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Abstract

Background: Though the roles of microRNAs (miRNAs) in renal diseases have been extensively investigated, a thorough
screening and comparison of miRNAs among different types of chronic kidney disease (CKD) has never been performed.

Methods: The intrarenal miRNAs were profiled from fresh kidney tissues of patients with biopsy-proven minimal change
disease (MCD), focal segmental glomerular sclerosis (FSGS) and diabetic nephropathy (DN) by using microarray. Commonly
dysregulated miRNAs were validated by real-time PCR using paraffin-embedded renal tissues from all three types of CKD
patients as well as mouse unilateral ureteral obstruction (UUO) model. Two novel miRNAs were selected and annotations
of their target genes were performed using GO and KEGG pathway enrichment analysis. Biological functions of three two
candidate miRNAs were explored in TGF-β1-induced cell model using human kidney proximal tubular cells (HK-2).

Results: The kidney biopsy samples of three disease types represent different levels of damage and fibrosis, which were
the mildest in MCD, moderate in FSGS, and the most severe in DN. 116 miRNAs were identified to be commonly dysregulated,
including 40 up-regulated and 76 down-regulated in CKD tissues as compared with healthy donor kidney biopsy tissues. Two
novel miRNAs, hsa-miR-3607-3p and hsa-miR-4709-3p, were verified as consistently differentially expressed among all three
types of patient samples as well as in mouse model. In vitro, hsa-miR-3607-3p was repressed while hsa-miR-4709-3p was
induced by TGF-β1 treatment. Inhibition of hsa-miR-3607-3p or overexpression of hsa-miR-4709-3p promoted TGF-β1-induced
migration and F-actin assembling in HK-2 cells, which are characteristics of epithelial–mesenchymal transition (EMT). Further
study identified that ITGB8 and CALM3 were the bona fide target genes of hsa-miR-3607-3p and hsa-miR-4709-3p respectively.

Conclusions: The present identify a unique miRNAs profile that probably relates to the common fibrosis process of CKD.
Results of our study suggest that hsa-miR-3607-3p and hsa-miR-4709-3p may represent as promising therapeutic targets
against kidney fibrosis.
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Background
Chronic kidney disease (CKD) is a major public health
problem worldwide as well as in China. The prevalence
of CKD in China is approximately 10.8–19.1% [1–3],
and the leading cause is primary glomerulonephritis [4],

including IgA nephropathy (IgAN), minimal change
disease (MCD), and focal segmental glomerular sclerosis
(FSGS). On the other hand, secondary glomerular dis-
eases, especially diabetic nephropathy (DN), have been
increasing substantially in recent years [5]. Regardless of
the underlying etiology, progression of CKD results in
glomerular sclerosis and tubulointerstitial fibrosis
termed renal fibrosis, the final common pathway leading
to end stage renal disease (ESRD). The mechanisms that
drive progression of renal fibrosis remain largely unclear.
Transforming growth factor-β1 (TGF-β1) has been
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recognized as the master regulator in the pathogenesis
of renal fibrosis [6]. However, strategies targeting at
TGF-β1 signaling fail to yield satisfactory protective ef-
fects [7]. A thorough understanding of the mechanisms
of renal fibrosis will contribute to the development of
treatment strategies against kidney diseases.
MicroRNAs (miRNAs) are small endogenous non-cod-

ing RNAs that are involved in a variety of pathophysio-
logical processes, including development, fibrosis, and
tumor [8, 9]. They exert their biological functions mainly
by post-transcriptionally regulating gene expression via
base-pairing with the 3′ untranslated regions (3′ UTRs) of
target mRNAs. Mounting evidence shows that miRNAs
play an important role in renal diseases. Numerous intra-
renal differentially-expressed (DE) miRNAs have been
identified from kidney biopsy specimens of IgAN [10, 11],
DN [12, 13], hypertensive nephrosclerosis (HTN) [14],
and lupus nephritis (LN) [15]. We and others have dem-
onstrated that many miRNAs are regulated by TGF-β1
signaling and act as downstream factors mediating anti-
or pro-fibrotic effects [16–20]. Some of them are shown
to participate in the process of epithelial–mesenchymal
transition (EMT) [16, 19, 20], which is one of the most
investigated and controversial topics in renal fibrosis.
However, a thorough screening and comparison of CKD-
related miRNAs by using biopsy samples from different
types of kidney diseases has never been performed.
Another important issue is that considerable discrepancy
regarding expression profiles as well as roles of candidate
miRNAs in renal diseases exists among previous studies
[21, 22]. Therefore, the present study analyzed the miR-
NAs profiles in renal tissues from patients with biopsy-
proven MCD, FSGS, and DN by using microarray analysis.
The renal biopsy samples of three different pathological
patterns represent different levels of renal damage and
fibrosis, which were the mildest in MCD, moderate in
FSGS, and the most severe in DN group. Moreover, com-
mon miRNAs which changed consistently among three
types of kidney diseases were selected for further func-
tional studies.

Methods
Subjects and sample collection
Fresh kidney biopsy samples were obtained from patients
with biopsy-proven MCD, FSGS, and DN (n = 4 per group),
for microarray profiling analysis. Four cases of fresh normal
healthy kidney tissue from donor biopsy without apparent
lesions served as control. Formalin-fixed paraffin-embedded
(FFPE) kidney biopsy specimens of patients with MCD,
FSGS, DN, and healthy donor kidney (n = 6 per group)
were used for validation study. Patient inclusion and exclu-
sion criteria were listed in Additional file 9: Table S1. Renal
biopsy sections were blindly reviewed by an expert patholo-
gist. The percentage of glomerular sclerosis and the score

of tubulointerstitial fibrosis were quantified over the whole
sections. Tubulointerstitial fibrosis was scored on 0–3
scales using the BANFF criteria adapted to the native
kidney with a semiquantitative image analysis: 0, < 10% of
cortical area; 1, 10 to 25% of cortical area; 2, 25 to 50% of
cortical area; 3, > 50% of cortical area) [23]. Demographic
and clinical data including age, gender, serum creatinine,
and 24-h urine protein were collected at the time of kidney
biopsy. Estimated glomerular filtration rate (eGFR) was cal-
culated by the standard CKD-EPI equation. The study
protocol was approved by the Institutional Review Board
and Ethics Committee of The First Affiliated Hospital of
Sun Yat-sen University. All subjects provided written in-
formed consent.

Mouse model of UUO
The mouse model of unilateral ureteral obstruction (UUO)
was induced as previously described [24]. Briefly, healthy 8-
week-old C57BL/6 J SPF male mice were purchased from
the Laboratory Animal Center of Sun Yat-sen University
(Guangzhou, China) and randomly divided into UUO
model group and sham group with 6 mice in each group.
Mice of the model group were subjected to left ureteral
ligation, while another group of mice, sham operated on,
served as control. Mice were killed and kidney tissues were
harvested at day 7 after surgery for further analysis. All
animal experiments were approved by the Committee on
Animal Experimentation of Sun Yat-sen University and
performed in compliance with the Guidelines for the Care
and Use of Laboratory Animals of the university.

RNA isolation and microarray profiling
Total RNA of fresh kidney biopsy tissues was isolated using
Tri-Reagent (Invitrogen, Carlsbad, CA) and miRNeasy Mini
Kit (Qiagen, Germany), according to the manufacturer’s
protocol. Briefly, fresh kidney tissues were stored in Trizol
reagent and total RNA was isolated using Tri-Reagent
method. Then the miRNeasy Mini kit was adopted to purify
microRNAs since the clear up step using columns. The
total amount of 1 μg RNA for each sample was labeled
using the miRCURY™ Hy3™/Hy5™ Power labeling kit and
hybridized on the miRCURY™ LNA Array, which contains
3100 capture probes, covering all human, mouse and rat
miRNAs annotated in miRBase 18.0. The samples were
scanned by the Axon GenePix 4000B microarray scanner
and images were then imported into GenePix Pro 6.0 soft-
ware for grid alignment and data extraction. Replicated
miRNAs were averaged and those with intensities ≥30 in all
samples were chosen for calculating normalization factor.
Expressed data were normalized by using the Median
normalization. After normalization, significant differentially
expressed (DE) miRNAs were identified through Volcano
Plot filtering. Finally, hierarchical clustering was performed
to show distinguishable miRNAs expression profiling
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among samples. For expression analysis, miRNAs were
considered as differentially expressed if the fold change is >
1.5 and significant if the p value is < 0.05.

Validation of candidate miRNAs by quantitative real-time
PCR (qRT-PCR)
For validation of candidate miRNAs, total RNA was ex-
tracted from FFPE specimens of CKD and normal donor
kidney biopsy by RecoverAll™ Total Nucleic Acid Isolation
Kit for FFPE (Invitrogen) following the instructions. Total
RNA was isolated from human FFPE sections and mea-
sured by Nanodrop-2000 (Thermo Fisher Scientific). The
A260/A280 ratio was required to be 1.8–2.1. For reverse
transcription, 10 ng of total RNA was used for each sample
according to the protocol of TaqMan™ MicroRNA Reverse
Transcription Kit (Applie Biosystems™, Foster City, CA).
QRT-PCR was performed on ABI 7900 system by using
TaqMan microRNA assay kit (Applie Biosystems™). The
PCR program is 50 °C for 2min, 95 °C for 10min, 40 cycles
of 95 °C 15 s and 60 °C 1min. MiRNAs were extracted from
mouse UUO kidney using the miRNeasy Mini kit. Fresh
kidney cortex tissues were used. The miRNA quantification
protocol of qRT-PCR is the same as above. Level of miR-
NAs was normalized to U6 snRNA in each sample.

In situ hybridization (ISH) of target miRNAs
To detect the expression pattern and location of hsa-miR-
4709-3p and has-miR-3607-3p in the kidney, in situ
hybridization was performed in control and CKD kidneys
using FFPE sections as described previously [24]. Specific
LNA-digoxigenin labeled hsa-miR-4709-3p probe (5′-
UUG AAGAGGAGGUGCUCUGUAGC-3′) and hsa-
miR-3607-3p probe (5′-ACUGUAAACGCUU UCUG
AUG-3′) were used (Roche Diagnostics, IN).

Cell culture and transfection
HK-2 cells (human kidney proximal tubular cells) were cul-
tured in Dulbecco’s modified Eagle’s medium/F12 medium
(Life Technologies, Carlsbad, CA), which contains 5% FBS
(Invitrogen) and 1% antibiotics (100U/ml penicillin and
100 μg/ml streptomycin) (Life Technologies). The cells
were incubated at 37 °C in a humidified incubator with 5%
CO2. To over-express or down-regulate the expression of
specific miRNAs, cells were transiently transfected with
miRNA mimics or inhibitor (Life Technologies) at 100 nM
concentrations by using the Lipofectamine 3000 (Invitro-
gen) for indicated time points, according to the manufac-
turer’s instructions. The negative control contained a
scrambled sequence. For TGF-β-treated experiment, cells
were cultured in serum-free medium in the presence or
absence of 5 ng/mL recombinant human TGF-β1 (R&D
Systems, Minneapolis, MN) for different time points.

Prediction and functional annotation of target gene
Target predictions of common DE miRNAs were con-
ducted using the prediction algorithm Targetscan. To
perform annotations of predicted target genes, we utilized
the NIH David resource, the Functional Annotation Chart
feature with annotations for GO (Gene Ontology) analysis
and KEGG (Kyoto Encyclopedia of Genes and Genomes)
pathway analysis [25]. The GO covers three domains:
Biological Process, Cellular Component, and Molecular
Function. Probabilities are evaluated by Bonferroni correc-
tion, and false discovery rate (FDR = adjusted p-values)
values < 0.05 for GO terms and p values < 0.01 for KEGG
pathway analysis were considered as significant.

Validation of target genes
Fifty-one putative target genes of hsa-miR-3607-3p and
24 of hsa-miR-4709-3p in the most relevant signaling
pathways were validated by qRT-PCR. Total RNA was
isolated from HK-2 cells transfected with hsa-miR-3607-
3p or hsa-miR-4709-3p mimics, then used to synthesize
cDNA using M-MLV Reverse Transcriptase (Life Tech-
nologies). QRT-PCR was carried out with SYBR green
Permix Kit (Life Technologies) on ABI 7900 system. The
housekeeping genes β-actin was used as the internal
control. Primers for putative target genes and β-actin
were listed in Additional file 9: Table S2. The relative
levels of target genes were calculated using 2−ΔΔCt

method. Total RNA was extracted from human FFPE
specimens as above for validation of ITGB8 and CALM3
in CKD and normal donor kidney samples. The primers
used and the procedures of qRT-PCR are the same as
above.

Immunohistochemistry
To detect the protein expression and location of ITGB8
and CALM3 in kidneys, immunohistochemistry was per-
formed in 4-μm FFPE sections of control subjects and
CKD patients using a microwave-based antigen retrieval
technique as described previously [24]. The primary
antibodies used in this study included ITGB8 (SC-25714,
Santa Cruz Biotechnology) and CALM3 (NBP2–15669,
Novus Biologicals). After immunostaining, sections were
counterstained with hematoxylin and representative pic-
tures were captured using Leica Microscopy (Germany)
for each group (n = 3).

Dual-luciferase reporter assay
For construction of wild-type luciferase reporter of target
genes, the 623 bp 3′ UTR segments of ITGB8 and 630 bp
3′ UTR segments of CALM3 containing recognition
sequences for respective miRNAs were sub-cloned into
the downstream of the luciferase reporter in pEZX-MT01
vectors (Fulengen, Guangzhou, China). The mutated vec-
tors were constructed by replacing four nucleotides in the
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binding sites (Fig. 5a). Cells were cultured in 24-well plates
to 70–80% confluence. Wild-type or mutant luciferase
reporter and miRNA mimics or negative control at 100
nM of final concentration were co-transfected into HK-2
cells. Cells were then harvested 48 h after transfection and
luciferase activities were analyzed by Dual Luciferase Re-
porter Assay (Promega, Madison, WI). Renilla luciferase
activity was normalized to firefly luciferase expression for
each sample. Data were given as means ± SEM of three in-
dependent experiments.

Western blot
Western blot was conducted in accordance with standard
procedures as previously described [24]. Primary anti-
bodies include those against CALM3 (Novus, Littleton,
CO) and ITGB8 (Santa Cruz Biotechnology, Dallas, TX).
The protein was visualized with Super Signal Western
Pico chemiluminescent substrate (Pierce, Rockford, IL),
signals were detected by the LiCor/Odyssey infrared image
system (LI-COR Biosciences, Lincoln, NE) and quantified
by Image J software (National Institutes of Health). The
ratio for the protein examined was normalized to β-actin.

Cell migration assay
The migratory property of cells was evaluated by a wound
healing assay performed as previously described [26].
Briefly, HK-2 cells were cultured to confluence in 6-well
plates and then a scratch was made using 1-mL pipette tip
(Axygen, Union City, CA). The width of cell-free space
was measured after 5 ng/mL TGF-β1 treatment for 0, 24,
and 48 h by microscope (Zeiss, Germany).

Cytoskeleton assay
To examine cytoskeleton assembling, cultured HK-2
cells on 10-mm coverslips were fixed in 4% formalde-
hyde solution for 10 min at room temperature and then
permeated in 0.1% Triton X-100 in PBS for 5 min. After
washing with PBS, cells were incubated in the staining
solution which contains Alexa Fluor-488 phallotoxins in
the dilution of 1:50 for 20 min at room temperature.
Samples were mounted in the anti-fading mounting
medium (Invitrogen) and F-actin distribution was cap-
tured using an inverted laser confocal microscope (Zeiss,
Germany).

Statistical analyses
Data from this study were expressed as mean ± SEM.
Statistical analyses were performed using one-way
ANOVA followed by Newman-Keuls multiple compari-
son test from GraphPad Prism 5.0 software (San Diego,
CA).

Results
The demographic, clinical, and pathological characteristics
of CKD patients are summarized in Table 1, including
subjects for microarray screening and PCR validation. The
serum creatinine levels for the MCD, FSGS, and DN
groups were 65 ± 3.8, 173.4 ± 34.9, 399.6 ± 64.4 μmol/L, re-
spectively. Consistent with the differences in renal func-
tion, the pathological changes, including glomerular
sclerosis and tubulointerstitial fibrosis, were the mildest in
MCD group, moderate in FSGS group, and the most
severe in DN group. Representative pictures of Masson’
staining are shown in Fig. 1. There is no significant differ-
ence among three groups regarding proteinuria, while
serum albumin level was lower in MCD patients com-
pared to FSGS and DN subjects (Table 1).

MiRNA expression profile in kidney specimens of CKD
patients
Total 16 fresh kidney biopsy samples were analyzed for
intra-renal miRNA expression profile by microarray
screening and the results are presented in Fig. 2 and
Additional file 5. A large number of miRNAs were found
differentially expressed (DE) in CKD patients compared
to control subjects and fold change of these DE miRNAs
varied greatly (Fig. 2a). As the Venn diagram (Fig. 2b
and c) showed, 80, 71, and 111 miRNAs were up-regu-
lated, while 122, 150, and 155 miRNAs were down-regu-
lated in MCD, FSGS, and DN group, respectively,
compared to control group. By comparison of the DE
miRNAs profiles among these three CKD groups, 116
miRNAs were found to be commonly dysregulated, with
40 up-regulated and 76 down-regulated as compared
with control subjects (Additional file 9: Table S3).

Validation of DE miRNAs by qRT-PCR in CKD patients and
animal model
Top 8 commonly dysregulated miRNAs were selected for
validation by qRT-PCR assay using kidney tissues from
FFPE sections and the results are shown in Fig. 3a. Two
miRNAs, hsa-miR-4709-3p and hsa-miR-3607-3p, were
confirmed to changed consistently among all diseased
groups. Hsa-miR-4709-3p was found to be up-regulated at
2.5–4 folds, while hsa-miR-3607-3p was down-regulated
to 30–50% in CKD samples compared to control subjects.
ISH data of these two miRNAs using human FFPE sec-
tions showed that both hsa-miR-4709-3p and has-miR-
3607-3p were mainly expressed in tubular epithelial cells
(Fig. 3b and Additional file 3: Figure S3A). The expression
of hsa-miR-4709-3p was markedly up-regulated in the
CKD groups, especially in the diabetic kidneys, as com-
pared to control group. On the contrary, has-miR-3607-
3p was constitutively expressed in tubular cells of control
samples, while largely lost in diseased kidneys. Lastly, we
validated the expression of these two miRNAs in mouse
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UUO model, which is a well-characterized animal model
with progressive fibrosis lesions in the kidney. As shown
in Fig. 3c and d, miR-4709-3p was significantly increased
while miR-3607-3p was largely decreased in the fibrotic
kidney of UUO model, which is in agreement with the
data from human specimens.

Annotation analysis of target genes of candidate miRNAs
Hsa-miR-3607-3p and hsa-miR-4709-3p are two newly-
found miRNAs which can only be documented in the data-
base of TargetScan. Therefore, in order to characterize their
potential biological functions, putative targets genes of
these two common miRNAs were predicted by TargetScan
and then subjected to GO analysis and KEGG pathway en-
richment analysis. Hsa-miR-3607-3p and hsa-miR-4709-3p
were predicted to target a total number of 735 and 309
genes respectively (Additional file 6 and Additional file 7).

Among 735 predicted targets of hsa-miR-3607-3p, the
results of GO classification showed that the number of
significant GO_BP (GO terms of biological process), GO_
CC (GO terms of cellular component) and GO_MF (GO
terms of molecular function) is 168, 25, and 3, respectively
(Additional file 6). The most significantly enriched GO_BP
terms included regulation of cellular process, cellular
process, and biological regulation (Additional file 1: Figure
S1A). The top significant KEGG pathways included axon
guidance, glutamatergic synapse, ErbB signaling pathway,
and regulation of actin cytoskeleton (Additional file 1: Fig-
ure S1B). For the 309 target genes of hsa-miR-4709-3p, the
number of significant GO_BP terms is 6, whereas none of
GO_CC and GO_MF terms were significant (Additional
file 7). The top significant GO_BP terms included protein
autophosphorylation, generation of neurons, and neuron
differentiation (Additional file 2: Figure S2A). The most

Table 1 Demographic and Clinical characteristics of CKD patients

MCD FSGS DN

Number of cases 10 10 10

Sex (M/F) 6:4 6:4 7:3

Age (year) 26.1 ± 1.5 30.4 ± 2.8 48.6 ± 2.4a, b

Serum creatinine (μmol/l) 65 ± 3.8 173.4 ± 34.9 399.6 ± 64.4a, c

eGFR (ml/min per 1.73 m2) 122.9 ± 4.2 60.3 ± 12.3a 20.0 ± 5.3a, b

24-h proteinuria (g) 5.3 ± 1.1 3.3 ± 1.0 5.0 ± 1.2

Serum albumin (g/L) 18.1 ± 0.3 36.8 ± 3.8a 39.5 ± 1.1a

Percentage of glomerular sclerosis (%) 0.8 ± 0.5 41.1 ± 7.3a 60.3 ± 7.2a, d

Tubulointerstitial fibrosis score 0 2.5 ± 0.2a 2.9 ± 0.1a, d

MCD minimal change disease, FSGS focal segmental glomerulosclerosis, DN diabetic nephropathy, M male, F female, eGFR estimated glomerular filtration rate. a

versus MCD p < 0.001, b versus FSGS p < 0.001, c versus FSGS p < 0.01, d versus FSGS p < 0.05

A CB

D FE

Fig. 1 Masson staining of biopsy kidney tissues. MCD, minimal change disease; FSGS, focal segmental glomerulosclerosis; DN, diabetic nephropathy. a-
c are imaged at 200 ×magnification; d-f are imaged at× 400 from the region of black pane in the upper panels
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significantly enriched KEGG pathway was mTOR signaling
pathway (Additional file 2: Figure S2B).

Validation of target genes of hsa-miR-3607-3p and hsa-
miR-4709-3p
Subsequently, we examined the expression of 51 putative
target genes of hsa-miR-3607-3p and 24 of hsa-miR-4709-
3p in the most relevant signaling pathways (Additional file 8)
in hsa-miR-3607-3p or hsa-miR-4709-3p over-expressed
HK-2 cells. Results of qRT-PCR and western blot showed
that overexpression of hsa-miR-3607-3p or hsa-miR-4709-
3p significantly decreased the expression of ITGB8 or
CALM3 respectively, at both mRNA and protein levels

(Fig. 4a-f). The expression level of ITGB8 or CALM3 was
also detected in CKD patients. As shown in Fig. 4g-h, the
mRNA level of CALM3 was significantly down-regulated in
CKD kidneys compared to control subjects. ITGB8 was
mildly increased in MCD and FSGS group, while signifi-
cantly up-regulated in DN group compared to control.
Immunostaining revealed that both ITGB8 and CALM3
were mainly expressed by tubular epithelial cells. The pro-
tein level of ITGB8 was up-regulated in diseased kidneys
compared to control subjects, while CALM3 showed the
opposite trend, both of which coincide with the respective
mRNA expression pattern (Additional file 3: Figure S3B).
Then we performed luciferase reporter assay to assess the

A

B C

Fig. 2 Number of DE miRNAs in kidney biopsy tissues of three CKD groups. a The expression of these miRNAs in three CKD groups is illustrated
in the heatmap (n = 4 in each group). The miRNAs with fold change > 1.5 and p-value < 0.05 for expression in CKD patients compared to normal
control were considered as differentially expressed (DE). b Venn diagram has shown the number of upregulated miRNAs in three CKD groups.
Forty miRNAs were elevated in CKD patients compare to normal control. c The number of downregulated miRNAs in three CKD groups. Seventy-
six miRNAs were decreased in CKD groups compare to normal. MCD: minimal change disease; FSGS: focal segmental glomerulosclerosis; DN:
diabetic nephropathy; Con: normal kidney tissues from healthy donor
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direct regulation of these two miRNAs on their target
genes. As shown in Fig. 5, transfection of hsa-miR-3607-3p
or hsa-miR-4709-3p mimics into HK-2 cells significantly at-
tenuated the activities of wild-type 3′ UTRs of ITGB8 or
CALM3 respectively. However, these inhibitory effects were
abrogated when the mutated reporters were applied in
which the predicted binding sites for respective miRNAs
were mutated. These results demonstrated that ITGB8 and
CALM3 were the bona fide target genes of hsa-miR-3607-
3p and hsa-miR-4709-3p respectively (Additional file 4).

Role of hsa-miR-3607-3p and hsa-miR-4709-3p in TGF-β1-
induced migration and F-actin assembling of tubular
epithelial cells (TECs)
Because both miRNAs were mainly expressed in TECs,
this cell type was selected for in vitro mechanistic study.
TGF-β1 is the dominant mediator responsible for renal
fibrosis and capable of inducing TECs into a fibrotic
intermediate cell type, one main characteristic of EMT.
Therefore, we firstly examined whether TGF-β1 could
modulate the expression of hsa-miR-3607-3p and hsa-
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miR-4709-3p in vitro. As shown in Fig. 6a and b, TGF-
β1 treatment led to a 2.5-fold increase of hsa-miR-4709-
3p at 1 h and a 50% decrease of hsa-miR-3607-3p at 24
h, indicating that TGF-β1 regulates their transcription.
Next, we examined the effects of these two miRNAs on
the cell migratory activity because cells that have higher
mobility are in an intermediate state during the fibrosis
process. As shown by the wound healing assay in Fig. 6c
and d, transfection of hsa-miR-3607-3p mimics or hsa-
miR-4709-3p inhibitor into HK-2 cells significantly
blocked TGF-β1-induced cell migration. By contrast,
inhibition of hsa-miR-3607-3p or overexpression of hsa-

miR-4709-3p promoted the cell migratory activities in-
duced by TGF-β1 in HK-2 cells.
In the process of fibrosis, TGF-β is able to rearrange

F-actin into parallel stress fiber types which would pro-
mote higher cell mobility. As shown by phalloidin stain-
ing in Fig. 7, TGF-β1 treatment induced the change of
F-actin morphology and assembling in HK-2 cells.
Transfection of hsa-miR-3607-3p inhibitor or hsa-miR-
4709-3p mimics greatly increased TGF-β1 induced
F-actin rearrangement, whereas overexpression of hsa-
miR-3607-3p or inhibition of hsa-miR-4709-3p largely
blocked stress fiber assembling.
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Western Blot shows that hsa-miR-3607-3p (c) and hsa-miR-4709-3p (d) inhibit the protein level of ITGB8 and CALM3 respectively. NC: scrambled
negative control transfection; 3607: hsa-miR-3607-3p transfection; 4709: hsa-miR-4709-3p transfection. Western Blot shows that hsa-miR-3607-3p
and hsa-miR-4709-3p. Quantitative data of relative protein level of ITGB8 (e) and CALM3 (f) in miRNA mimics transfected cells (normalized to β-
actin). Data represent means ± SEM for at least three independent experiments. *p < 0.05, **p < 0.01, ***p < 0.001 versus con; #p < 0.05, ###p <
0.001 versus NC. QRT-PCR of relative mRNA level of ITGB8 (g) and CALM3 (h) in CKD patients (normalized to β-actin). MCD: minimal change
disease; FSGS: focal segmental glomerulosclerosis; DN: diabetic nephropathy; Con: normal kidney tissues from healthy donor. * p < 0.05, **p < 0.01
versus control group (n = 6 in each group)
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Discussion
The present study performed microarray profiling of
renal biopsy specimens from three different pathological
types of CKD patients. We identified that 40 miRNAs
were commonly up-regulated while 76 were commonly
down-regulated in CKD renal tissues. Two novel miR-
NAs, hsa-miR-3607-3p and hsa-miR-4709-3p, were verified
as consistently differentially expressed in human biopsy
samples as well as in UUO fibrosis model. Further func-
tional studies suggested that these two miRNAs might be
involved in the CKD-related fibrosis process by rearranging
actin cytoskeleton of resident renal cells.
The associations between miRNAs and renal diseases

have been extensively investigated [27]. Intra-renal miR-
NAs expression profiles are found to associate with clin-
ical parameters and histopathological changes in IgAN
[10, 11], DN [12, 13], HTN [14], and LN [15]. In this
study, we have adopted a novel screening strategy. By
comparing three types of renal diseases with different
degrees of fibrosis, we identified a unique miRNAs pro-
file that probably related to progression of the common
kidney fibrotic process. Some of these DE miRNAs have
been widely reported as key regulators in renal fibrosis,

including members of miR-21 [13, 17], miR-29 [18, 28],
and miR-200 family [20, 29]. Consistent with the well-
known anti-fibrotic effect of miR-29, our microarray
data showed that hsa-miR-29-5p was down-regulated in
both FSGS and DN group compared to control subjects.
We also found that hsa-miR-200c-3p was significantly
decreased in all three types of CKD, whereas hsa-miR-
200a-3p was inhibited in FSGS group, as compared to
control group. This is in agreement with the inhibitory
role of miR-200 family on EMT in initiation of renal
fibrosis. However, two members of miR-21 family, hsa-
miR-21-5p and hsa-miR-21-3p, were consistently found
to be down-regulated in CKD groups, which contrasts
with the known pro-fibrotic role of miR-21 family in the
literature [13, 17, 30]. The discrepancies may be due to
differences in tissue types, sample processing, isolation
and quantification methodology. On the other hand, our
study also identified many new miRNAs that have never
been described in renal diseases, including hsa-miR-
3607-3p and hsa-miR-4709-3p. We selected top 8 com-
mon DE miRNAs for validation by qRT-PCR. Among
them, hsa-miR-3607-3p and hsa-miR-4709-3p showed
the same change trends among all three CKD types

A

B C

Fig. 5 Overexpression of miRNA mimics inhibits luciferase reporter activity in HK-2 cells. a The schematic luciferase reporter constructs. A mutant
construct was made by replacing four nucleotides in the miRNA seed binding site of target gene 3’UTR. Mutated nucleotides were marked in
gray and underlined. The luciferase reporter assay of ITGB8 (b) and CALM3 (c) 3’UTR reporter in HK-2 cells at 48 h after transfection. EV: empty
vector; WT: wild-type; Mut: mutant; NC: scrambled negative control transfection.*p < 0.05 versus NC. Data represent mean ± SEM for at least three
independent experiments
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consistent with microarray analysis, while other miRNAs
were only confirmed in one or two specific disease
groups. The similar expression pattern of the above two
miRNAs in UUO animal model supported the validity of
the microarray screen. The discrepancy of candidate
miRNAs expression measured between microarray and
qRT-PCR may be due to different sample types we used
as well as distinct detection sensitivity for these two
techniques.
The functional roles of hsa-miR-3607-3p and hsa-miR-

4709-3p in human diseases were poorly characterized. It

is reported that miR-3607-3p showed a phased expres-
sion pattern at different time points after HIV infection
and was implicated in the regulation of cell cycle and
T-cell activation [31]. MiR-4709-3p was found to be up-
regulated in the serum of chronic HBV-infected patients
by deep sequence analysis [32], and might also be specif-
ically involved in hypertension physiology in African
American population [33]. The present study added new
evidence that these two DE miRNAs might play a role in
kidney diseases. As pathway enrichment analysis
showed, the significant pathways enriched by predicted

B

C

A

Fig. 6 Role of hsa-miR-3607-3p and hsa-miR-4709-3p in TGF-β1-induced migration. a Results of qRT-PCR show the expression of hsa-miR-3607-3p
and hsa-miR-4709-3p after stimulation by 5 ng/mL TGF-β1 in HK-2 cells. *p < 0.05, *p < 0.01 versus control group. b Representative images of the
wound healing assay. HK-2 cells were treated with 5 ng/mL TGF-β1 for 0, 24, and 48 h. Cells transfected with negative control (NC), hsa-miR-3607-
3p and hsa-miR-4709-3p mimics or inhibitor and then treated by TGF-β1. Original magnification: × 100. c Quantitative analysis of the area of cell-
free space post-scratch at 0, 24, and 48 h. Data represent mean ± SEM for at least three independent experiments. ***p < 0.01, ***p < 0.001 versus
con; ##p < 0.01, ###p < 0.001 versus NC at 24 or 48 h
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target genes of hsa-miR-3607-3p included regulation of
actin cytoskeleton, which is a key step in trans-differenti-
ation of resident renal cells and activation of myofibro-
blasts in the kidney fibrosis process. On the other hand,
the most significant enriched pathway for hsa-miR-
4709-3p was mTOR signaling pathway, the role of which
is well established in diabetes mellitus and its complica-
tions, including diabetic nephropathy [34].
In recent years, the role of EMT in renal fibrosis was

criticized by several state-of-the-art tracing studies [35,
36] as well as human genomic and transcriptional ana-
lysis data [37, 38]. However, we and other investigators
believe that to what extent the EMT process contributes
to kidney fibrosis is likely to be disease-specific and con-
text-dependent. Using a set of combined indicators
within each category of EMT process, a recent study
provided strong evidence for an important role of EMT
in the development of diabetic nephropathy [39]. EMT
involves a change in cell shape, loss of polarity and
increased motility associated with increased collagen

production [40]. In this study, we also identified that
regulation of actin cytoskeleton via targeting ITGB8 and
CALM3 may be the mechanisms by which hsa-miR-
3607-3p and hsa-miR-4709-3p participate in the kidney
fibrosis process. By loss-of- and gain-of-function regula-
tion in vitro, our data confirmed that hsa-miR-3607-3p
inhibited whereas hsa-miR-4709-3p promoted actin fi-
bers assembling and cell motility. As demonstrated by
qRT-PCR, western blot, and luciferase reporter assay,
ITGB8 and CALM3 were found to be the bona fide
target genes of hsa-miR-3607-3p and hsa-miR-4709-3p
respectively. The ITGB8 gene belongs to the integrin
beta chain family and encodes the protein product integ-
rin αvβ8 which is most abundantly expressed in kidney
and brain [41]. Integrin αvβ8 is a major receptor for
latent TGF-β and is essential for its activation [42]. Our
results showed that hsa-miR-3607-3p was decreased in
fibrotic kidneys and TGF-β1-treated HK-2 cells, while
ITGB8 was inhibited by hsa-miR-3607-3p at both
mRNA and protein levels. Therefore, up-regulation of
ITGB8 would be expected in renal fibrosis, which might
lead to sustained activation of TGF-β signaling, thus
forming a positive feedback activation loop. This may be
the underlying mechanism by which hsa-miR-3607-3p
participate in renal fibrosis. CALM3 encodes the protein
product calmodulin-3 which is a core intermediate
calcium sensor in calcium signaling pathway [43]. The
importance of changes in intracellular calcium levels in
cellular morphology changes and actin dynamic during
EMT has been documented by a number of studies [44].
In addition, Ca2+/calmodulin-dependent protein kinase
II, or CaMKII, has also been implicated in EMT in
development or cancer metastasis [45, 46]. Therefore,
we can speculate that the roles of hsa-miR-4709-3p and
CALM3 in kidney fibrosis may be associated with changes
in intracellular calcium levels, which may require further
research.
There are some limitations in the present study. Firstly,

the sample sizes for screening and validation are relatively
small so that it is incapable to conduct a convincing correl-
ation analysis between miRNA profiles and clinicopathologi-
cal data. Those commonly dysregulated miRNAs we
identified needs to be verified by other independent studies
with larger sample sizes. Secondly, we used microarray
rather than next-generation sequencing for screening of
miRNA profiles, which prevented the discovery of novel
miRNAs or other non-coding RNAs related to renal fibrosis.
Thirdly, the heterogeneity among three types of CKD
samples makes it difficult to clarify the significance of dys-
regulated miRNAs. Comprehensive investigations from one
single disease at different stages probably produce more in-
triguing data. Last but not the least, detailed mechanisms by
which hsa-miR-3607-3p and hsa-miR-4709-3p participate in
specific types of kidney diseases require further exploration.
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Fig. 7 Representative images of F-actin assembling (400×).
Phalloidin Alex-488 (green) staining had shown F-actin morphology
and distribution in HK-2 cells. Cells were transfected with miRNA
mimics or inhibitors and then exposed to 5 ng/mL TGF-β1 for 24 h
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Conclusions
In conclusion, the present study identifies commonly
dysregulated miRNA profiles related to CKD. Two miR-
NAs, hsa-miR-3607-3p and hsa-miR-4709-3p, are dem-
onstrated to involve in kidney fibrosis by regulation of
actin cytoskeleton rearrangement probably via targeting
ITGB8 and CALM3 respectively. Although a limited
number of kidney biopsy samples are used in this study,
our results may represent a promising research direction
for renal disorders and help identify novel biomarkers
and therapeutic targets for CKD.
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