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DNA double strand breaks (DSBs) are the most cytotoxic DNA lesions and,

if not repaired, lead to chromosomal rearrangement, genomic instability

and cell death. Cells have evolved a complex network of DNA repair and

signalling molecules which promptly detect and repair DSBs, commonly

known as the DNA damage response (DDR). The DDR is orchestrated by var-

ious post-translational modifications such as phosphorylation, methylation,

ubiquitination or SUMOylation. As DSBs are located in complex chromatin

structures, the repair of DSBs is engineered at two levels: (i) at sites of

broken DNA and (ii) at chromatin structures that surround DNA lesions.

Thus, DNA repair and chromatin remodelling machineries must work

together to efficiently repair DSBs. Here, we summarize the current knowl-

edge of the ubiquitin-dependent molecular unfoldase/segregase p97 (VCP

in vertebrates and Cdc48 in worms and lower eukaryotes) in DSB repair. We

identify p97 as an essential factor that regulates DSB repair. p97-dependent

extraction of ubiquitinated substrates mediates spatio-temporal protein

turnover at and around the sites of DSBs, thus orchestrating chromatin remod-

elling and DSB repair. As p97 is a druggable target, p97 inhibition in the

context of DDR has great potential for cancer therapy, as shown for other

DDR components such as PARP, ATR and CHK1.

This article is part of the themed issue ‘Chromatin modifiers and remodellers

in DNA repair and signalling’.
1. Introduction
The AAAþ ATPase p97, also known as valosin-containing protein (VCP) in

vertebrates (p97/VCP) or Cdc48 in worms and lower eukaryotes (p97/

Cdc48), is a central component of the ubiquitin-proteasome system (UPS)

[1–3]. p97 uses energy from ATP to remodel (unfold/segregate) ubiquitinated

substrates from different macro-complexes and cellular locations, facilitating

their proteasome-dependent degradation and/or recycling. As the ubiquitin

signal is the main conductor of p97 activity, it is involved in virtually all cellular

processes, playing a major role in global protein homeostasis. Specificity

towards different ubiquitinated substrates is conferred by p97-adaptor proteins

(cofactors), which form various p97 sub-complexes known altogether as the p97

system [3,4]. Through their p97-interacting motifs and (in most cases) ubiquitin-

binding domains (UBDs), p97-cofactors bridge the p97 ATPase with specific

and mostly ubiquitinated substrates.

As ubiquitin-mediated protein turnover is a fundamental process in chroma-

tin transactions, the p97 system has emerged as an unavoidable genome caretaker

[1,5–8]. The p97 system ensures genome stability by processing numerous

substrates involved in DNA replication, DNA transcription, DNA repair, mitosis

http://crossmark.crossref.org/dialog/?doi=10.1098/rstb.2016.0282&domain=pdf&date_stamp=2017-08-28
http://dx.doi.org/10.1098/rstb/372/1731
http://dx.doi.org/10.1098/rstb/372/1731
mailto:kristijan.ramadan@oncology.ox.ac.uk
http://orcid.org/
http://orcid.org/0000-0001-5522-021X
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


rstb.royalsocietypublishing.org
Phil.Trans.R.Soc

2
and the cell cycle through a process termed chromatin-

associated degradation (CHROMAD). Inactivation of the p97

system leads to hyper-accumulation of ubiquitinated sub-

strates on chromatin resulting in the phenomenon known as

protein-induced chromatin stress (PICHROS) [1]. We rec-

ommend several recent reviews dealing with the general and

chromatin-associated functions of p97 [1,3,4,6,9–11].

Here, we review our current knowledge of the role of the

p97 system in the repair of DNA double strand breaks

(DSBs), the most cytotoxic DNA lesions. We demonstrate that

p97 regulates timing and fidelity of DSB repair at two levels:

(i) directly at broken DNA and (ii) on chromatin structure

in the vicinity of DSBs. As such, the p97 system represents

a unique system that bridges DNA repair and chromatin

remodelling machineries to ensure genome integrity after

DSB formation.
.B
372:20160282
2. DNA double strand break repair
Unrepaired DSBs lead to genome alterations and/or cell death

[12,13]. Endogenous DSBs arise after DNA replication fork col-

lapse in proliferative cells or during V(D)J and class switch

recombination in lymphocytes, whereas the main exogenous

DSB sources are medical ionizing radiation (IR) and some

chemotherapeutical drugs. To cope with DSBs, cells activate

genome maintenance mechanisms collectively known as the

DNA damage response (DDR). The key players in DDR acti-

vation are post-translational modifications (PTMs)—mainly

phosphorylation, ubiquitination and SUMOylation—which

orchestrate the spatio-temporal dynamics of DNA repair and

signalling proteins at sites of DSBs. Mutations or polymorph-

isms in genes that regulate PTMs at sites of DSBs, like those in

ataxia-telangiectasia and RIDDLE syndromes, give rise to

genome instability and ultimately to diseases manifesting in

IR hypersensitivity, cancer susceptibility, immunodeficiency,

premature ageing and neurodegeneration.

DSBs are initially sensed by the Ku70/80 heterodimer (Ku),

a highly abundant nuclear protein with a rigid double-ring

topology and strong affinity (Kd� 2 nM) for DNA-end struc-

tures [14–16]. Upon DSB formation, Ku is immediately

threaded onto DNA through the DSB ends with its central

cavity encircling duplex DNA. Subsequently, DSBs are

repaired mainly by two canonical pathways in eukaryotic

cells: Non-Homologous End-Joining (NHEJ) and Homologous

Recombination (HR). Although NHEJ is active through the

whole interphase, HR is restricted to late S- and G2-phases of

the cell cycle [17–19].

The canonical NHEJ pathway is the predominant DSB

repair pathway in higher eukaryotes and it directly joins any

two minimally processed free DNA-ends, irrespective of their

sequence [20] or cell cycle stage. As a consequence, this

pathway may result in sequence modifications, or even

chromosomal rearrangements if the two rejoined ends are

unrelated [21]. NHEJ is promoted by DSB-bound Ku, which pro-

tects DNA-ends from nuclease degradation and serves as a

scaffold for the assembly of the NHEJ repair complex [22,23].

DNA-PKcs is then recruited to Ku and together they form the

active DNA-PK kinase complex, which phosphorylates and

recruits various downstream substrates that form the NHEJ

pathway [16,24–29]. Importantly, DNA-PK also phosphorylates

p97 [30], promoting p97 accumulation at DSBs. Depending on

the DNA-end topology, additional processing proteins are
recruited until DNA-ends are finally re-ligated (figure 1a).

Further details can be found in [29,31–35].

Contrary to NHEJ, the HR pathway is error-free because it

uses a homologous DNA template, typically a sister chromatid,

to restore the original sequence at DSB ends [36–40]. Initiation

of HR requires preliminary displacement of Ku and extensive

50 –30 DNA-end resection, performed mainly by the MRN

(Mre11, Rad50 and Nbs1) nuclease complex and CtIP nuclease

(figure 1b). Subsequently, DNA-end resection is further extended

by the 50 –30 exonuclease 1 (EXO1) and Dna2 endonuclease in

coordination with the Bloom or Werner helicases (Sgs1 in yeast)

[41]. The resulting 3’-ssDNA overhangs are initially coated with

phospho-RPA, which is subsequently replaced by the Rad51

recombinase with the assistance of BRCA2 (or Rad52 in yeasts).

The ssDNA-Rad51 filaments drive homology search and strand

invasion to complete the HR repair pathway.

A feature common to both DSB repair pathways is the initial

recognition of free DSB ends by Ku and the association of distinct

protein assemblies. While the main proteins of NHEJ and HR

have been characterized tovarying extents, how their recruitment

and especially dissociation are regulated is still unclear.
3. p97 in DNA double strand break repair
The first indications of p97 involvement in the DDR arose

from the finding that p97 interacts with DNA repair proteins

BRCA1 and Werner helicase [42–44] and that p97 is phos-

phorylated upon DNA damage induction [30]. However, it

still took several years to demonstrate a direct role of p97 in

DSB repair. Seminal discoveries by two independent labora-

tories demonstrated that p97 physically associates with

DSBs and that inactivation of the p97 system delays DSB

repair and hypersensitizes cells to IR [45,46]. Based on

these discoveries, a model in which p97 disassembles ubiqui-

tinated substrates from chromatin surrounding DSBs was

proposed [5]. Since then, this model has been confirmed by

several different laboratories (table 1) [48,49,52,56,57].

Newly formed DSBs are rapidly decorated with mono- and

polyubiquitin chains on several substrates generated by ubi-

quitin ligases like RNF8 and RNF168 [58–64]. Polyubiquitin

chains with K63-ubiqutin and K27-ubiquitin chains mostly

serve as recruitment platforms for DDR proteins, whereas

those with K48-ubiquitin chains are mostly signals for protein

removal and proteasome-dependent degradation [5,65,66]. p97

complexed with the cofactors Ufd1-Npl4 (p97Ufd1-Npl4) recog-

nizes the ubiquitin signal and associates with sites of DSBs

[45,46]. Despite the key role of RNF8, the recruitment of

p97-Ufd1-Npl4 only partially depends on it, suggesting that

additional E3 ligases and/or PTMs like SUMOylation might

regulate p97 recruitment. Indeed, ubiquitination by the

SUMO-targeted E3-ubiquitin ligase (STUbL) RNF4, as well

as SUMOylation of Rad52 in yeast, also engage p97 at DSBs

[48,50]. Once recruited, p97 physically interacts with and

removes different ubiquitinated proteins like L3MBTL1, Ku

and KAP1, and allows the loading of other proteins like

53BP1, BRCA1 and Rad51 [45,46,50,52]. p97 thus facilitates

both DSB repair pathways and regulates the organization of

chromatin structure surrounding DSBs.

(a) p97 (VCP) in non-homologous end-joining
Loss of the p97-Ufd1-Npl4 complex compromises NHEJ activity

[45,52]. One mechanism through which p97 facilitates NHEJ
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Figure 1. Schematic representation of DSB repair by NHEJ and HR. The broken DNA double strand ends are bound by the Ku70/80 heterodimer, which protects them
from extensive end resection. (a) Binding and subsequent phosphorylation by DNA-PKcs marks the decision for repair via NHEJ pathway and the broken ends are
juxtaposed. The broken ends are mildly processed by different nucleases, helicases and slightly extended by DNA polymerases, to prepare them for re-ligation via
the XRCC4-LigIV-XLF complex. This repair mechanism is cell cycle-independent and considered to be error-prone. (b) Extensive end-resection by MRE11 ( part of
the MRN complex) and CtIP nucleases initiates repair via the HR pathway. The 30-ssDNA overhangs are protected by ssDNA-binding protein RPA, which is consequently
replaced by the recombinase RAD51 which is loaded by BRCA2. RAD51 initiates the homology search on the sister chromatid and strand invasion to copy the lost DNA
region and thus perform error-free DNA repair. This pathway is mainly executed in late S- and G2-phases of the cell cycle, when a sister chromatid is available.
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is by segregating the ubiquitinated polycomb protein

L3MBTL1 from DSB sites, which in turn enables recruitment

of 53BP1 (see below) [46,67–69].

NHEJ completion also requires p97. When DNA-ends are

rejoined, the ring-shaped Ku complex gets sterically interlocked

on the DNA molecule (figure 2a). If not removed, post-repair per-

sistence of trapped Ku would interfere with DNA replication and

transcription [70,71]. However, the rigidity of Ku impedes it from

being opened for release like other DNA clamps such as PCNA

[72]. Instead, segregation of Ku requires profound structural

remodelling performed by p97 [73], which depends on prior con-

jugation of Ku80 with K48-ubiquitin chains [52,73]. Inactivation

of p97 results in the accumulation of ubiquitinated Ku80 and

K48-ubiquitin chains at the sites of DSBs [5,45,52]. This was

demonstrated by mass spectrometry and by in vivo and in vitro
analysis of Ku80 recruitment to DSBs in mammalian cells and

Xenopus egg extract [45,52,56]. Although not shown, it is concei-

vable that p97 might be also required for extraction of the Ku70

subunit. Ku70 ubiquitination has been shown, but it is not clear

whether this modification targets it for p97 segregation[32,56,74].
Other roles for p97 in NHEJ are expected, particularly

during initiation because p97-depleted human cells exhibit

reduced NHEJ [45]. Of note, p97 can interact directly with

ubiquitinated DNA-PKcs to promote its proteasomal

degradation (figure 2b) [49].

(b) p97 (VCP) in homologous recombination
Besides its involvement in NHEJ, p97 also enables HR initia-

tion and progression. In mammalian cells, p97 depletion

largely attenuates HR after treatment with DSB-inducing

agents that act either independently of cell cycle (like IR or

Zeocin) or specifically during S-phase by inducing replication

fork collapse (like the chemotherapeutic drug camptothecin)

[45,52]. The most deleterious effects observed on HR

following p97-Ufd1-Npl4 inactivation are impaired DNA-end

resection and a consequent broad decrease in loading of

HR-associated proteins phospho-RPA, Rad51 and BRCA1,

combined in some instances with an abnormal nuclear accumu-

lation of Rad51, observable by high-resolution microscopy [48].

Defects in DSB end resection are most probably due to



Table 1. p97 (VCP or Cdc48) cofactors in DSB repair and chromatin remodelling. n.d., not determined; C. elegans, Caenorhabditis elegans; S. pombe,
Schizosaccharomyces pombe; S. cerevisiae, Saccharomyces cerevisiae.

p97 cofactor substrate species reference

DSB repair UFD1, NPL4 K48-ubiquitin conjugates mammalian cells Meerang et al. [45]

UFD1, NPL4 L3MBTL1 mammalian cells Acs et al. [46]

Ufd1 SUMO-conjugates S. pombe Køhler et al. [47]

Ufd1 SUMO-Rad52 S. cerevisiae Bergink et al. [48]

n.d. DNA-PKcs mammalian cells Jiang et al. [49]

n.d. KAP1 mammalian cells Kuo et al. [50]

n.d. RAD51 C. elegans Ackermann et al. [51]

UFD1, NPL4, FAF1 Ku80 mammalian cells Van den Boom [52]

p97 cofactor interactor species reference

chromatin remodelling n.d. Irc20 S. cerevisiae Richardson et al. [53]

Ufd1,Npl4, Ubx4,

Ubx5, Ubx6, Ubx7

INO80 S. cerevisiae Lafon et al. [54]

UBXD7 MRGX mammalian cells Raman et al. [55]
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hyper-accumulation of Ku at DSB sites which, as mentioned,

prevents DNA-end resection, the main HR commitment step.

Early eviction of Ku in S/G2-phases releases the brake on HR

and, notably, has been shown to be driven by p97, indicating

that p97 contributes to the DNA repair pathway choice by

favouring commitment to HR. Repair pathway choice after

DSB formation is a crucial initial decision that affects the fidelity

and speed of repair.

(c) p97 (VCP) in repair pathway choice
As discussed, Ku is removed by p97 at both pre-HR and post-

NHEJ repair stages. The selective action of p97 may reflect cell

cycle and/or repair stage-dependent differences of various

ubiquitin ligases with non-redundant functions. For example,

the early ubiquitination of Ku involves RNF138 [75], an E3-

ubiquitin ligase that operates mainly during S/G2 cell cycle

phases. This notion could be extended to the segregation of

other DNA repair proteins like KAP1 [50], which is signalled

for p97-dependent proteasome degradation by RNF4, another

ubiquitin ligase that accumulates in S/G2 phase. In agreement

with this, numerous lysines in Ku have been identified to be

either ubiquitinated [56] or accessible for potential ubiquitina-

tion [76], and several other ubiquitin ligases are likewise able

to promote K48-ubiquitin chain formation to degrade DNA-

bound Ku80, including RNF8 [77] and cullin-RING ubiquitin

ligases [56,73,74]. It is therefore possible that several ubiquitin

ligases, regulated by alternative pathways, conjugate ubiquitin

to Ku to trigger its removal. In this regard, an Fbxl12-containing

Skp1-Cullin-F-box (SCF) complex is also able to promote

the conjugation of K48-ubiquitin to Ku80 in Xenopus egg

extract [73].

(d) p97 (Cdc48) in non-mammalian homologous
recombination

Rad51 loading is primarily mediated by BRCA2 in metazoans

and by Rad52 in yeasts. A control mechanism in Saccharomyces
cerevisiae to restrain Rad52, and thus control Rad51 loading,

involves p97/Cdc48-yUfd1 binding to SUMOylated Rad52

through a SUMO interacting motif (SIM) present in yeast
Ufd1 (yUfd1) [48]. This binding counterbalances the inter-

action between Rad52 and Rad51 to suppress spontaneous

recombination events (figure 2c). Despite the importance of

SUMOylation in Rad51 loading in metazoan cells [78] and

the identification by mass spectrometry of SUMOylated

BRCA1/BRCA2 [79,80], a similar mechanism in mammalian

cells seems unlikely, given that the mammalian Ufd1 appar-

ently lacks SIMs [81] and that the mammalian Rad52

orthologue has a less significant role in HR.

Experiments in Caenorhabditis elegans provided indications

that following high doses of IR, p97/Cdc48 may be relevant

for the coordination between ongoing HR repair and activation

of apoptosis [51,82,83]. p97/Cdc48 was able to disassemble

RAD-51 filaments and to interact and stimulate the activity of

proapoptotic UFD-2, reinforcing the position of p97/Cdc48 in

the key decision between DNA repair and apoptosis [51]

(figure 2d). Whether mammalian Ufd2 orthologues UBE4A

and UBE4B are also involved in apoptosis control is unclear,

but it was shown that UBE4B regulates levels of p53 [84,85].
4. The role of p97 in double strand break-
induced chromatin remodelling

In order to ensure proper gene expression and genome

stability, eukaryotic nuclear DNA combines with histones

and other proteins enabling the formation of highly

organized chromatin structures. Nucleosomes are the core

particles of chromatin, consisting of an approximately 146

base-pair-long DNA segment coiled around a histone octa-

mer, which consists of two copies of both H3 and H4

histone proteins and two H2A/H2B histone dimers. A fifth

histone, H1, links consecutive nucleosomes, which are further

bundled together into three-dimensional chromatin fibres

with varying layers of compaction. The final chromatin archi-

tecture is dictated by nucleosome variability, which results

from incorporating different histone core variants (such as

H2A variants H2AX and H2AZ) and from the epigenetic

markers carried on them. These markers are modulated by

the activity of many different enzymes and read by sensor

proteins coupled to effectors [86–88].
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Upon DNA damage, a rapid chromatin adaptation at sites

of DSBs and surrounding chromatin ensures proper DNA

repair [89]. The global process known as chromatin remodel-

ling facilitates efficient access to nucleosomal DNA, mediates

signalling and controls the activity of repair proteins. The

chromatin landscape is chiefly organized by the action of

histone PTM enzymes and ATP-dependent remodelling com-

plexes, which catalyse the chemical modification of

epigenetic markers and the physical rearrangement of

nucleosomes, respectively. This leads to changes in chroma-

tin-associated proteins that regulate the kinetics of DSB

repair and also inhibit RNA transcription [88]. For example,

the gene transcription co-repressor KRAB-associated protein

1 (KAP1) is phosphorylated by the ATM kinase and is rapidly

recruited to chromatin surrounding DSBs, where it represses

transcription and makes chromatin more accessible for repair

[90]. The importance of chromatin remodelling in the DDR

[89,91] along with recent discoveries regarding the activity

of p97 in this context [11,92] are spurring wider attention to

the influence of p97 on chromatin reorganization during

DSB repair.

(a) p97 regulates DNA damage-induced histone
modifications

DDR induction results in the manifestation of an extensive

array of specific covalent PTMs on structural chromatin
proteins to facilitate repair, including methylation, acety-

lation, phosphorylation, ubiquitination and SUMOylation

[93–95]. Specifically, ubiquitination signalling has been

recently established as a fundamental DDR constituent for

the time- and spatially coordinated mobilization of DNA

repair proteins [96,97]. Various ubiquitin ligases, mainly

RNF8 and RNF168, initiate the ubiquitination cascade at

DSB sites (figure 3a). RNF8 first marks histone H1 with

K63-linked ubiquitin chains [98]. RNF168 recognizes this

modification through its UDM1 ubiquitin-binding domain

[61,69] and subsequently ubiquitinates histones H2A and

H2AX [99,100]. This second modification is also recognized

by RNF168 through another UBD termed UDM2, which

further anchors RNF168. Ubiquitination of other proteins fol-

lows. Although the topology of these ubiquitin chains is

imprecise, RNF168 is able to add mono- and K27-linked ubi-

quitin [66,100], while RNF8 mainly produces K48-ubiquitin

and K63-ubiquitin chains [45,77,101,102]. While we under-

stand the formation of ubiquitination signals and attraction

of DDR proteins to some extent, less is known about their

functional consequences and the fate of ubiquitin-modified

proteins.

p97 docks to ubiquitin chains at the sites of DSBs [45,46]

through the UBDs borne by core p97-adaptors, chiefly Ufd1

and Npl4 [45]. Once at the sites of DNA damage, p97 orches-

trates the segregation of ubiquitinated substrates, resulting in

the attenuation of the global ubiquitin signals at sites of DNA
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damage [45,57]. This function becomes evident in cells with

abolished p97 activity, which exhibit hyper-accumulation of

ubiquitin chains at DSBs (especially those with K48-ubiquitin

chains), impairment of NHEJ and HR repair pathways, and

attenuated recruitment of DNA repair and signalling proteins

Rad51, 53BP1 and BRCA1 [45] (figure 3b). While this clearly

indicates that p97 hierarchically removes DDR proteins from

the dynamic DNA repair complexes, only a few unequivocal

examples of p97 substrates have been reported, despite the

great interest of this matter.

53BP1 is one of the essential DSB-signalling proteins

whose function in DSB repair relies on p97 (figure 3c). 53BP1

binding to chromatin is mediated through its ubiquitination-

dependent recognition UDR and Tudor motifs recognizing,

respectively, H2A monoubiquitination (H2A-Lys-15Ub) [103]

and H4 methylation (H4-Lys-20me2) [104] marks. Although

the first mark is DSB-specific generated by RNF8/RNF168,

the second one is very abundant even in unstressed cells and

usually occupied by other Tudor domain-containing proteins

L3MBTL1 and JMJD2A/B. In order for 53BP1 to gain access

to sites of DSBs, L3MBTL1 must be ubiquitinated and degraded

in an RNF8- and p97-dependent manner. Removal of L3MBTL1

exposes H4-Lys-20me2, allowing recruitment of 53BP1 to DSB

sites [46,105]. JMJD2A/B extraction also depends on RNF8

and proteasome [67] but a role for p97 here was unaddressed.

Marks for proteasomal degradation are not limited to

the activity of conventional E3-ubiquitin ligases. Protein

SUMOylation has emerged as an additional control mechan-

ism for protein turnover, acting in concert with ubiquitination

through the SUMO-targeted ubiquitin ligase (STUbL) RNF4

(figure 3d ). RNF4 interacts with p97 and the absence of

either protein leads to stabilization of KAP1 [50]. This begs

the question of whether p97 also participates in the removal

of the other known SUMOylated RNF4 targets like MDC1,

53BP1, BRCA1 and RPA [78]. Rad22 (RAD52 in mammalians)

has been identified as one of the STUbL/p97/Cdc48

substrates [47,81]. As mentioned, yeasts rely on additional

mechanisms for protein degradation through a SUMO inter-

acting domain (SIM) present in yeast Ufd1 that targets p97/

Cdc48 to SUMOylated substrates.

Besides regulating histone modifications after DSBs, p97

also influences chromatin dynamics and DNA repair path-

way choice by regulating KAP1. IR induces the formation

of discrete phospho-KAP1 (pKAP1) foci at DSBs, and this

happens predominantly in cells in G0/G1-phase of the cell

cycle [50]. Mechanistically, pKAP1 concomitantly promotes

NHEJ and impedes HR repair by blocking the loading of

BRCA1 [50]. Removal of KAP1 foci during S/G2-phases by

RNF4 and p97 thus favours HR repair. Indeed, direct inter-

action between p97 and RNF4 is required in vivo for the

removal of pKAP1 and subsequent loading of BRCA1 and

RAD51. A remaining question is the identity of the p97

cofactor(s) involved in this process.
(b) Cooperation between the p97 system and chromatin
remodelling complexes

ATP-dependent chromatin remodelling complexes (CRC)

tailor chromatin configuration by employing energy from ATP

hydrolysis to disrupt DNA–histone contacts and mobilize

(slide, twist, loop and evict) nucleosomes along DNA or

alter their composition (exchange histones) [106]. All CRCs
contain a core catalytic subunit harbouring a DNA-dependent

ATPase/helicase domain and one regulatory domain whose

identity defines four major families of CRCs: INO80, ISWI,

Mi-2/CHD and SWI/SNF. Catalytic subunits are encoded by a

minimum of 30 different genes in mammals (nine in yeast)

[107,108]. Additional subunits conferring distinct biological

functions can then associate with the ATPase subunit, resulting

in a variety of complexes within each family [107,109,110].

Although primarily studied in yeast models, CRCs are evolution-

ary conserved with homologous subunits being present across

eukaryotes. Recent reviews provide details of the structure

and functions of CRCs [89,109,111–113]. Here, we focus on

the physical and functional interaction between CRCs and the

p97/Cdc48 system.

DDR-associated changes in chromatin commit all four

CRC families to cooperatively rearrange nucleosome density

and composition around DSBs and to modulate DNA repair

proteins. For example, the recruitment of Ku is fostered by

ACF1 (ISWI family) [112], whereas HR-promoting DNA

resection by the MRN nuclease complex is further enhanced

by several complexes including INO80, the histone-acetylase

Tip60/NuA4 (SWR1) and BRG1 (SWI/SNF) [111,114], the

latter also facilitating pRPA/RAD51 replacement [115,116].

H2A.Z/H2B and H2A/H2B dimer exchange is controlled

by opposing roles of INO80 and SWR1, and gH2AX is

maintained by INO80 [109,111,117–119].

(c) Interaction of chromatin remodelling complexes
with the ubiquitin-proteasome system

DSB signalling also intertwines with CRCs. Several CRCs

are phosphorylated by ATM (BRG1, BAF180 [120,121]), and

some CRCs promote deacetylation and checkpoint activa-

tion [122–124]. Here as well, the ubiquitination signalling

cascade induced by DSBs is taking centre stage. The ubiquitin

ligase RNF168 interacts with the catalytic subunit SNF2H/

SMARCA5, and the activities of both ISWI and CHD4 com-

plexes are required for RNF168 function [122,125–128].

Previous monoubiquitination of histone H2B is one factor sup-

porting the recruitment of SNF2H itself [129–131]. Links

between CRCs and the UPS are further represented by the

metazoan INO80 complex. Upon interaction of INO80 with

the proteasome, its UCH-L5/Uch37 subunit exhibits deubiqui-

tinating activity on K48-ubiquitin chains [132,133]. It is

noteworthy that UCH-L5/Uch37 can also be found in the

eukaryotic 26S proteasome [132,134]. Interestingly, UCH-L5

and INO80 ATPase, along with the proteasome and the RNA

polymerase II machinery, has been associated with progression

of Alzheimer’s disease [135].

Affinity-capture screenings and mass spectrometry analy-

sis suggest that the p97/Cdc48 system physically interacts

with numerous CRCs. For example, yeast p97/Cdc48 and sev-

eral p97-cofactors (Ubx4, Ubx5, Ubx6 and Ubx7) and INO80

components (Ino80, Arp5 and Arp8) were co-precipitated in

reciprocal pull-down assays [54]. Indeed, during transcription

arrest, p97/Cdc48-Ubx7 was shown to form a ternary complex

with INO80 and polyubiquitinated Rpb1, the largest subunit of

RNA polymerase II essential for polymerase activity (see

below) [54]. A physical interaction between p97/Cdc48 and

Irc20 was discovered to regulate transcription [53]. Irc20 and

its mammalian homologues SHPRH and HLTF are ATP-

dependent chromatin remodelling helicases with E3-ubiquitin

ligase activity. Although they are involved in DNA repair and
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replication [136–138], whether p97/Cdc48 interacts with Irc20

in that context is unknown. In non-stimulated human cells,

some UBXD-containing p97-cofactors exhibit significant inter-

action with subunits in the SWI/SNF, NurD and INO80

complexes [55], like UBXD7 with MRGX (TRAAP/NuA4

sub-complex). Although the functions of these detected inter-

actions between p97/Cdc48 and CRC components are

generally unknown, they reveal that the ATPase activities in

each system may be complementary during chromatin remo-

delling. A challenge for future research will be to uncover the

functional significance and to determine how their activities

are coordinated at DSB sites.
(d) Removal of arrested RNA polymerase II by
interaction of INO80 and UPS systems

A remarkable example of concerted action between CRC

and p97/Cdc48 systems is found during stalled RNA

transcription in Saccharomyces cerevisiae [54,139]. RNA tran-

scription frequently stalls at sites of DNA damage [140,141],

creating an obstacle to DNA replication and repair machi-

neries. In these conditions, the chromatin-bound subunit of

RNA polymerase II, Rpb1, undergoes polyubiquitination

[142–144] followed by p97/Cdc48-dependent extraction and

proteasomal degradation [139]. A report by Lafon et al. [54]
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established that the INO80 complex is also required and coor-

dinates with p97/Ccd48 in RNA polymerase II extraction

(figure 3e). INO80 and p97/Cdc48 form an inter-complex inter-

action network together with p97-cofactors Ufd1, Npl4, Ubx4

and Ubx5 that engages in a ternary complex with ubiquitinated

Rpb1 to promote its proteasomal degradation. Ubx7 appears to

be the main p97/Cdc48 cofactor stabilizing this structure. Cells

lacking INO80 or p97/Cdc48 exhibit an aberrant accumulation

of polyubiquitinated RNA polymerase II on chromatin. This

scenario places INO80 as a player in UPS-dependant protein

turnover on chromatin. It is plausible that INO80 and p97/

Cdc48 converge at a stage in which the translocase activity of

INO80 may be important to disrupt the contacts between

Rpb1 and chromatin, with the segregase activity of p97/

Cdc48 required to extract it. Consistent with this model,

INO80 and p97/Cdc48 exhibit synergistic effects in promoting

DNA replication and cell viability after treatment with differ-

ent DSB-inducing agents, including treatments with HU,

MMS or Zeocin [54]. A pertinent question is whether an

analogous mechanism is present also in mammalian cells.
0282
5. Conclusion
The p97 system has recently enlarged the list of genome

caretakers required to perform the repair of DSBs. Although-

CHROMAD is still far from being completely understood, we

can now safely claim that p97-orchestrated CHROMAD is an

essential process during DSB repair. To be specific, various

and mostly ubiquitinated proteins involved in many aspects

of DSB repair, from initiation to completion, have to be
spatio-temporally removed by p97. p97 hierarchically removes

chromatin-bound proteins from sites of broken DNA as well

as from surrounding chromatin, as illustrated by its removal of

L3MBTL1, the Ku heterodimer and KAP1. In addition, the p97

system cooperates with CRC at DSBs to remodel the chromatin

landscape and facilitate protein degradation at nearby sites of

replication and transcription, illustrated by the mechanistically

described cooperation with INO80.

Many questions remain open and future research should

resolve the composition, interactions and functional differences

of the diverse p97-cofactor sub-complexes as well as identify

additional substrates. In addition, investigating the interactions

between the p97 system and CRCs could be equally promising

at resolving additional regulatory mechanisms.

Answers to these questions will help us to better understand

the processes underlying genome stability and underscore the

importance of the p97 system as a druggable target for cancer

therapies, based on the inactivation of the DDR.
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