HSCs) under conditions
that promote differentiation towards myeloid cells. For a
review of blood cell differentiation see for example Orkin
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Figure 1 Flow chart of the proposed method. Detailed description of our proposed method. The results of each step are exemplified on a bright
field image of hematopoietic progenitor cells. (A) The image is acquired with the focus set 18μm below the optimal focal plane to enhance
contrast of cells. (B) The inhomogeneously illuminated background is corrected by a machine learning based approach to resolve differences in
illumination across different locations on the cell culture plate and over time. (C) Foreground objects are identified by maximally stable extremal
region (MSER) detection. (D) Splitting of clumped cells. Maxima of cells are identified by ultimate erosion and split by watershedding.
Over-segmented cell bodies are reconstructed by merging of too small neighboring regions.
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et al. [25]. Two wells of a plastic slide were imaged in
intervals of ∼2.3 minutes for 6 days. The wells were
sparsely covered with cells at the beginning, yet at the
end of the experiment all wells were densely populated
by hematopoietic progenitors and differentiated cells (see
Figure 2C). To cover the full area of interest in high reso-
lution, each well was divided into a grid of 33 overlapping
fields of view (i.e. images covering different areas of a
well). Each field of view was recorded once in a time inter-
val. Details regarding experimental conditions and the
parametrization of our method to process this experiment
are described in the methods section.

Complete processing of the full data set occupied 72
hours, using 150 cores of a computer cluster. The average
node architecture was equal to an Intel Xeon 2GHz, 4GB
RAM running a 64bit linux-based operating system. Com-
plete processing of a single image with average cell density
(see Figure 2) lasted 100 seconds. To account for small
debris or fragments of dead cells that were erroneously
segmented by our method, we discarded all foreground
objects with a size < 50 pixels and an eccentricity > 0.99.

The final test set comprised ∼315,000 raw images with
the according object masks and computed background
corrections, covering ∼270,000,000 identified objects.

Evaluation
The performance of a segmentation approach can be mea-
sured in different ways depending on the analyses that
are intended after processing. For the development of
automatic tracking approaches it is necessary to iden-
tify single cells with high accuracy. Especially cells that
stick together shortly after division or clusters of multi-
ple cells need to be split correctly. For population analysis
or simple cell counting it suffices to detect the number of
cells in each image with high accuracy. Here, we manu-
ally determined the total number of cells after 12 hours,
2 days, 4.5 days and 5.5 days at two randomly chosen
fields of view per well. We evaluated if a cell was (i) cor-
rectly segmented, (ii) missed, (iii) over-segmented or (iv)
under-segmented. Next, we computed the average accu-
racy, specificity and sensitivity of cell detection based
on the number of true positives (complete cell bodies,

CA B D12 hours 2 days 4.5 days 5.5 days

25µm 25µm 25µm 25µm

50µm 50µm 50µm 50µm

Figure 2 Manual examination of segmentation results. Manual examination of segmentation results, shown at exemplary image patches over
the whole time span of a 6 day time-lapse experiment of differentiating hematopoietic stem cells. Blue outlines: Segmented objects regarded as
cells. Red outlines: Objects unlikely to represent cells (size <50 px and eccentricity >0.99). First row: 500x500px image patch, second row:
150x150px image patch. (A) 12 hours after experiment start. Very few cells are populating the field of view. Cell outlines are correctly segmented.
Erroneous measurements originate in debris in the image. (B) 2 days after experiment start. The number of cells is slightly increased, still the object
density is very sparse. Pairs of clumped cells can be identified, which are correctly split by the method. (C) 4.5 days after experiment start. More
complex cell morphologies arise that lead to errors in segmentation. The field of view becomes more and more crowded, complicating the
identification of single cells. Small artifacts that are a result of over-segmented cells or fragments of dead cells are filtered by size. (D) 5.5 days after
experiment start. Most cells are differentiated and different morphologies can be found. Segmentation errors are observed more frequently,
especially for adherent cells with elongated shape.
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the largest fragment of over-segmented cells and one cell
per under-segmented object), false positives (dirt and cell
fragments) and false negatives (missed cells, remaining
cells in under-segmented objects). In addition, we calcu-
lated the mean and the according standard deviation of
cell densities (cells per mm2) over all fields of view at the
given time point.

After 12 hours (Figure 2A), all fields of view were
sparsely covered with cells (cell density 5.6 ± 2.4 1/mm2).
Despite the high fraction of correctly segmented cells
(92%), debris in the examined fields of view that was falsely
identified as a cell by our method lead to a decrease in
accuracy (83 ± 11%). The low number of cells at this early
time point resulted in a high variability (11%) between the
fields of view.

At day 2 (Figure 2B), the number of cells increased
to a density of 16.2 ± 7.1 1/mm2. Pairs of clumped cells
appeared. 82% of all cells were correctly segmented, only
very few cells were missed or over-segmented (11%) and
under-segmentation was not detected. The cell detection
accuracy was 82 ± 3%.

At day 4.5 (Figure 2C), the number of cells across the
examined fields of view was significantly larger (741.6 ±
250.6 1/mm2). We observed cells that were clumped
together in large clusters and first differentiated cells with
more complex morphology were found. Cells with round
shapes were correctly identified in most cases (92%), espe-
cially round clusters of cells were under-segmented (1%)
and cells with elongated shape were over-segmented (4%).
Most over-segmented cells were still only counted once
since smaller fragments were discarded by the filtering
step (see methods). 1% of the cells were missed, mostly
because of bad contrast or direct contact to the image bor-
der. Due to the large increase in cell number, debris did
not significantly contribute to a drop in cell recognition
accuracy anymore. The accuracy at this time point was
95 ± 1%.

At day 5.5 (Figure 2D), fields of view of both wells were
very densely populated by cells (1.2∗103±0.22∗103 1/mm2)
that were exhibiting a variety of shapes. With 1.2%, the
fraction of missed cells was even reduced compared to the
time point examined before. Over- and under-segmented
cells were observed more frequently (6% and 1%, respec-
tively), yet most cells were correctly segmented (90%). The
amount of debris was increased, mostly due to clumps of
fragments of dead cells. Yet, the cell detection accuracy
was very high (92 ± 3%).

Sample images showing the cell densities at different
time points for our method are given in Figure 2. The
object quantification is summed up in Table 1.

To demonstrate the superior robustness of our method,
we conducted the same manual evaluation with the results
from a pipeline of methods available in CellProfiler. For
details of the pipeline and the parameter settings, see the

Methods section. We applied the CellProfiler pipeline on
the identical set of out-of-focus images and optimized the
parameters of each module based on a single image of day
4.5. For a graphical comparison of the cell detection accu-
racy of our method against the CellProfiler pipeline, see
Figure 3.

At 12 hours, the CellProfiler pipeline produced highly
heterogeneous results. The used thresholding algorithm
performed well on images of 2 fields of view but produced
completely mis-segmented images on the others, leading
to a low cell detection accuracy (24 ± 31%). This was most
likely due to errors in the clumped cell splitting step.

For images taken at day 2, the CellProfiler pipeline per-
formance increased (45 ± 25%). Yet the accuracy was
rather low and less robust across different fields of view
(25%).

At 4.5 days, the increased cell density lead to an
improvement in the cell detection accuracy (84±2%), with
a huge decrease of standard deviation. Still, 3% of the cells
were missed completely and 9% were under-segmented.

At the last manually evaluated time point of 5.5 days, cell
detection accuracy of the CellProfiler pipeline decreased
to 71 ± 9%. This was mainly because of the high fraction
of missed (20%) and under-segmented (6%) cells.

Taken together, our method showed high robustness in
cell detection and low over- and under-segmentation over
the full experiment range. Even at very late time points
where the wells were very densely covered, the cell detec-
tion accuracy was satisfying (∼92%). The out-of-focus
acquisition improves the overall segmentation accuracy
of our pipeline: Applied to a comparable in-focus movie,
the segmentation accuracy dropped to 70% due to over-
segmentation of badly contrasted cells and complex cell
texture.

As shown in Figure 3, our method clearly outperformed
the standard CellProfiler pipeline. Note that the low cell
detection accuracy in the early time points does not nec-
essarily mean that CellProfiler in general is not able to
segment this type of images (i.e. very few cells). Still, the
combination of algorithms performed less robustly on
images with different cell densities, given the parameter
set that we optimized for images with medium cell density
(i.e. day 4.5).

Finally, we would like to note that our pipeline achieved
similar robust results (segmentation accuracy ∼85%) in a
second long-term high-throughput experiment.

Population doubling time derived from cell counts
A possible use-case in the analysis of high-throughput
time-lapse experiments is the control of cell proliferation.
Due to photo toxicity or different medium conditions,
cells could die early or exhibit deviating proliferation rates
[5], which would introduce errors in later analyses that are
conducted on the data set.
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Table 1 Manual evaluation of segmentation results

Experiment time 12 h 2 d 4.5 d 5.5 d

Number of manually counted cells 37 90 5837 7414

Correct 34(91.9%) 74(82.2%) 5356(91.8%) 6638(89.5%)

Missed 1(2.7%) 4(4.4%) 78(1.3%) 86(1.2%)

Over-segmented 2(5.4%) 10(11.1%) 230(3.9%) 411(5.5%)

Under-segmented 0(0.0%) 0(0.0%) 46(0.8%) 87(1.2%)

Debris 6 7 1 32

True positives 36 84 5632 7136

False positives 6 13 96 329

False negatives 1 6 205 278

Accuracy 0.83 ± 0.11 0.82 ± 0.03 0.95 ± 0.02 0.92 ± 0.03

Specificity 0.86 ± 0.11 0.87 ± 0.06 0.98 ± 0.01 0.96 ± 0.03

Sensitivity 0.97 ± 0.06 0.94 ± 0.04 0.96 ± 0.02 0.96 ± 0.01

Two randomly chosen fields of view per well were quantified for 12 hours, 2 days, 4.5 days and 5.5 days, respectively. In each field of view, the number of true cells was
counted. All segmented objects were classified as correct, over-, under-segmented, or debris. Accuracy, Sensitivity and Specificity of cell detection were calculated
based on true positives (complete cell bodies, the largest fragment of over-segmented cells and one cell per under-segmented object), false positives (dirt and cell
fragments) as well as false negatives (missed cells, cells in under-segmented objects). Note that we deliberately keep differences in the total number of counted cells
at different experiment times, since these impact on the standard deviation of accuracy, specificity and sensitivity.

Here, we first analyzed the mean cell density over 66
fields of view over the full experiment time span (blue
line in Figure 4A). We found that the number of cells
increased monotonously until a plateau roughly at day
5. We compared the results with the manually quanti-
fied numbers of cells as shown in Table 1 and found
them to reside within the standard deviation of the num-
ber of objects. From our accuracy estimation in Table 1,
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Figure 3 Comparison of manually evaluated cell detection
accuracy. Comparison of manually evaluated cell detection accuracy
as described in Table 1 between our method (green boxplots) and
the CellProfiler pipeline (gray boxplots). Especially at the two early
time points, CellProfiler performs not very robust on the different
fields of view. Note that the pipeline was parametrized to perform
best on images at day 4.5. Thus, the pipeline might be able to
perform well on images on the early time points, but is not robust
enough with the given parameter settings.

we conclude that the plateau is not due to a failure of
our method, but resulted from biological or experimen-
tal reasons. One explanation could be the differentiation
and thus post-mitotic state of the hematopoietic cells,
but also a depletion of the medium. In addition, the high
density of cells could lead to an arrest in population
growth.

Plotting the growth curves in log scale (see Figure 4B)
revealed three different phases of population dynamics.
At the beginning of the experiment, the number of cells
increased sub-exponentially. Between approximately 2
and 4.5 days a clearly exponential increase with an average
doubling time of 10-12 hours was observed. The popu-
lation stops to grow exponentially and reaches a plateau
after ∼4.5 days.

Based on the cell counts resulting from our image
processing method, we derived the population doubling
time. Due to the high temporal resolution of ∼2.3
minutes between measurements, the population dou-
bling time could be estimated by computing the differ-
ence of each time point and the time point where the
cell number had doubled, respectively (see blue line in
Figure 4C). The doubling time decreased from ∼40 hours
and stabilized after day 2 until day 4 at around 10 to
12 hours.

To validate the estimated doubling times, we tracked
1600 cells manually using our in-house developed soft-
ware TTT [7]. As shown in Figure 4C, the cell cycle
times of tracked cells that were born between 0 and
4.5 days (gray circles) show the same trend, decreas-
ing from ∼20 hours to 9-11 hours in the exponential
growth phase.
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Figure 4 Whole-movie analysis of population growth rates and
doubling times. Whole-movie analysis of population growth rates
and doubling times. (A) Mean cell densities over 66 fields of view
(blue line) and according standard deviation (light blue patch) per
mm2 covering the full experiment time range. Red circles indicate the
manually determined number of cells in 4 randomly chosen fields of
view at 12 hours, 2 days 4.5 days and 5.5 days as described in Table 1.
(B) Increase of cells plotted in log-scale. A non-exponential growth
phase could be identified until day 2. Between day 2 and day 5 the
number of cells increased exponentially. (C) Population doubling
times (blue line) per time point and cell cycle times of ∼1600
manually tracked cells with mean lifetimes from 0.5 to 5 days (gray
circles). The doubling time decreased until day 2, where it roughly
stabilized around 9 to 11 hours. The cell cycle times coincided with
the derived doubling times, indicating a correct automatic derivation.

Conclusions
In this contribution, we described a fully automated
method for processing of high-throughput bright field
microscopy experiments, that relies on the combination of
optimized image acquisition and a concatenation of image
processing algorithms that identify cells in in a robust
yet time efficient manner. Using the same parameter set
for all images, we applied the method on a 6 day time-
lapse movie of differentiating hematopoietic stem cells
and achieved a cell detection accuracy of at least 82%,
which outperformed a pipeline of algorithms available
in CellProfiler. We demonstrated the application of the
results generated by our method by computing population
doubling times based on the increasing number of cells
over the whole experiment in time and space. We com-
pared the results to the cell cycle times of 1600 manually
tracked cells and showed that the automatically derived
doubling times coincided with the manually tracked cell
cycle times.

The full data set of ∼315,000 images was processed
within ∼72 hours. Note that this value was achieved by
parallel computing on 150 cores of a computation grid.
However, the code used in this work was not optimized
for speed. Using implementations in C++ or Java that are
optimized for fast computation, the processing time could
be further improved. This would allow on-line process-
ing of a time-lapse or high-content experiment during
acquisition, which offers powerful options. For exam-
ple, a researcher could check population doubling times,
and thus cell health during a time-lapse experiment, or
acquisition could be stopped automatically when a certain
number of cells is reached in the experiment.

The robustness of our method relies on the out of
focus acquisition of bright field images, which results in
very well defined cell outlines but also in the loss of
textural complexity for single cells. However, by acquir-
ing an additional image with an optimally set focus
in every interval, the quantification of morphological
features such as shape and texture becomes feasible.
Together with the high accuracy in cell detection of
our method, this will support the development of auto-
matic tracking approaches in time-lapse microscopy. For
both time-lapse and high-content screening experiments,
morphological quantification of millions of cells in one
experiment allows the application of machine learn-
ing methods to classify, e.g., dying and surviving cells
after drug treatment or the fate of differentiating stem
cells.

Our pipeline will be improved and adapted in the future.
A promising avenue is the extension of the MSER seg-
mentation algorithm to include more cellular features, like
eccentricity or size.

Another possible improvement in our pipeline is the
splitting of clumped cells. Many methods have been



Buggenthin et al. BMC Bioinformatics 2013, 14:297 Page 9 of 12
http://www.biomedcentral.com/1471-2105/14/297

developed in the past, e.g. ellipse fitting that is well suited
to split nuclei or cells with round morphology [26]. Unfor-
tunately, the restrictive assumptions in this method do
not allow more complex cell shapes that may emerge
during a long-term movie of differentiating cells. We
showed that our method performs well at the segmen-
tation of hematopoietic stem and progenitor cells, which
show round morphology. Still, the marker based water-
shedding we used is flexible enough to also cover more
complex cell shapes that are appearing later in the differ-
entiation process. Li et al. proposed a method based on
gradient flow tracking and showed that it performs well
on fluorescent images with hundreds of stained nuclei
that are densely packed and are thus exhibiting differ-
ent morphologies [27]. Another approach could include
the development of a robust and fast performing level set
evolution method. This class of algorithms has already
been shown to perform very well on complex cell shapes
[17], however the computional complexity hinders an
application in a high-throughput context. An approach
that was already applied on high-throughput screens is
to iteratively learn the different cell shapes of a given
cell type or system in an experiment [28]. Due to the
modular structure of our method, the extension with
algorithms that are able to split cells with a more com-
plex morphology is easily possible. In the time-lapse
experiment that was used in this work, these improve-
ments could specifically enhance the cell detection accu-
racy for differentiated blood cells at the end of the
experiment.

In summary, we believe that the high overall robustness
in cell detection as well as the fast processing speed of our
method will be of great service for the analysis of high-
throughput microscopy experiments.

Methods
Experimental setup
Femurs, tibiae and ilia of a healthy mouse strain on
C57Bl/6 background with no discernible phenotype were
removed from 14 weeks old mice and bone marrow was
extracted. Cells were isolated by fluorescence activated
cell sorting. According to the original publications, the
fraction of true HSCs that are purified by this method is
between 40%-60% [29,30]. Directly after sorting, the cells
were plated out on a plastic slide (μ-slide VI coated with
Fibronectin, Integrated BioDiagnostics GmbH, Munich,
Germany) with two physically separated wells in serum-
free medium (StemSpan SFEM, StemCell Technologies)
supplied with cytokines that only promote differentiation
towards myeloid cells. All animal experiments were per-
formed in compliance with the institutional guidelines of
the Helmholtz Center Munich and the regulations of the
State of Bavaria.

Image acquisition
Due to the cameras limited field of view, both wells were
subdivided into 33 overlapping tiles (fields of view). Each
field of view corresponds to an image of 1388x1040 pix-
els that was saved in 8-bit png format. Imaging was
conducted using a Cell Observer microscope (Zeiss) sur-
rounded by an incubator to maintain a constant tem-
perature of 37°C. Images were obtained using a 0.63x
TV-adapter (Zeiss) and an AxioCam HRm camera (Zeiss),
with a 10x fluar objective (Zeiss). Each field of view was
imaged in intervals of ∼2.3 minutes for 6 days. Automatic
focusing was achieved using a hardware autofocus (Zeiss)
which was set to 18μm below the optimal focal plane
to acquire slightly blurred images. The complete data set
comprised a total of 315,942 images (4787 time points * 66
fields of view) and occupied ∼500 gigabytes of hard drive
space.

Image processing
To resolve differences in illumination across different
fields of view and over time, all images were background
corrected using an adapted version of the machine-
learning based method developed by Schwarzfischer et
al. [22]. The method subdivides a given image I(x, t) with
space coordinates x = (x1, x2) at time point t into over-
lapping tiles of equal dimensions (here: 30 x 30 pixels). For
each tile the statistical moments of the intensity distribu-
tion are calculated. The tiles are then split into two groups
by density-based clustering [31,32]. The mean intensity
of tiles classified as belonging to background are used
as seed-points to inter- and extrapolate the full back-
ground image B(x, t). The corrected image was derived
by dividing the raw image I(x, t) by B(x, t). Halos were
corrected by setting all pixels that were brighter than the
background to the background intensity.

Foreground objects were identified by Maximally Stable
Extremal Regions (MSER) [23,24]. The algorithm is a
feature detector, originally designed to find informative
regions in two images of the same scene which were
taken under different conditions or arbitrary viewpoints.
MSER achieves segmentation by thresholding, i.e. given a
threshold τ , the method classifies each pixel in an image
to belong to the foreground or background. By iterating
over every possible discrete value for τ , a set of con-
nected components is generated. Given that τ = 0 would
result in all pixels being regarded as background, the fore-
ground regions will grow bigger the higher τ is set. The
components that do not change over an interval � of dif-
ferent values for τ are regarded as stable extremal regions.
An implementation with linear complexity is used that
requires 4 parameters: minSize, the minimal size in pix-
els of a region to be regarded as foreground; maxSize,
the maximal size in pixels of a region to be regarded as
foreground; maxVariation, the maximal Variation inside
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a region according to the value of �. If the algorithm
reported nested regions in an image, these regions were
merged, resulting in a binary mask BW (x, t). Holes in fore-
ground regions, i.e. background pixels with no connection
to an image border, were filled. Note that in the used for-
mulation, the MSER algorithm is only applicable for 8-bit
images.

In a last processing step, foreground objects that were
likely to represent mitotic cells or cell clumps were sepa-
rated using a modified version of of marker based water-
shedding.

First, the raw input image I(x, t) was inverted resulting
in local intensity maxima residing at cell centers. All local
maxima were extracted to a binary mask BW max(x, t),
which was done calculating the regional maxima of the
Euclidean distance transform of the cell mask BW (x, t)
(i.e. ultimate erosion as implemented in the MATLAB
image processing toolbox). In a next step, the distance
transform Idist(x, t) of the foreground mask BW (x, t) was
computed. The final transformed image Itransformed was
derived by imposing BW max on Idist . Watershedding [33]
was applied on Itransformed, resulting in the mask of identi-
fied and split objects BW watershed.

To reduce over-segmentation, a rule-based split &
merge procedure of small regions from CellProfiler 1.0
was applied [11]. A list of adjacent neighbors for all
objects in BW watershed that are likely to be over-segmented
(i.e. very small objects with high eccentricity) was com-
puted. For each neighbor the following criteria were
evaluated: (i) For the pixels residing on the interface
of the evaluated object and its neighbor, the likelihood
to belong to the background or to the foreground was
computed. Foreground and background were represented
as Gaussian distributions, where mean and variance are
derived from the image (i.e. pixels that were classified as
foreground and background by the thresholding step). (ii)
The eccentricity for the merged object was calculated. The
evaluated object and its neighbor were merged if the inter-
face pixels were more likely to belong to the foreground
and if the merged object’s eccentricity was lower than an
empirically determined value (here: 0.7).

For each identified object in BW split , its area in pix-
els and eccentricity were quantified. To clean the data set
from objects that were unlikely to represent cells, fore-
ground regions with size <50 pixels or eccentricity >0.99
were discarded. Both values were empirically determined
based on randomly drawn images of the data set. In addi-
tion, all objects that were touching an image border were
removed. The final mask of identified cells BW cells is the
output of this method.

Parameter settings
For the dataset that was used in this work, the method was
initialized using the following parameter set (one setting

for all images of the data set): background correction:
tiledimensions = 30x30 px, overlap = 15 px, eps = 0.1,
MinPts = 6; MSER thresholding: λ = 5, minSize = 30
px, maxSize = 4000 px, maxVariation = 1; clumped cell
splitting: MaxEccentricity = 0.7, minSize = 30 px, max-
Size = 1000. The data set was split into junks of 150*2489
images. All junks were processed in parallel on a node of a
computation cluster.

CellProfiler pipeline
We used CellProfiler version 2.0 (r11710) [11] and cre-
ated a pipeline for automatic processing of the bright
field images that we used in the manual evaluation.
The following modules were sequentially called for each
image: Correct Illumination (Gaussian filter, Average
object size: 60 px), Apply threshold (Otsu global), Iden-
tify primary objects (Typical diameter of cells: 5 to
50, splitting method: Intensity, method to draw divid-
ing lines: Shape), Convert objects to image (saved binary
mask). Parameters were optimized according to a sin-
gle image of the evaluation set of day 4.5. In the case
of long-term time-lapse experiments the constant change
of cell density and illumination, as well as the acquisi-
tion of different fields of view makes Otsu’s method the
best choice out of the algorithms that are available in
CellProfiler.

Evaluation
Manual quantification of segmentation results was done
using the java based image processing tool ImageJ 1.47K
with the plugin CellCounter [34].

Implementation and parallelization
All methods were implemented using MATLAB ver-
sion 8.0.0.783 (R2012b) with the additional packages
image processing toolbox 8.1 and statistics toolbox 8.1. If
MATLAB code was available for the cited methods, this
code was used. For MSER thresholding, a C++ implemen-
tation with linear time complexity was used. To speed up
computation times, the data set was split into junks of
images and processed on a computation cluster (sun grid
engine version 6.2u5). The average node architecture was
equal to an Intel Xeon 2GHz, 4GB RAM running a 64bit
linux-based operating system.

Availability
The code of our pipeline is available as Additional file 1.
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Additional file 1: Matlab code of the presented method.
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