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ABSTRACT

Aging is the progressive decline of body functions and a number of chronic conditions can lead to premature aging
characterized by frailty, a diseased vasculature, osteoporosis, and muscle wasting. One of the major conditions associated
with premature and accelerated aging is chronic kidney disease (CKD), which can also result in early vascular aging and
the stiffening of the arteries. Premature vascular aging in CKD patients has been considered as a marker of prognosis of
mortality and cardiovascular morbidity and therefore requires further attention. Oxidative stress, inflammation,
advanced glycation end products, fructose, and an aberrant gut microbiota can contribute to the development of early
aging in CKD patients. There are several key molecular pathways and molecules which play a role in aging and vascular
aging including nuclear factor erythroid 2-related factor 2 (Nrf-2), AMP-activated protein kinase (AMPK), sirtuin 1 (SIRT1),
and klotho. Potential therapeutic strategies can target these pathways. Future studies are needed to better understand
the importance of premature aging and early vascular aging and to develop therapeutic alternatives for these
conditions.

LAY SUMMARY

CKD is an important cause of premature and accelerated aging. It results in early vascular aging together with arterial
stiffness. Several cellular and molecular mechanisms can contribute to the development of early aging in CKD
patients. Premature vascular aging in CKD patients has been considered as a prognostic marker of mortality and
cardiovascular morbidity. Potential therapeutic strategies can target these pathways.
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INTRODUCTION

Chronic kidney disease (CKD) is characterized by having struc-
turally and/or functionally abnormal kidneys present for more
than >having one ormoremarker of kidney dysfunction such as

albuminuria [1, 2]. It is believed that ∼15% of the US general pop-
ulation has been impacted by CKD between 2013 and 2016 [2].
CKD is associated with a number of comorbidities and chronic
conditions including premature aging [3, 4].
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The aging process can either be physiological or pathological,
which is also termed premature aging. Physiological aging is the
result of the functional decline of the body and it is influenced
by genetic as well as environmental factors such as socioeco-
nomic status, stress, sedentary lifestyle, diet, smoking, and con-
sumption of alcohol and other drugs [5, 6]. On the other hand,
premature aging is characterized by accelerated functional de-
cline that results in aging earlier than expected for chronologi-
cal age [7]. A number of chronic conditions are associated with
premature aging characterized by frailty, a diseased vascula-
ture, the development of osteoporosis, and muscle wasting [3,
8]. CKD, which is one of the major conditions associated with
premature and accelerated aging, is also related to early vascu-
lar aging and the stiffening of the arteries [3, 9]. The premature
stiffening of especially the central arteries in CKD patients has
been considered as a marker of prognosis for mortality and car-
diovascular morbidity and therefore requires further attention
[9–13].

In this review, we first describe the underlying mechanisms
of early aging in CKD patients. We then elucidate the character-
istics of premature vascular aging in CKD and end-stage renal
disease (ESRD) and delineate its clinical implications. We finally
explain the keymolecular pathways andmolecules that are crit-
ical for the development of aging and vascular aging while dis-
cussing the potential therapeutic strategies that can target these
molecular structures.

Early aging in chronic kidney disease

The definition of aging can be broadly described as the progres-
sive loss of the functional ability and the physiological functions
of the body together with declining fertility and higher mor-
tality over time [8, 14]. It is influenced by genetic, epigenetic,
and environmental factors [15]. Older age is associated with a
higher prevalence of chronic diseases and many chronic condi-
tions cause early aging [16–20]. One of the conditions associated
with premature and accelerated aging is CKD which is charac-
terized by progressive vascular disease and early vascular ag-
ing, muscle wasting, osteoporosis, frailty, and systemic inflam-
mation [9, 21]. Oxidative stress, inflammation, an aberrant gut
microbiota, advanced glycation end products, and fructose con-
sumption and are all factors contributing to early aging in kidney
disease patients (Fig. 1).

Oxidative stress

Oxidative stress is an important mechanism for accelerated ag-
ing and muscle wasting in CKD [22]. Oxidative stress in CKD
results from intravenous iron treatment, the activation of the
renin-angiotensin system (RAAS), decreased antioxidants, and
features related with dialysis such as the incompatibility of
membranes or fluids [23, 24]. Mitochondrial dysfunction also
contributes to oxidative stress in CKD [25, 26]. Protein bound
uremic toxins such as p-cresyl sulfate and indole-3-acetic acid
are shown to inhibitmitochondrial oxidative phosphorylation in
renal proximal tubule epithelial cells by inhibition of succinate
dehydrogenase enzyme [27]. Oxidative stress also causes alter-
ations in the molecular structure of proteins, carbohydrates and
lipids with ensuing tissue and organ damage.

Cellular senescence, immunosenescence, and inflammaging

The concept of cellular senescence was discovered in the 1960s
by demonstrating the loss of replicative potential in human cells

[28]. Senescence is characterized by cell cycle arrest in the G1
or G2 phase, apoptosis resistance, and altered gene expression
[29]. Cellular senescence is a physiological process in embry-
onic development and wound healing but can be pathologic
leading to aging and disease states [30]. Senescence has been
suggested as a major cause of age-related diseases [31]. Cel-
lular senescence can be induced by various stimuli, such as
telomere shortening or dysfunction,mitochondrial dysfunction,
epigenetic influences, DNA damage, oncogene activation, and
inactivation of tumor suppressor genes [32]. Although senescent
cells lose their replicative potential, they remain metabolically
active. Senescent cells undergo several proinflammatory and
pro-fibrotic changes in gene expression and cellularmetabolism.
This new phenotype is named senescence-associated secretory
phenotype (SASP). SASP is characterized by increased expres-
sion and secretion of growth factors, cytokines, proteases, and
chemokines [33]. These factors signal nearby cells in a paracrine
fashion causing paracrine senescence and altering their sur-
rounding environment [34]. SASP can alsomodulate the immune
system with these factors. It can activate the immune system
and increase the elimination of senescent cells or promote the
persistence and accumulation of senescent cells [35]. With ag-
ing, several cells in the kidney, such as renal tubular epithelial
cells, podocytes, mesangial cells, immune cells, and endothe-
lial cells, undergo cellular senescence. However, senescence is
most notably seen in renal tubular epithelial cells [36]. Renal
tubular cell senescence is associated with the changes seen in
aged kidneys, including tubular atrophy, interstitial fibrosis, and
glomerulosclerosis. Although SASPmight benefit tissue regener-
ation after an acute kidney injury, prolonged SASP exposure has
detrimental effects on tissue function and repair, which eventu-
ally cause CKD [37]. Furthermore, SASP causes sterile inflamma-
tion and contributes progression of CKD by promoting fibrosis in
the kidney [36].

Senescence can be associated with immune system dys-
function and dysregulation, changes collectively referred to as
immunosenescence and inflammaging, respectively [38]. Im-
munosenescence is considered harmful because it is associated
with low-grade sterile inflammation with decreased cellular re-
sponses against infections and vaccines [39]. Changes seen with
immunosenescene are influenced by several factors such as
genetics, nutrition, exercise, exposure to microorganisms, sex,
and human cytomegalovirus status [38]. Inflammaging is char-
acterized by high blood levels of proinflammatory cytokines in
older individuals [40]. Inflammaging is associated with an in-
creased risk of chronic diseases including cardiovascular dis-
eases, CKD and dementia. Several factors are postulated as risk
factors and causes of inflammaging, such as chronic infections,
impaired autophagy and cellular degradation, visceral obesity,
genetic susceptibility and altered microbiota, and increased gut
permeability [41].

Inflammation and metaflammation

Inflammation results from hyperactive innate immunity, which
is characterized by activated macrophages and increased proin-
flammatory cytokines such as interleukin 6, interleukin 1, and
tumor necrosis factor [42]. There are also several changes in
the adaptive immunity. Decreases in the number and function
of naive T cells and increased numbers of memory T cells,
especially proinflammatory CD4+CD28– T cells are evidence
of immunosenescence in CKD [43]. Visceral obesity, smoking,
low-grade infection, and social and psychosocial stresses are as-
sociated with increased expression of inflammatory genes [44].
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Figure 1: The factors contributing to early aging in CKD. AGE: Advanced glycation end products, CKD: Chronic kidney disease, CV: Cardiovascular, ER: Endoplasmic
reticulum, RAAS: Renin-Angiotensin-Aldosterone system, ROS/Oxidative stress.

In addition, overhydration is a common complication in CKD,
and it can also contribute to systemic inflammation via bac-
terial or endotoxin translocation due to severe gut edema [45].
Systemic inflammation leads to muscle wasting in CKD [46].
Proinflammatory cytokines produced by senescent cells with
the SASP, activates proteolytic mechanisms, and impair mus-
cle regeneration [29]. Inflammation accelerates atherosclerosis
and is an independent risk factor for early medial calcifica-
tion [47]. Accelerated medial calcification is common among pa-
tients with uremia and with other chronic inflammatory dis-
orders [48–53]. Metaflammation is described as a long-term
low-grade inflammatory state induced by metabolic variations
causing increased reactive oxygen species (ROS), inflamma-
some activation, and endoplasmic reticulum stress, which is
important for cell homeostasis and insulin signaling pathways.
Therefore, metaflammation can cause cardiovascular morbidi-
ties due to induction of endothelial dysfunction and vascular
calcifications [54].

Nutrition and digestion: gut microbiota, advanced glycation
end products, and fructose consumption

Patientswith CKDand ESRD are at risk of having an abnormal in-
testinal microbiota, characterized by alterations in saccharolytic
bacteria to increases in proteolytic bacteria [55–57]. This change
in the microbiota results in the production of several uremic
toxin precursors in the intestines such as p-cresol and indole,
both subsequently metabolized by the colonic mucosa and the
liver to indoxyl sulfate and p-cresyl sulfate resulting in a high
toxicity specifically targeting the cardiovascular system [55, 57,
58]. The intestines are also known tomodulate the immune sys-
tem both locally and systemically via complex interactions be-
tween the gut microbiota and immune system. Short chain fatty
acids, which are metabolites produced in the colon by bacterial
fermentation, have modulatory functions on the immune sys-
tem [59, 60]. In addition, with an impaired gut barrier, intestinal
bacteria and endotoxins infiltrate the mucosa and translocate
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to the blood stream, circulating to different organs and tissues
including the kidney contributing to inflammation [61].

Advanced glycation end products (AGEs) are a group of com-
pounds that are formed by the nonenzymatic glycation of lipids,
proteins and DNA. AGEs are not only formed during hyper-
glycemia, but also in states with high oxidative stress such as
in CKD [62]. Furthermore, AGEs can be found in ultra-processed
foods. The western diet, which is low in fruits and vegetables
and high in animal proteins and processed foods, is a risk fac-
tor for CKD [63]. During food processing, high temperatures, de-
hydration, decompression, salt, irradiation, and preservatives
significantly alter the lipids, proteins, and carbohydrates and
lead to the formation of AGEs within foods [64]. The kidneys
are the primary site of AGE excretion and in chronically dis-
eased kidneys the circulating levels of AGEs increase [65]. Ex-
cessive AGEs can contribute to the progression of CKD. AGEs
and their receptors including advanced glycation end product-
specific receptor (RAGE) trigger oxidative stress and inflamma-
tion, in turn potentially contributing to aging [66]. Thus, AGEs
are related to cardiovascular complications and progression of
renal dysfunction as well as early aging in CKD. Excessive in-
take of fructose is known to be associated with hypertension,
diabetes, andmetabolic syndrome,which are risk factors for the
development of CKD [67, 68]. In animal studies, fructose induces
tubular cell proliferationwith low-grade tubulointerstitial injury
by the induction of chemoattractant proteins such as monocyte
chemoattractant protein-1 from tubular cells and intercellular
adhesion molecule-1 in renal microvascular endothelial cells
[69, 70]. Long-term fructose consumption was shown to increase
AGEs and accelerated aging in an animal study [71].

Premature vascular aging in CKD patients

In addition to accelerated aging, CKD and ESRD have been asso-
ciated with vascular calcification, premature vascular aging and
the stiffening of the arteries [9, 72]. Early vascular aging refers to
accelerated age-related changes in arterial structure and func-
tion [73]. Early vascular aging is characterized by profound me-
dial vascular calcification, which is primarily driven by vascular
smoothmuscle cells [47]. Early vascular aging is an intermediate
cardiovascular endpoint and independent predictor of cardio-
vascular disease and cardiovascular mortality [74]. Arterial stiff-
ness, which can be measured with carotid-femoral pulse wave
velocity, is a hallmark of early vascular aging and pulse wave ve-
locity has been proposed as amarker of early vascular aging [75].
Characteristically, arterial stiffness is much more evident in the
aorta as well as the other central arteries compared to those lo-
cated in the periphery in this patient group [9, 76]. An increased
aortic stiffness can be considered to be a contributor to left ven-
tricular hypertrophy and a fall in the perfusion of the coronary
arteries as well as a marker of prognosis for mortality and car-
diovascular morbidity with the pulse wave velocity of the aorta
being an independent predictor for all-cause and cardiovascular
mortality [9–12, 77, 78]. Furthermore, small vessel disease in the
cerebral structures has also impacted the development of cog-
nitive impairment in CKD patients [79].

The stiffening of the arteries represents the overall aging of
the arterial network [9].Arterial remodeling and enlargement to-
gether with a greater arterial stiffness and early vascular aging
are seen in the earlier stages of CKD, in line with the fall in renal
function [9, 80]. In addition, one study reported that the stiffen-
ing of the aorta was independently related to the rate of change
of kidney function in individuals with CKD stages 3 and 4 [81].
The independent predictors of ≥25% decrease in kidney func-

tion or initiation of renal replacement therapy were the pulse
wave velocity of the aorta, systolic blood pressure, and the urine
protein-to-creatinine ratio [81].

There is an important relationship in regard to the pulse
wave velocity of the aorta and age, in comparison to the general
population: A gradual fall in the difference in the mortality rate
occurs with increasing age in patients with ESRD [9]. The pulse
wave velocity of the aorta has been reported to predict the
cardiovascular and all-cause mortality significantly in younger
individuals with ESRD [9]. One study reported that a pulse
wave velocity >12 m/s was able to present prognostic value
in patients with ESRD younger than 60 years of age, however
in older individuals this prognostic information was no longer
relevant [82]. A 10 to 30 times greater cardiovascular mortality
exists in individuals with ESRD in comparison to the general
population and among young patients mortality rates are up to
500 times greater [9, 83].

Overall, early aging of the vasculature and stiffening of
the arteries are in close relation to CKD and ESRD. A higher
aortic stiffness has been suggested as a prognostic marker and
aortic pulse wave velocity has been considered an independent
predictor for all-cause and cardiovascular mortality. Given
that vascular problems could potentially occur in the initial
stages of CKD, clinicians should consider earlier testing of the
cardiovascular system in younger or early-stage kidney disease
patients to gain information to better understand the prognosis
and to direct the treatment strategies of these patients [9].
Furthermore, future large-scale studies are needed to improve
our understanding regarding the clinical implications of early
aging, premature vascular stiffening and vascular calcification
in general in CKD and ESRD patients.

The major molecular pathways associated with aging
and vascular aging

Several key molecular pathways and molecules exist that play
a role in the development of aging and vascular aging. Potential
therapeutic strategies can target these pathways (Fig. 2).

Nuclear factor erythroid 2-related factor 2 (nrf2)

Nuclear factor erythroid 2-related factor 2 (Nrf-2), a basic-
leucine-zipper-like transcription factor, is a key regulator of
the balance between pro-oxidative or antioxidative defense
mechanisms [84]. The major functions of Nrf-2 include the
upregulation of the genes encoding for antioxidant or phase II
detoxifying enzymes such as NAD(P)H (nicotinamide ade-
nine dinucleotide phosphate) dehydrogenase-1 (NQO1), heme
oxygenase-1/2, tryptophan hydroxylase-1 or glutathione-
transferase [85]. At basal conditions, the activity of Nrf-2
located at cytosol is suppressed via Kelch-like ECH-associated
protein1 (Keap1), which is involved in the ubiquitination and
proteasomal degradation of Nrf-2 while oxidative signals
result in the nuclear translocation of Nrf-2 [86–88]. Addi-
tionally, few Keap-1 independent regulatory mechanisms
for Nrf-2 activity have been identified including the activity
of glycogen synthase kinase 3β (GSK-3β) and endoplasmic
reticulum stress [89, 90]. In vitro and in vivo studies have
demonstrated that over-expression or activation of Nrf-2 result
in decline in the expression of proinflammatory cytokines
such as the association between over-expression of Nrf-2
at endothelial cells and decreased expression of vascular
cell adhesion molecule-1 (VCAM-1), monocyte chemoat-
tractant protein-1 (MCP-1), and tumor necrosis factor-alpha



Vascular calcification and aging 1755

Figure 2: The major molecular pathways associated with aging and vascular aging. KEAP1 maintains Nrf-2 in the inactivated state. Oxidative stress and several
medications such as resveratrol activate and translocate Nrf-2 via the dissociation of KEAP1.ActivatedNrf-2 upregulates the genes encoding antioxidants such as NQO1
and HO-1/2 that, in turn, inhibit vascular calcification. Hyperphosphatemia suppresses the activity of Nrf-2. Klotho activates Nrf-2 while also increasing NO, decreasing
oxidative stress and potentially improving vascular dysfunction. AMPK can be activated via metabolic stress, low energy states, AICAR,metformin, and curcumin. The

activity of AMPK decreases in aging resulting in arterial stiffening and endothelial dysfunction. Activated AMPK decreases oxidative stress and elevates NO. AMPK also
increases, via NAD+, SIRT1 activity that plays a role in inhibiting aging and vascular calcification. SIRT1 also has an antioxidant function through the transcription of
FOXO3 and PGC-1α. Furthermore, SIRT1 inhibits arterial stiffening and endothelial dysfunction that result from aging. SIRT1 can be activated by resveratrol. AICAR:
Aminoimidazole carboxamide ribonucleotide, AMP: Adenosine monophosphate, AMPK: AMP-activated protein kinase, ATP: Adenosine triphosphate, CKD: Chronic

Kidney Disease, DMF: Dimethyl fumarate, FOXO3: Forkhead Box O3, HO-1/2: heme oxygenase-1/2, IL-1: Interleukin 1, KEAP1: Kelch-like ECH-associated protein 1,
NAD+: Nicotinamide adenine dinucleotide, NaHS: Sodium hydrosulfide, NO: Nitric oxide, NQO1: NAD phosphate) dehydrogenase-1, Nrf-2: Nuclear factor erythroid 2-
related factor 2, PGC-1α: Peroxisome proliferator-activated receptor-gamma coactivator-1- alpha, p16(CDKN2A): Cyclin-dependent kinase inhibitor 2A, p21 (CDKN1A):
Cyclin-dependent kinase inhibitor 1, ROS/Oxidative stress, RUNX2: Runt-related transcription factor 2, SIRT1: Sirtuin 1, TNF-α: Tumor necrosis factor-α, VSMC: Vascular

smooth muscle cell.

(TNF-α) [91–93]. A study in which the effects of T-cell spe-
cific augmentation of Nrf-2 on mice are being reviewed has
demonstrated that upregulation of Nrf-2 is associated with
higher levels of CD25(+) and FOXP3(+) regulatory T cells and
lower levels of proinflammatory cytokines such as TNF-α,
interferon-gamma (IFN-γ ), and interleukin-17, thus, leading

to protection from ischemia-reperfusion injury-induced acute
kidney injury (AKI) [94]. A study conducted on 2155 patients
with stage 1–5 CKD has identified five metabolites for which
serum levels are highly linked to the markers of kidney injury.
Among those five metabolites, supplementation of cultured
human kidney cells with 5-methoxytryptophan (5-MTP) results
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in the inhibition of NF-κB signaling and amelioration of renal
interstitial fibrosis in response to ischemia-reperfusion injury
that is mediated via the upregulation of Nrf-2 signaling pathway
[95]. Moreover, studies conducted on rats have illustrated that
supplementation with sulforaphane, a Nrf-2 agonist, leads to
decline in arsenic-induced nephrotoxicity mediated via decline
in the formation of renal ROS and lipid peroxidation products,
DNA damage, and increased formation of phase II antioxidant
enzymes [96].

Early vascular aging has been linked to vascular stiffening,
higher risk for cardiovascular diseases, and cardiovascular mor-
tality while the exact underlying pathophysiological mecha-
nisms are unclear [97]. Along with chronic low-grade inflamma-
tion, increased oxidative stress and formation of ROS result in
endothelial dysfunction that has been associated with vascu-
lar calcification and cellular senescence [98]. In vitro and animal
studies have shown that supplementation with sodium hydro-
sulfide, an activator of Nrf-2/Keap-1 signaling system, results in
the upregulation of HO-1/2 and NQO1, both of which are an-
tioxidant enzymes, causing the amelioration of vascular calci-
fication [99, 100]. Moreover, Nrf-2 activation leads to the sup-
pression of cellular bony transition mediated via runt-related
transcription factor 2 (Runx2) [101]. Hyperphosphatemia among
CKD patients have shown to suppress Nrf-2 activity both at tran-
scriptional, translational and post-translational levels while ad-
ministration of resveratrol, an agonist for Nrf-2, has been linked
to decline in the deposition of mineralized matrix at vascula-
ture, decline inmitochondrial damage, and intracellular calcium
deposition, therefore reversing the hyperphosphatemia-related
vascular alterations [102, 103]. Furthermore, treatment of mice
or rat subjects with dimethyl fumarate (DMF), another activator
of Nrf-2, has led to significant decline in vascular calcification
at aorta and carotid artery even under hypercalcemic and hy-
perphosphatemic environments [104, 105]. Interestingly, activa-
tion of Nrf-2 results in the autophagy of vascular smoothmuscle
cells to ameliorate vascular calcification through undiscovered
pathophysiological mechanisms [106].

The role of Nrf-2 signaling in cellular senescence, a state
characterized by cellular growth arrest without losing metabolic
activity, has been investigating various cell types including car-
diac muscle cells, vascular endothelial cells, and epithelial tis-
sues [107–109]. Studies conducted on Nrf-2 knockout mice have
illustrated that Nrf-2 depletion results in the upregulation of
cellular senescence markers such as cyclin-dependent kinase
inhibitor 2A (p16INK4a, CDKN2A) and cyclin-dependent kinase
inhibitor 1 (p21, CDKN1A), increased production of proinflam-
matory cytokines involved in the process such as interleukin-
1beta (IL-1β) and TNF [110]. The underlying mechanism is not
clear, nevertheless, one hypothesis includes the downregulation
of Nrf-2 via miRNAs derived from senescent cells such as miR-
126, miR-21, and miR-100 [111]. Moreover, a study conducted by
Stenvinkel et al. on patients with living donor kidney transplan-
tation showed that expression of cyclin-dependent kinase in-
hibitor 2A (p16INK4a, CDKN2A) is also related to the severity of
vascular calcification in ESRD [112].

Despite its central role in the physiology of cellular senes-
cence, vascular calcification, and vascular aging, the efficiency
of treatment strategies targeting Nrf-2 is not well established. A
phase I human clinical trial investigating the role of once daily
administration of bardoxolone-methyl, a Nrf-2 agonist, on 47
patients with advanced stage solid organ tumors or lymphoma
demonstrated potential beneficial effects with few dose-limiting
adverse effects, mainly being hepatotoxicity, while upregulation
of Nrf-2 is mediated via upregulation of NQO1 mRNA levels

[113]. Moreover, another Nrf-2 agonist referred as DMF is cur-
rently at phase III for the treatment of multiple sclerosis [114].
Furthermore, there are multiple ongoing clinical trials inves-
tigating the clinical utility of various Nrf-2 activators such as
DMF (NCT02784834, NCT02546440, NCT00810836), bardoxolone-
methyl (NCT00550849, NCT00811889, NCT01351675), oltipraz
(NCT00006457, NCT02068339), sulforaphane (NCT01008826,
NCT02880462, NCT02801448, NCT03220542), sulforadex
(NCT01228084), ebselen (NCT03013400), and complexa/CXA-10
(NCT02248051, NCT03449524, NCT03422510). Despite promising
initial results from early phase clinical trials, there is clear need
for future studies investigating the effects of Nrf-2 agonists on
vascular calcification, malignancies, and vascular aging.

AMP-activated protein kinase (AMPK)-sirtuin 1 (SIRT1)

AMP-activated protein kinase (AMPK) and Sirtuin 1 (SIRT1) are
both associated with vascular aging and age-related kidney
damage [115–118]. AMPK and SIRT1 are closely linked, charac-
terized by AMPK-deficient states causing an improper activa-
tion of SIRT1 and its downstream pathways in reduced energy
states [116–118]. AMPK elevates SIRT1 activity by rising NAD+

levels in the cell and therefore regulates the downstream SIRT1
signaling molecules such as forkhead box O3 (FOXO3) and per-
oxisome proliferator-activated receptor-γ coactivator 1 (PGC1 or
PPARGC1A), which also act as potential substrates for AMPK
[119–122].

AMPK is a serine-threonine kinase that, through the serine-
threonine liver kinase B1 (LKB1)-AMPK pathway, is activated via
metabolic stresses that block ATP generation such as hypoxia
and hypoglycemia or increase ATP use such as the contraction
of muscles [123]. AMPK can also be activated by metformin and
aminoimidazole carboxamide ribonucleotide (AICAR) [118, 124].
AMPK, which is crucial in energy-sensing, also plays an impor-
tant role in energy balance, stress resistance, and metabolism
[118, 123].

Lesniewski et al. showed that exercise decreased oxidative
stress and elevated nitric oxide bioavailability leading to the
restoration of endothelium-dependent dilation (EDD) in old
mice and that AMPK once active showed similar effects to ex-
ercise [125]. In comparison to younger controls of 3–6 months
of age, older mice (28–30 months) had decreased arterial AMPK
levels and suppression of EDD by superoxides [125]. AMPK ac-
tivated by AICAR resulted in an elevation of arterial AMPK and
reversal of the impaired EDD [125]. Similarly, one study showed
that AMPK activity was reported to be decreased in the cere-
bral arteries of aged rodents and the administration of cur-
cumin ameliorated aging associated cerebrovascular dysfunc-
tion through the AMPK/uncoupling protein 2 (UCP2) pathway
[126]. Furthermore, activating AMPK by using metformin has
been suggested to increase endothelial function in rodents with
type 1 and 2 diabetes [118, 127, 128]. In addition, one clinical
study reported that short-term metformin use ameliorated ar-
terial stiffness and endothelial function in young women with
PCOS, suggesting the activation of AMPK via metformin a key
underlying mechanism explaining these results [129]. Several
trials (NCT03309007, NCT01765946) have investigated the effect
of metformin on anti-aging through AMPK signaling. Kreutzen-
berg et al. (NCT01765946) have reported that prediabetic individ-
uals had improved effector pathways known regulate longevity
in animal models following metformin therapy [130].

These findings suggest that AMPK signaling is a crucial path-
way related to aging and vascular aging. Future preclinical and
large-scale clinical studies are needed to better understand the
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role of AMPK and to guide therapeutic strategies through this
pathway.

SIRT1 plays an important role in longevity and is responsi-
ble for the deacetylation of histone and non-histone proteins for
the modification of transcription factors, coregulators, and pro-
teins to adjust gene expression in accordance with the current
energy state of the cell and to resist stress by tempering proin-
flammatory and oxidative stress pathways [118, 131–134]. SIRT1
activity has been shown to decrease oxidative stress, proapop-
totic pathways, and inflammation, and improve telomere stabi-
lization, DNA repair pathways, and insulin sensitivity [118, 135].
SIRT1 is known to inhibit renal inflammation, fibrosis, and renal
cell apoptosis [136]. Decreased levels of SIRT1 aggregate renal fi-
brosis, a characteristic feature in CKD [137]. Several animal stud-
ies investigated mechanisms of SIRT1-related renal fibrosis, in-
cluding decreased matrix metalloproteinase 14 expression and
disinhibition of profibrotic TGF-β1 [138, 139]. The role of SIRTs in
the pathogenesis of kidney diseases is nicely summarized pre-
viously in a comprehensive review [140].

Studies have postulated that decreased SIRT1 may be crit-
ical in the development of a dysfunctional vascular endothe-
lium associated with aging [141–144]. An increased production
of SIRT1 in endothelial cells contribute to the prevention of sys-
temic dysfunction of the endothelium and a heightened stiffen-
ing of large arteries, both changes related to aging [145–147]. Fur-
thermore, a study with endothelial SIRT1-deleted mouse found
that SIRT1 deletion is associated with accelerated senescence
of endothelial cells with impaired endothelial dependent va-
sodilation [148]. Endothelial senescence can explain endothe-
lial dysfunction. Although endothelial senescence shows sim-
ilar features to other types of senescence, it also shows some
unique features [149]. A unique feature of endothelial SASP is
its role in arterial dysfunction, including increased levels of ROS
and reduced nitric oxide levels [116]. In one study, Donato et al.
showed that in older (30 months) mice aortic protein expression
of SIRT1 was significantly decreased compared to younger mice
(5–7 months) and acetylcholine induced peak EDD was signifi-
cantly inferior in isolated femoral arteries with aging [141]. The
application of SIRT1 inhibitor sirtinol led to a decreased EDD in
both young and old mice [141]. Furthermore, SIRT1 is shown to
be a potential inhibitor of vascular calcification with reduced
SIRT1 being associated with vascular calcification development
and activated SIRT1 resulting in decreased vascular calcifica-
tion [136, 150–153]. These studies suggest that SIRT1 is an im-
portant molecule in vascular dysfunction and aging and could
potentially give rise to therapeutic strategies to combat this
condition.

Several compounds have been investigated to evaluate the
effect of SIRT1 activation on vascular dysfunction, and among
these the best studied molecule is resveratrol. This molecule
acts as an activator of SIRT1 as well as functions through ≤15
other pathways including as an agonist of Nrf-2 together with
antioxidant and phytoestrogen effects [102, 118, 154–157]. One
study has shown that resveratrol administered to older aged
mice had a significant decrease in markers of aging such as
lower albuminuria, inflammation, apoptosis in the endothelium
of vessels and an elevated elasticity in the aorta, improved mo-
tor coordination,decreased cataracts, and a preservation of bone
density [158]. However, this study could not detect a prolonged
lifespan in mice treated with resveratrol [158].

As of January 2022, there were a total of 194 listed trials
on resveratrol on https://clinicaltrials.gov. Among these, 18
studies have investigated the effects of resveratrol on vas-
cular conditions (NCT01842399, NCT01668836, NCT03597568,

NCT01564381, NCT02246660, NCT02690064, NCT03436992,
NCT04633551, NCT03743636, NCT04449198, NCT01881347,
NCT03762096, NCT02998918, NCT01185067, NCT02137421,
NCT03253913, NCT05093244, NCT04117022). One study assessed
the role of caloric restriction and resveratrol on the sirtuin
system in women and men between 55 and 65 years of age
(NCT01668836) [159]. This study was conducted on 48 healthy
subjects randomized to 30 days of resveratrol (500 mg/day)
or caloric restriction (1000 cal/day) [159]. Both resveratrol and
caloric restriction led to an elevated plasma levels of SIRT with
no difference between the two groups, however, plasma levels
for an endogenous secretory receptor for an advanced glycation
end product (esRAGE) were not changed and was similar for
both groups [159]. SIRT1 and esRAGE are associated with the
protection of the vasculature [159]. These results indicate that
an increase in both molecules occur following resveratrol ad-
ministration, which can potentially have a protective effect on
vascular dysfunction; future studies are needed to investigate
this condition.

Overall SIRT1 is a crucial molecule in the prevention of vas-
cular dysfunction that can be targeted as a therapeutic strat-
egy and resveratrol is a promising agent which functions by
acting on SIRT1. Future large-scale clinical studies with long
follow-up times as well as preclinical studies to understand
the pathophysiologic mechanisms underlying this molecule are
needed.

Phosphate and klotho

Hyperphosphatemia has a crucial role in early aging in patients
with CKD. As clearance decreases in CKD, increased levels of in-
organic phosphate can cause vascular aging and inflammation
[160]. In addition, hyperphosphatemia could precipitate oxida-
tive stress [161]. The activation of osteogenic genes, the pro-
duction of hydroxyapatite, and vascular calcifications have all
been linked to high phosphate levels. Owing to their sensitivity
to inorganic phosphate concentrations, vascular smoothmuscle
cells can alter and adjust some of their functions. These modi-
fications in response to changes in inorganic phosphate trigger
calcification-promoting processes [162].

Klotho exists as a membrane-bound and soluble form. The
soluble form can act as a hormone and regulate glycosidase and
transporter actions whereas the membrane-bound klotho plays
a role in FGFR signaling [163]. Low klotho levels are correlated
with kidney dysfunction, increased risk of atherosclerosis,
and accelerated aging [164]. Klotho deficiency is one of the
markers of early aging and an important contributor of vascular
calcification leading to the hyperplasia of the intimal layer,
calcification of the media, endothelial dysfunction, an increased
stiffness within the arteries, hypertension, and impairments in
vasculogenesis [165–168].

In one of the earliest studies investigating the role of klotho
in the aging process,Kuro-o et al. showed that a defective expres-
sion of the klotho gene led to a phenotype similar to human ag-
ing inmice,which consisted of a decreased lifespan, arterioscle-
rosis, osteoporosis, infertility, emphysema, and atrophied skin
[169]. Later studies reported that the over-expression of klotho
led to a prolonged life span, provided protective cardiac effects,
and decreased oxidative stress in mice [118, 170–172]. Futher-
more, klotho concentrations are reported to fall with increasing
age in humans with a decrease in klotho levels by 2-fold from 40
to 70 years of age [173, 174]. Klotho levels are also known to de-
cline in several frequently seen diseases such as CKD, diabetes,
and neurodegenerative conditions [175].

https://clinicaltrials.gov
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Table 1: The: current knowns and unknowns surrounding early aging and premature vascular aging.

Knowns
Oxidative stress due to uremic toxins, activated RAAS, and decreased
antioxidants cause muscle wasting and early aging.

Cellular senescence, immunosenescence, and inflammaging cause
sterile inflammation, aggravating kidney damage.

Visceral obesity, smoking, low-grade infection, and social and
psychosocial stresses are associated with increased expression of
inflammatory genes.

Metainflammation contributes to cardiovascular morbidities through
endothelial dysfunction and vascular calcifications.

Altered gut microbiota and impaired gut barrier contribute to
systemic inflammation.

AGEs and high fructose diet are both risk factors and drivers of the
progression of CKD and early aging.

Early vascular aging in CKD causes arterial remodeling, increased
arterial stiffness, cardiovascular morbidity, and mortality.

Aortic stiffness is suggested as a prognostic marker, and aortic pulse
wave velocity has been considered an independent predictor for
all-cause and cardiovascular mortality.

Nrf-2 reduces oxidative stress, renal interstitial fibrosis, and vascular
calcification in CKD through several mechanisms.

AMPK and SIRT1 are closely linked signaling proteins protective
against vascular calcification and are related to longevity.

Klotho is a signaling protein with two forms: the free form in the
cytosol and the membrane-bound form. Klotho levels correlate with
kidney function, and its deficiency significantly contributes to
vascular calcification in CKD.

Unknowns
Nrf-2 depletion results in the upregulation of cellular senescence
markers such as p16INK4a (CDKN2A) and p21 (CDKN1A). However,
the underlying mechanisms are not clear.

Nrf-2 stimulates the autophagy of vascular smooth muscle cells to
ameliorate vascular calcification through undiscovered
pathophysiological mechanisms.

Future preclinical and large-scale clinical studies are needed to
understand the role of AMPK to better guide therapeutic strategies
through this pathway.

Resveratrol is a promising agent acting on SIRT1, Nrf-2 as well as
several other pathways. Future large-scale clinical studies with long
follow-up times and preclinical studies are needed to understand the
pathophysiologic mechanisms underlying this molecule.

Recombinant klotho and gene therapy strategies are promising
approaches. However, further studies are required to evaluate these
therapeutic mechanisms better and transition their use toward the
clinics.

AGE: Advanced glycation end products, AMPK: AMP-activated protein kinase
CKD: Chronic kidney disease, Nrf-2: Nuclear factor erythroid 2-related factor 2, p16INK4a (CDKN2A): Cyclin-dependent kinase inhibitor 2A, p21 (CDKN1A): Cyclin-

dependent kinase inhibitor 1, RAAS: Renin-Angiotensin-Aldosterone system, SIRT1: Sirtuin 1

Klotho has also been shown to play a role in vascular
changes. One study reported that serum klotho concen-
trations were lowered by ∼45% in individuals with arterial
stiffness and hypertension [176]. Furthermore, klotho-
haplodeficient (Klotho+/−) mice demonstrated significant
elevations in in pulse wave velocity and blood pressure sug-
gesting worsening arterial stiffness and hypertension [176].
Klotho-haplodeficiency (Klotho+/−) was also shown to de-
crease endothelial nitric oxide synthase (eNOS) expression in
the aorta as well as lead to impairments in the endothelial
functions in the resistance arteries and the aorta in mice [118,
176, 177]. Increasing klotho has been associated with improving
the antioxidant protective defensive mechanisms in rats and
mice, thus potentially contributing to the ameliorations in
endothelial function [118, 178]. In addition, in Otsuka Long–
Evans Tokshuma fatty rats that embark important risk factors
associated with atherosclerosis such as obesity, hyperglycemia,
hypertriglyceridemia, and hypertension, adenovirus-mediated
klotho gene delivery was reported to improve the dysfunction
of the vascular endothelium, elevate the production of nitric
oxide, decrease heightened blood pressures, and contribute to
the prevention of medial hypertrophy and perivascular fibrosis
[179]. Of note, the blood pressure effects of klotho gene delivery
have not been reliable and consistent throughout the literature
[118, 178].

A few reviews have also emphasized the interactions and
the interdependency between klotho and the mTOR, AMPK, and
SIRT1 pathways as they all play a part in vascular aging [116, 118].
Furthermore, Klotho was reported to be an activator of Nrf2 in
several preclinical studies [175, 180–183]. This activation poten-
tially contributes to the prevention of kidney and vascular dis-
eases [175].

Given the potential detrimental effects associated with low
klotho, an important therapeutic goal would be to reverse this
situation and increase its levels. Several studies have shown that
a safe target would be to revert klotho back within or near nor-
mal values instead of increasing its levels more than the normal
range [175]. It is alsoworthmentioning that themajority of infor-
mation regarding the therapies surrounding klothowere derived
from rodent-based studies [175].

In a recent review, Prud’homme et al. summarized the
current clinical drugs and those under development as well
as the supplements and several other therapeutic mecha-
nisms that increase klotho levels [175]. Among the currently
available medications, RAAS inhibitors (losartan, valsartan),
statins (atorvastatin, pitavastatin, simvastatin fluvastatin),
peroxisome proliferator-activated receptor-γ (PPAR-γ ) ago-
nists (rosiglitazone, ciglitazone, pioglitazone), mechanistic
target of rapamycin (mTOR) inhibitors (rapamycin, everolimus),
vitamin D, glucagon-like peptide-1 (GLP-1) receptor agonist
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(exendin-4) and dipeptidyl peptidase-4 (DPP-4) inhibitors
(linagliptin, sitagliptin, vildagliptin), metformin, pentoxifylline,
antiplasmodial (dihydroartemisinin), and endothelin-1 receptor
antagonist (Atrasentan) have all been shown to elevate klotho
in a variety of conditions in different studies [175]. Moreover,
a recent study investigated the cardiorenal protective role of
sodium glucose co-transporter-2 inhibitors (SGLT2i) in patients
with diabetic kidney disease. The group receiving SGLT2i had
statistically increased serum klotho levels. The same study
also found that SGLT2i prevented klotho decrease due to high
glucose concentrations in cultured proximal tubular cells [184].

Future large-scale studies are needed to better understand
the role of these drugs on klotho and how the potential in-
crease of this molecule contributes to the clinical effects of
these drugs. Among the available experimental therapies, re-
combinant klotho and gene therapy strategies are promising ap-
proaches [175]. However further studies are required to better
evaluate these therapeutic mechanisms and transition their use
toward the clinics.

CONCLUSION

CKD is an important cause of premature, accelerated aging and
can result in early vascular aging together with the stiffening
of the arteries. The current knowns and unknowns surround-
ing early aging and premature vascular aging are summarized
in Table 1.

Several underlying mechanisms such as oxidative stress, in-
flammation, advanced glycation end products, fructose, and an
aberrant gut microbiota can contribute to the development of
early aging in CKDpatients. Premature vascular aging in CKDpa-
tients has been considered as a prognostic marker of mortality
and cardiovascular morbidity. There are several key molecular
pathways and molecules that play a role aging and vascular ag-
ing. Potential therapeutic strategies can target these pathways.
Future studies are needed to better understand the importance
of premature aging and early vascular aging to develop thera-
peutic alternatives for these conditions.
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