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Lipopolyplex is a core-shell structure composed of nucleic acid, polycation and lipid. As
a non-viral gene delivery vector, lipopolyplex combining the advantages of polyplex and
lipoplex has shown superior colloidal stability, reduced cytotoxicity, extremely high gene
transfection efficiency. Following intravenous administration, there are many strategies
based on lipopolyplex to overcome the complex biological barriers in systemic gene
delivery including condensation of nucleic acids into nanoparticles, long circulation,
cell targeting, endosomal escape, release to cytoplasm and entry into cell nucleus.
Parkinson’s disease (PD) is the second most common neurodegenerative disorder
and severely influences the patients’ life quality. Current gene therapy clinical trials for
PD employing viral vectors didn’t achieve satisfactory efficacy. However, lipopolyplex
may become a promising alternative approach owing to its stability in blood, ability
to cross the blood-brain barrier (BBB) and specific targeting to diseased brain
cells.
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INTRODUCTION

Gene Therapy and the Development of Lipopolyplex
Gene therapy is a therapeutic approach that aims to deliver exogenous genetic material
(DNA/RNA) to a cell to correct a genetic defect or induce the expression of a specifically
desired protein. It is extraordinarily powerful because the technique can be employed to correct
genetic disorders or treat diseases with relatively well understood pathophysiology (Mustapa
et al., 2007). However, the most crucial problem which needs to overcome in gene therapy is the
development of an efficient, safe and convenient gene delivery vector.

Viral vectors, especially adenoviral and retroviral systems, can provide high transfection
efficiency and rapid expression of the foreign genetic material inserted into the viral genome
and thus are currently the most widely used gene delivery vectors in the clinical stage. However,
viral vectors have some inherent disadvantages including insertional mutagenesis, restriction to
dividing cells, and relatively high immunogenicity (Somia and Verma, 2000), and severe problems
have been observed during clinical trials of viral vectors (Marshall, 1999; Kang and Tisdale,
2004). On the other hand, non-viral vectors, mainly with cationic nature, typically involve the
compaction of polyanionic nucleic acids with polycationic polymers (polyplexes; Figure 1A)
such as polyethylenimine (PEI), dendrimers and peptides, or with cationic lipids (lipoplexes)
(Miller, 1998; Davis, 2002; Figure 1B) through electrostatic interactions. The advantages of
non-viral vectors over viral vectors include lower immunogenicity, easier scale-up manufacturing,
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FIGURE 1 | Diagram of (A) polyplex, (B) lipoplex and (C) lipopolyplex.

more convenient modifications and higher packaging capacity.
However, poor gene transfection efficiencies have limited their
use to date.

Lipopolyplex (Figure 1C), a ternary complex of cationic
liposome, polycation and DNA, has been developed as a
second generation non-viral gene delivery vector following the
first generation cationic liposome-DNA complex. Lipopolyplex
combining the advantages of polyplex and lipoplex has
shown superior colloidal stability, reduced cytotoxicity and
extremely high gene transfection efficiency by virtue of
the synergism of polycation and lipid (Li and Huang,
1997; Lampela et al., 2003; Lee et al., 2003; García et al.,
2007; Ewe et al., 2014; Kurosaki et al., 2014). The first
generation of lipopolyplex (LPD-I) consists of cationic lipid,
protamine-based polycation and DNA (Gao and Huang, 1996).
To overcome the cytotoxicity and improve biocompatibility
of LPD-I, the second generation of lipopolyplex (LPD-
II) was developed with the replacement of cationic lipid
by anionic lipid (Lee and Huang, 1996). Munye et al.
(2015) also reported a lipopolyplex formulation composed of
liposome and peptide for gene delivery in the airway. The
authors found that the peptide components and the liposome
component of the lipopolyplex could have synergistic effects
to promote cellular uptake as well as endosomal escape of its
payloads.

Biological Barriers in Gene Delivery
There are a variety of non-viral delivery strategies including
physical methods, such as hydrodynamic injection (Liu et al.,
1999; Stoll et al., 2001; Suda et al., 2008), particle bombardment
(Belyantseva, 2009) and electroporation (Lee et al., 1992;
Liu and Huang, 2002a,b,c), and chemical methods. In many
cases, it is difficult to have access to some disease sites
and local or tropical delivery of genetic materials usually is
not efficient enough to achieve desired therapeutic efficacy.
Therefore, intravenous administration will be needed. The
following is the discussion about the biological barriers in
systemic gene delivery following intravenous administration
(Table 1).

SiRNA, plasmid DNA (pDNA), miRNA and other
un-modified oligonucleotides are unstable in the blood
circulation and easily degraded by the nuclease. They are

TABLE 1 | Biological barriers to systemic gene delivery.

Extracellular barriers Intracellular barriers

Degradation by the nuclease in blood Endosomal or lysosomal degradation
Clearance by kidney filtration Movement to the target sites
Uptake by reticuloendothelial system Translocation to the nucleus
Inability to target specific tissues or cells
Movement inhibited by viscous mucus
Inability to permeate cell membranes

also prone to be rapidly cleared by kidney filtration after
intravenous administration due to their relatively small size.
In addition, to reach their target cells, they must evade uptake
by reticuloendothelial system (RES), especially the Kupffer
cells in the liver and the macrophages in the spleen. They
also have to traverse from blood vessels and gain access
to the target tissue if the blood cells and blood vessel cells
are not the intended target. Although some tissues such
as tumors, the RES and inflammatory sites have leaky
blood vessels, the capillary vessel walls of most organs and
tissues are not permeable to nucleic acids. Moreover, gene
medicines are inhibited to move from extracellular matrix
(ECM) to target cells due to the dense polysaccharides and
fibrous proteins in the ECM (Zámecník et al., 2004). The
intracellular barriers for lipopolyplexes-mediated gene delivery
are further summarized in Figure 2. Nucleic acids are highly
hydrophilic macromolecules with negative charges, which
usually impede them to bind to and passively diffuse across
lipophilic cell membranes. Even if they are uptaked by the
endocytic pathway, the endosomal or lysosomal degradation
is also a major issue. For siRNA-based therapeutics, they
must escape from the endosome to reach the cellular
cytoplasm where siRNA takes action. Furthermore, the
cytosolic viscosity and dense organelles may prevent their
movement towards target sites. In terms of pDNA, the
nuclear envelope represents an extra and formidable barrier
(Lam and Dean, 2010) and pDNA has to translocate to
the nucleus for expression. Therefore, the translation of
therapeutic nucleic acids into the clinical setting is largely
dependent on the development of an appropriate delivery
system which is able to overcome all the mentioned biological
barriers.
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FIGURE 2 | Intracellular barriers for lipopolyplexes-mediated gene
delivery.

Strategies in Lipopolyplex-Based Systemic
Gene Delivery
Condensation of Nucleic Acids into Nanoparticles
Nucleic acids as high molecular weight biomolecules are
subjected to various environmental factors including pH and
nucleases which can degrade them. Lipopolyplexes have been
prepared by condensing nucleic acids into homogenous and tight
particles (polyplex) with the aid of polycation and entrapping
this polyplex within cationic (Liu and Huang, 2002a,b,c),
anionic (Lee and Huang, 1996) or neutral (Ibáñez et al.,
1996) liposomes. Poly-L-lysine (PLL), PEI, spermidine, spermine
and protamine sulfate are the commonly used polycation in
lipopolyplex systems. In lipopolyplex formulations, both Lys-rich
and Arg-rich peptides can condense and protect nucleic acids
effectively and lead to high transfection efficiency. However,
lipopolyplexes prepared with His-containing cationic peptide
sequences have relatively poor transfection efficiency, as these
peptides make DNA difficult to escape from endosome and
cannot condense and protect DNA adequately (Welser et al.,
2013). PEI is available in different lengths, either branched
(BPEI) or linear (LPEI), and PEI could be easily functionalized
by functional group addition or substitution. PEI is also able to
successfully condense nucleic acids into homogeneous spherical
particles by virtue of the electrostatic interaction between
the negatively charged nucleic acids and positively charged
PEI. Studies showed LPEI with low molecular weight was
the least cytotoxic and the most efficient carrier in nucleic
acids transfection (Breunig et al., 2005). When the nitrogen
residues are excess in comparison with the phosphate residues

of DNA, PEI/DNA complexes are positively charged. The
complexes could bind to cell surface with negative charge
via electrostatic interaction and result in high efficient gene
expression.

Protamine is a natural polycation which was found in
the head of spermatozoa. Protamine plays a crucial role in
condensing DNA in sperm and transferring it to the egg
nucleus. The nuclear localizing property of protamine causes
growing attention for using it for transfection. Protamine
sulfate is a defined peptide system and its molecular weight
ranges from 4 to 4.25 kDa. The most commonly used lipids in
lipopolyplex system are cationic lipids made up of a cationic
head group attached by a linker to a lipid hydrophobic moiety.
They can be classified into various subgroups including the
monocationic lipids, e.g., N[1-(2,3-dioleyloxy) propyl]-N,N,
N-trimethylammonium chloride (DOTMA), 1,2-dioleyl-3-trime
thylammonium-propane (DOTAP), N-(2-hydroxyethyl)-N,
N-dimethyl-2,3-bis(tetradecyloxy-1-propanaminium bro-mide)
(DMRIE), the polycationic lipids, e.g., DOSPA (2,3-
dioleyloxy-N-[2(sperminecarboxamido)-ethyl]-N,N-dimethyl-
1-propanaminium trifluoro acetate), and cationic cholesterol
derivatives, e.g., bis-guanidium-tren-cholesterol (BGTC).
Cationic lipids are usually employed with the so-called helper
lipids such as 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine
(DOPE) or cholesterol to improve transfection efficiency
(Hirsch-Lerner et al., 2005). To deliver DNA, LPD-I developed
by Liu et al. (1999) is composed of protamine sulfate, DNA
and DOTAP/cholesterol liposome. To deliver siRNA, it is
condensed by protamine with the help of the high molecular
weight calf thymus DNA and then entrapped into pegylated
liposome for surface protection (Li et al., 2008a,b). In this
lipopolyplex system, calf thymus DNA is used to increase the
negative charge density of siRNA and facilitate the formation of
compact polyplex nanoparticles in the core.

Long Circulation
Intravenous administration of positively charged polyplexes,
lipoplexes or lipopolyplexes may lead to significant toxicity and
low transfection efficiency owing to binding to plasma proteins
or blood cells nonspecifically via electrostatic interaction, or
activating the complement system. For example, 60% of the
delivered pDNA by cationic liposome following intravenous
injection in mice accumulated in the liver. However, the level
of gene expression per microgram of DNA uptaked in the liver
was 1000 times lower than that in the lung, which may be due to
that DNA was rapidly degraded after phagocytosis by the Kuffer
cells (Kabanov, 1999). The reason why lipoplex tends to be taken
up by RES is that opsonins like IgG, IgM, complement C3 or
fivronectins binding to the bare surface of lipoplex can attract
phagocytic cells.

Two ways to deal with this problem are neutralizing the
positive charges with anionic membrane components and
shielding the surface charge by PEGylation, respectively.
To overcome the cytotoxicity and enhance efficiency of
LPD-I, LPD-II was first complexed to polylysine at a ratio
of 1:0.75 (w/w) and then entrapped into folate-targeted
pH-sensitive anionic liposomes (Lee and Huang, 1996). The

Frontiers in Aging Neuroscience | www.frontiersin.org 3 April 2016 | Volume 8 | Article 68

http://www.frontiersin.org/Aging_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Aging_Neuroscience/archive


Chen et al. Lipopolyplex for Treatment of PD

difference between LPD-II and LPD-I is that anionic lipids
instead of cationic lipids are used. An anionic lipopolyplex
system for the delivery of synthetic miR-29b mimic molecules
with the membrane component of linoleic acid was developed
recently (Huang et al., 2013). Kurosaki et al. (2009) prepared
lipopolyplexes composed of PEI, DOTMA, N-lauroylsarcosine
(LS), and pDNA. Studies showed that lipopolyplexes containing
LS which decreased the high zeta potential showed little
aggregation with erythrocytes and low cytotoxicity. On the
other hand, stealth liposome with surface grafted hydrophilic
molecules such as polyethylene glycol (PEG) is commonly
used to reduce the surface positive charge, to decrease the
particle-particle interaction and prevent aggregation, and to
protect particles from uptake by the RES system. PEGylation
can create a hydrophilic cloud around the particle surface
resulting in steric hindrance between the delivery carriers
and the opsonins and thus prolong the circulation time in
blood and hence improve systemic gene delivery (Muzykantov
and Torchilin, 2003). PEGylation of liposomes can increase
the half-life of liposomes in blood to 6–10 h in mice and
to 40 h in human (Woodle, 1993). Although PEGylation
greatly improved the stability of stealth liposome in vivo,
in many cases cell transfection efficiency was dramatically
reduced. This phenomenon is attributed to numerous factors,
such as particle positive charge masking (Erbacher et al.,
1999), increase of steric hindrance of targeting ligands (Ogris
et al., 2001), interference with the interactions with cellular
membranes and endosomal membranes (Song et al., 2002),
impeding of intracellular pDNA trafficking (Keller et al., 2003).
In many cases the targeting ligands coated on the surface
of the stabilized particles did not enhance the transfection
efficiencies (Rudolph et al., 2002). One way to solve the emergent
problem was pH-sensitive PEGylation of lipopolyplex-based
vector. With pH-sensitive PEGylation, the PEG shield was
expected to be removable in intracellular endosomes. For
example, Nie et al. (2011) developed pyridylhydrazone-based
PEGylated lipopolyplexes for pH-reversible shielding. The
lipopolyplex consisted of DNA condensed with PEI, DOPE
and [u-2-pyridyldithio poly (ethylene) glycola-(butyraldehyde)
(N1-cholesteryloxycarbonyl-1, 2-diaminoethane amidocarboxy)
pyridyl hydrazone] (OPSS-PEG-HZN-Chol) which was
an endosomal pH-cleavable reagent. Studies showed that
transfection with plasmids encoding for luciferase or EGFP was
40 times higher in gene expression with the reversibly PEGylated
lipopolyplexes compared to the stably PEGylated ones (Nie et al.,
2011).

Furthermore, it is essential to mention that the lipopolyplex
formulation contained up to 10 mol% of PEGylation (Li
et al., 2008b), while lipid bilayer can maximally tolerate only
5–6 mol%. The reason may be that the detergent-like activity
of the PEG-phospholipid conjugate can lyse liposomes at high
concentrations. However, the charge-charge interaction between
the shell and core in the lipopolyplex system stabilizes it and
make it tolerate a high amount of the conjugate. The high degree
of PEGylation may be the reason why the lipopolyplex is not
uptaked by the spleen and liver to a significant degree (Li et al.,
2008b).

Cell Targeting
Following condensing nucleic acids into nanoparticles and
prolonging blood circulation time, the next challenge for gene
delivery vectors is to target cells of interest. Cell targeting
can be divided into two categories, passive targeting and
active targeting. At the site of solid tumor, the leaky and
discontinuous neovasculature together with the lack of lymphatic
drainage lead to the accumulation of macromolecules and
colloidal nanoparticles with diameters ranging from 100 nm
to 200 nm, a phenomenon called ‘‘enhanced permeability and
retention’’ (EPR) effect (Fang et al., 2011). Cell targeting taking
advantages of EPR effect belongs to passive targeting. However,
emphasis must be laid on that the degree of leakiness of tumor
endothelium differs among different tumors (Hashizume et al.,
2000) and not all human tumors are equally leaky (Konno
et al., 1983, 1984; Maki et al., 1985; Seymour et al., 1998).
Li et al. (2008a) developed a lipopolyplex vector composed
of protamine, siRNA, calf thymus DNA and PEGylated
liposome. Taking advantage of the EPR effect, a high dose
(60–80% intravenously administered dose per gram of tissue)
of accumulation was showed in the H460 lung cancer xenograft
model.

Active targeting involves the covalent attachment of targeting
ligands, such as peptides, proteins, antibodies, small molecules
and nucleic acid aptamers, to the surface of a delivery system,
which will specifically interact with receptors over-expressed on
the surface of target cells and lead to high transfection efficiency
(Ogris and Wagner, 2002). For example, the incorporation of
folate ligands into the lipopolyplexes enhanced gene transfection
efficiency (Lee and Huang, 1996). Li et al. (2008a) prepared
a PEGylated lipopolyplex formulation with anisamide as the
targeting ligand. The formulation efficiently delivered siRNA to
the tumor cells expressing sigma receptor and almost completely
silenced the target gene following three daily intravenous
administrations. ErbB2 is a member of the EGFR family and
over-expressed in breast and ovarian cancer cells (Lee et al.,
1995). A lipopolyplex with a single-chain antibody fragment
(ScFv) against ErbB2 transferred pDNA to over-expressing
ErbB2 cell lines and achieved higher expression of the luciferase
reporter gene in the ErbB2 positive cells than the ErbB2
negative cells (Li et al., 2001). Integrins are heterodimeric
transmembrane proteins comprised of an a- and b-subunit that
define ligand specificity. They play important roles in mediating
cell-substratum and cell-cell interactions (Hynes, 1987). The
arginine-glycine-aspartic acid (RGD) motif is a classic targeting
ligand for integrin. Scott et al. (2001) developed a lipopolyplex
with the targeting ligand RGD. Results showed that the integrin-
targeting peptide was capable of binding to the RGD motif
located on the apical surface of a polarized human bronchial
epithelial cell line (16HBE) and enhance the luciferase gene
transfer efficiency.

Endosomal Escape
After lipopolyplexes gain access to the target cells and are
internalized via the receptor-mediated endocytic pathway,
they are entrapped into the endosome where nucleic acids
undergo degradation. Lipopolyplexes can escape from endosome
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combining the advantages of both polyplexes and lipoplexes
through ion-pair formation and proton sponge effect.

Ion-pair formation
Cullis’ group suggested the mechanism of the destabilization
of endosomal membrane by cationic lipids (Hafez et al., 2001).
Following endocytosis, the cationic lipids and the anionic lipids
in the endosome membrane could form ion-pairs which make
the endosomal membrane destabilized by virtue of excluding
the surface bound water (Xu and Szoka, 1996). The electrical
interaction between cationic lipids and anionic lipids could
further promote the formation of the inverted hexagonal (HII)
phase and disrupt the endosomal membrane. Lipids with smaller
and/or less hydrophilic head groups and bulky acyl or alkyl
chains could facilitate the formation of HII phase (Xu and
Szoka, 1996). In addition, HII phase is reported to be an
intermediate structure formed during the fusion of two lipid
bilayers with each other (Hafez and Cullis, 2001; Ewert et al.,
2005). Both bilayers are destabilized in the process of fusion.
DOPE is a helper lipid for destabilizing endosomal membrane
and contained in many lipopolyplex formulations. The fusogenic
functionality of DOPE is due to its ability to form the HII phase.
DOPE with a large hydrophobic hydrocarbon area and a small
hydrophilic headgroup favors the formation of a non-bilayer
structure with a cone shape which leads to the destabilization
of endosomal membranes and improves gene transfer efficiency
(Farhood et al., 1995; Fasbender et al., 1997; Hafez and Cullis,
2001).

Proton sponge effect
Nucleic acids are condensed by cationic polymers in the core
of lipopolyplexes. In the endosome with typically lower pH, the
cationic polymer behaves as a sponge which leads to an influx of
protons due to protonation of the primary, secondary or tertiary
amine groups. The counter chloride ions are pumped into the
endosome along with protons to maintain charge neutrality,
which result in high osmotic pressure and subsequently influx of
water and eventually rupture of the endosomal membrane (Cho
et al., 2003).

Release to Cytoplasm
siRNA must be released from siRNA complex to the cytoplasm
so that the free siRNA could get access to the RNA-
induced silencing complex (RISC) for gene silencing. Strategies
for efficient release of siRNA from nanoparticles include
pH-sensitive detergent (Asokan and Cho, 2002), acid-labile
cross-linkers (Guo and Szoka, 2003), enzyme active linker,
redox-responsive disulfide cross-linker and so forth (Musacchio
et al., 2010; Son et al., 2012). For example, redox-sensitive
controlled release of siRNA is a commonly used strategy.
The ECM and intracellular cytosol are highly oxidizing and
reducing, respectively. In the cytosol, glutathione (GSH) exists
in both reduced (GSH) and oxidized (disulfide) states and
its concentration is about 1000 times higher which leads
to a high redox potential gradient between the intracellular
and ECM (Ouyang et al., 2009). Therefore, disulfide bonds

will be reduced in the cytosol leading to high gene delivery
efficiency.

Entry into Nucleus
Unlike siRNA, pDNA has to be transported from cytoplasm
to nucleus which occurs during cell division along with
breaking down of the nuclear envelope or via pores in the
nuclear membrane. There is evidence showing that the nuclear
membrane pores could act as a barrier for large particles.
Small size DNA is passively diffused into the nucleus while
large DNA complex is energy-dependently transported via
the nuclear pore complex (Kreiss et al., 1999; Ludtke et al.,
1999). Import efficiency via nuclear pore can be enhanced by
the employment of nuclear localization signal (NLS) peptides.
For example, Wiseman et al. (2005) prepared a lipopolyplex
system with a synthetic peptide which is based on the amino
terminal region of the polyoma virus VP1 protein. This
region has overlapping yet functionally distinct motifs for
nuclear localization and DNA binding which provides an
easy approach of incorporating a NLS peptide into a gene
delivery system through electrostatic interaction with DNA.
Results showed that a lipopolyplex consisting of the VP1
peptide promoted gene delivery because VP1 increased the
amount of plasmid associated with the nucleus (Wiseman et al.,
2005).

Introduction of Parkinson’s Disease
Parkinson’s disease (PD) is the second most common
neurodegenerative disorder which is dependent on age.
The normal onset age of PD is about 65 years old and the
early-onset age shown in some cases is around 45 in a small
portion of the population affected with PD (Tanner et al.,
1997; McNaught and Olanow, 2006; Rao et al., 2006). The
number of PD patients is about 1% of the population and
estimated to increase from 4.1 million in 2005 to 8.7 million
in 2030 (Robinson, 2008). PD costs approximately e14 billion
in 2010 in Europe (Gustavsson et al., 2011) and has significant
influences on the life quality of patients and their families. The
symptoms of PD differ among patients and may be involved in
loss of spontaneous movement, resting tremor, bradykinesia,
cogwheel rigidity, postural instability, decreased clarity and
volume in speech, and less legible handwriting (Savitt et al.,
2006; Tolosa et al., 2006; Jankovic, 2008; Pahwa and Lyons,
2010). The diagnosis of PD patients is mainly based on a
comprehensive physical and neurological examination and
patients’ medical history. Parkinson (2002) described PD in
1817 at the first time and report in 1893 showed that it was
the degeneration of dopaminergic neurons in the substantia
nigra (SN) pars compacta that resulted in the behavioral
complications of PD (D’Amelio et al., 2009). Along with
the progress of the disease, other brain regions are involved,
such as the amygdale, cingulate gyrus and higher cortical
regions leading to psychiatric demonstrations and dementia in
PD patients. Pathologically, Lewy bodies formed by unusual
aggregates of the protein α-synuclein in the dopaminergic
neurons are considered as the hallmark of PD (Harraz
et al., 2011). PD primarily manifests in a sporadic fashion
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TABLE 2 | Summary of gene therapy clinical programs for Parkinson’s disease (Bartus et al., 2014).

Treatment Trial Year Subject Highest Target(S) Largest Safety Efficacy
(approach) design began # dosed total volume results outcomes

dose(vg) (µl)/site

AAV2/GAD Ph1-uncontrolleda 2003 12 1 × 1012 Subthal Nuc (unilat) 50 Acceptable Advanced to Ph2
Ph2-double-blindb 2008 22/16* 1 × 1012 Subthal Kuc (Bilat) 35 Acceptable Mixed results;

program suspended
AAV2/AADC Ph1-uncontrolledc 2004 10 0.3 × 1012 Putamen (Bilat) 50 Acceptable Program suspended;

revised Ph1 recently
announced

AAV2/AADC Ph 1 -uncontrolledd 2007 6 0.3 × 1012 Putamen (Bilat) 50 Acceptable No further testing;
revised Ph1 recently
announced by USA
group

AAV2/ Ph1-uncontrollede 2005 12 0.54 × 1012 Putamen (Bilat) 5(10)** Acceptable Advanced to Ph2
NRTN Ph2A-double-blindf 2006 38 0.54 × 1012 Putamen (Bilat) 5(10)** Acceptable Mixed results;

revised Ph1
designed

Ph1-uncontrolledg 2009 6 2.4 × 1012 Put + SN (Bilat) 50 Acceptable Advanced to Ph2
Ph2B-double-
blindh

2010 24 2.4 × 1012 Put + SN (Bilat) 50 Acceptable Program suspended

LENTI/AADC- Ph
1/2-uncontrolled#

2008 15 Lentivirus
dosing is not
comparable to
that of AAV##

Putamen (Bilat) Acceptable Program suspended;
additional work to
optimize vector
ongoing

AAV2/GDNF Ph1-uncontrolledk 2013 Ongoing 0.7 × 1012 Putamen (Bilat) 150 N/A N/A

Synopsis Total of seven
phase 1 and three
phase 2 trials

2003–2013 >139 Tested up to
1 × 1012 vg
AAV

Targets have
included
subthalamic
nucleus, putamen
and SN

50 µl (most
common);
150 µl
(largest)

No safety issues
or serious side
effects noted

Efficacy outcomes
generally
disappointing

AAV, adeno-associated virus; SN, substantia nigra. aKaplitt et al. (2007); bLeWitt et al. (2011); cChristine et al. (2009); dMuramatsu et al. (2010); eMarks et al. (2008);
fMarks et al. (2010); gBartus (2013); hBartus et al. (2013); Palfi et al. (2014); and kLonser (2009). *Twenty-two subjects were dosed but six were eliminated from efficacy

analysis due to mistargetirvg of cannula. **Two 5 µl volumes infused via single needle tract −4 mm apart. #Described as a Phase 1/2 trial, this open label (uncontrolled)

study does not differ substantially from many dose-escalation Phase 1 safety studies that include secondary efficacy endpoints; thus, the distinction appears to be more

a semantic preference than a reflection of a substantial difference in study design. ##A fivefold dose range was tested involving three dose levels (1.9 × 107 transducing

units (TU); 4.0× 107 TU; 1.0× 108 TU).

(Cookson and Bandmann, 2010). Hereditary factors have a
relatively small influence because merely about 10% of patients
are involved in genetic links which mainly lead to early-onset
PD (Bekris et al., 2010). To date, mutations of four genes are
certified to result in autosomal recessive PD, consisting of
PINK1 (PARK6; Valente et al., 2004), parkin (PARK2; Kitada
et al., 1998), ATP13A2 (PARK9; Ramirez et al., 2006) and
DJ-1(PARK7; Bonifati et al., 2003). Deficiency of the function
of any single gene is capable of causing the degeneration of
dopaminergic neurons and symptoms of PD. Other possible
factors comprise medications, environmental toxins and viruses
which all lead to the increase of oxidative stress (Di Monte et al.,
2002; Jenner and Olanow, 2006). Oxidative stress can result
in the yield of free radicals that causes cell death in dopamine
neurons (Baldessarini and Tarazi, 1996; Naoi and Maruyama,
1999).

Pharmacotherapy is often employed for the treatment of mild
PD. Levodopa is commonly used for PD and leads to sustained
benefit, while long time use can result in response fluctuations
and dyskinesias. Synthetic dopamine receptor agonists can cause
non-physiological stimulation of dopamine receptor. However,

they can in turn induce serious disorders of impulse control
apart from other adverse effects such as hallucinations, excessive
daytime somnolence and postural hypotension (Weintraub et al.,
2010). Along with the advancement of PD, non-motor problems
such as cognitive and behavioral disability arise, which have a
more significant influence on patients’ life quality than motor
dysfunction (Martinez-Martin et al., 2011). The majority of these
problems are hardly resolved by dopaminergic therapy.

Gene therapy is an innovative approach for the treatment
of PD. During the past 10 years, nine PD clinical trials
(Table 2) applying gene therapy approach have been carried out
and completed. All of them have employed adeno-associated
virus (AAV) or lentivirus as gene delivery vectors focused on
symptomatic or disease-modifying impacts. The symptomatic
means were aimed at either the normalization of basal ganglia
circuitry via changing the neuronal phenotype or the increase
of dopamine yield via transferring genes associated with
the synthesis of neurotransmitter (Feng and Maguire-Zeiss,
2010). As for disease-modifying means, several clinical trials
have been carried out by delivering a gene that expresses a
neurotrophic factor with the aim of increasing dopaminergic
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FIGURE 3 | Diagram of immunoliposome.

nerve terminals. Owing to the disability of the viral vectors
across the blood-brain barrier (BBB), all clinical trials for PD
to date have infused the vector into the target sites in brain
by virtue of a craniotomy. Although each clinical trial was
started with considerable optimism, none of them has yielded
sufficiently significant efficacy or proceeded with regulatory
approval.

A few non-viral approaches of gene delivery for PD treatment
are being tested in preclinical cases. For instance, direct
injection applying electroporation or a gene gun is possible
to transfer genes efficiently (Coune et al., 2012). Apart from
direct injection, intranasal administration of genetic materials
may be devoid of the technical difficulty of making gene
therapy overcoming the BBB and have access to the central
nervous system (CNS; Lao et al., 2013; Waszczak et al.,
2013).

Outlook of Lipopolyplex for the Treatment
of Parkinson’s Disease
The current gene therapy approach of PD in clinical trials is
utilizing AAV or lentivirus as gene delivery vectors. Generally,
AAV vectors have to be administered at intervals and pre-
existing immunity to AAV is present in approximately 90%
of population (Chirmule et al., 1999). It is reported that both
retrovirus and AAV permanently or randomly insert into
the host genome causing gene mutation (Miller et al., 2002;
Laufs et al., 2003). Owing to their disability of crossing the
BBB, AAV and retrovirus need to be administered by virtue
of transcranial injection which considerably reduces patient’s
compliance. In addition, because the viruses diffuse limitedly in
the brain, the most significant expression region of the delivered
gene is usually restricted to the injection site. With so many
deficiencies, none of the gene therapy clinical trials of PD
applying virus vectors has yet found a clear path to regulatory
approval.

Current problems of PD gene therapy approaches can
be resolved by the development of an intravenous delivery
approach which require that the formulation of therapeutic
gene was able to cross the BBB and target the specific cell
in the brain. As mentioned above, the vector of lipopolyplex
have the potential to meet this requirement. Compared with

viral vectors, the delivery system of lipopolyplex has many
significant advantages such as higher gene-packaging capability,
lower immunogenicity, more convenient modification and easier
scale-up manufacture. More essentially, lipopolyplex is able to
have long circulation time in the blood, cross the BBB and
enter the target cells in brain. Some researchers developed
the immunoliposomes (antibody-directed liposomes; Figure 3)
for gene therapy of PD. In the immunoliposomes, nucleic
acids can be delivered via liposomes that are coated with
PEG and further modified with antibody for targeting to the
CNS (Huwyler et al., 1996; Pardridge, 2003). For example, the
‘‘Trojan Horse Liposome’’ (THL) is such a immunoliposome
which is a promising alternative for gene delivery to the CNS
(Shi and Pardridge, 2000; Shi et al., 2001a,b; Zhang et al.,
2003, 2004). In the THLs, DNA is encapsulated in the internal
cavity of the liposome, which protects DNA from nuclease
degeneration. The THL is prepared by lipids comprising PEG
that prolong the circulation time in the blood (Gabizon and
Papahadjopoulos, 1988; Papahadjopoulos et al., 1991). About
1–2% of the PEG residues are conjugated to the peptidomimetic
monoclonal antibodies (MAb) which can specifically target the
receptors, such as insulin and transferrin receptors, distributed
on both the BBB and the brain cellular membranes, respectively
(Shi and Pardridge, 2000; Shi et al., 2001a,b; Zhang et al.,
2003, 2004). The THL acts as a molecular Trojan horse,
because these MAbs on the surface of the THLs can help
to mediate the receptor-mediated transcytosis across the BBB,
endocytosis into the neurons behind the BBB and then transport
to the nuclear compartment (Boado, 2007). Studies showed
that in the 6-hydroxydopamine rat model of PD, transferrin
receptor MAb-targeted immunoliposomes loading a tyrosine
hydroxylase (TH) expression plasmid completely normalized
the striatal TH activity (Pardridge, 2005). According to their
formulation, the mentioned immunoliposome is a kind of
lipoplex. Compared with lipoplex, lipopolyplex can have higher
gene transfection efficiency. Although to date no lipopolyplex
system for PD gene therapy has been reported, it is expected to
be an extremely promising delivery vector based on the above
analysis.
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