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Background
Drug discovery (DD) and lead optimization are becoming very 
challenging tasks to researchers from academia and the private 
sector. As the number of approved drugs is decreasing, the 
development costs of a novel valid therapeutic molecule exceed 
US $1.2 billion for a discovery process lasting over more than 
12 years. In this context, computational approaches appeared as 
promising avenues in lowering the cost, duration, and attrition 
rate of the DD process. Multiple groups have focused on devel-
oping machine learning (ML) and deep learning (DL) algo-
rithms for drug discovery and development.1-3 Unfortunately, 
drug discovery and lead optimization are still low-data domains 
with too few molecules reaching the market. Because of this 
low-data challenge, adapted ML/DL approaches were pro-
posed, such as one-shot learning methods based on structure–
activity relationships for activity predictions Altae-Tran et al4. 
Compared to more classical approaches, they demonstrated 
higher predictive power using small positives in their training 
sets. However, they showed poor capability of generalization to 
distinct datasets. Thus, sufficient data are still a cornerstone in 
the domain.

The low-data issue is even worse for neglected tropical dis-
eases (NTDs), which mainly affect the poorest and most vul-
nerable populations. For such diseases, available data mostly 
describe early stages of drug discovery, such as extracellular 
assays or primary high-throughput screenings (HTSs). It is not 
likely to access large datasets of molecules validated at different 
levels of experimental validation (enzymatic, in vitro, in cellulo, 
ex vivo, in vivo, etc). There is an urgent need to implement 
alternative cost-effective approaches for drug discovery and 
repurposing against such diseases using early-stage drug dis-
covery data. We herein focus on Leishmaniases, a group of 
largely distributed vector-borne parasitic diseases affecting 
700 000–1 million cases/year and causing 26 000–65 000 deaths 
annually. The lack of low-cost and non-toxic treatments for 
these diseases brings the urge to develop novel therapeutic 
strategies. However, drugs Research & Development (R&D) 
faces many challenges that range from increasing costs and 
pressure on pricing to the high attrition rate. This puts NTDs—
including Leishmaniases—in the least prioritized diseases for 
therapeutics development because of their poor financial 
potential in the market.
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The present work was designed to demonstrate the power 
of common ML algorithms in classifying molecules as active or 
inactive against Leishmania parasites based on their chemical 
structures. We used data originating from a bioassay targeting 
the Leishmania major promastigote growth and viability, 
retrieved from the PubChem database. We also implemented a 
pipeline for data preprocessing and encoding toward their use 
as input to ML algorithms. Multiple encoding systems of 
chemical structures, called molecular fingerprints (FPs), were 
used. We then compared the performances of different ML 
algorithms on stratified subsets of the data. The best combina-
tions of (ML, FP, and subset) were further validated on unseen 
data from a second bioassay, prior to their use for drug repur-
posing predictions against Leishmaniasis, and identification of 
potential targets for the molecules selected.

Methods
Datasets

Data were retrieved from 2 phenotypic bioassays targeting the 
Leishmania promastigotes and deposited in the PubChem 
database under the references AID 1063 and AID 1258. Data 
corresponded to parasite growth and viability inhibition exper-
iments with a binary activity outcome (active and inactive). 
The experiments measured Leishmania spp promastigotes drug 
susceptibility through Alamar blue-based assay. The number of 
viable promastigotes correlated with a colorimetric reading, 
which indicated the anti-Leishmanial effect of the active mol-
ecules. The first bioassay (AID 1063) is a preliminary HTS of 
65 057 molecules whose results were used for the training of 
multiple ML algorithms and their optimization toward select-
ing the most performing one(s). The second bioassay (AID 1258) 
is a confirmatory screening performed on 1 122 molecules 
derived from the first bioassay that were tested at a lower con-
centration of 1 µM. We used it as an external validation set that 
has not been seen by the best performer(s). For simplicity’s 
sake, molecules with “Inconclusive” activity outcome were dis-
carded from the AID (1258) dataset.

The Food and Drug Administration (FDA)-approved 
drugs collection used herein was downloaded on April 13, 
2021, from the ZINC database.5

Data encoding

Chemical structures of the molecules were encoded using the 
Simplified Molecular Input Line Entry System (SMILES), 
retrieved directly from the PubChem database, and merged 
with the bioassay data frame according to the PubChem iden-
tifier of each compound (CID).

Prior to molecular structure encoding into numerical vec-
tors, we performed a series of data splitting to obtain multiple 
datasets with different sizes. We first performed a data equili-
bration of the dataset using the random over sampling (ROS) 
algorithm, previously described as one of the most performing 
methods in drug discovery.3 Then, we performed a random 

undersampling (RUS) through a reduction of the elements 
within the largest class inactive. Finally, we performed 2 sub-
sampling of the RUS dataset up to 10% and 1%. Thus, we dis-
posed of 5 datasets, namely, the original dataset, the ROS 
dataset, the RUS dataset, the 10% sub-sample of the RUS 
dataset, and the 1% sub-sample of the RUS dataset. Molecule 
structures were then encoded into intelligible format for the 
ML algorithms used herein. Out of the SMILES within each 
dataset, we generated molecule objects using the RDkit6 library 
under Python (http://www.rdkit.org). We then calculated dif-
ferent types of molecular FPs that consist of binary vectors. All 
datasets were split into training (80%), validation (10%), and 
test (10%) sets. The validation set will be used to fine-tune the 
ML models’ hyperparameters prior to evaluating its perfor-
mances on the test set.

Five molecular FPs were calculated using RDkit for each 
compound within the datasets: (1) the RDkit molecular finger-
prints (RDFPs), (2) the atom-pair FPs (APFPs), (3) the topol-
ogy torsion FPs (TTFPs), and (4) the extended-connectivity 
FPs with a radius of 2 atoms (ECFP4) and the extended-con-
nectivity FPs with a radius of 3 atoms (ECFP6).

Machine learning

Four ML algorithms were implemented under Sci-kit learn, an 
open-source Python library.7 The molecular FP vectors were 
used as input to perform a binary classification of the mole-
cules into active and inactive classes. The algorithms are: linear 
regressor (LR), gradient boosting (GB), random forest (RF), 
and support vector machine (SVM). We performed a 5-fold 
cross-validation tuning to optimize the ML models based on 
their accuracy when trained on all 5 datasets.

For most performant models, the receiver operating charac-
teristic (ROC) and the precision–recall (PR) curves were gen-
erated and their area under the curve (AUC) scores were 
calculated. Based on the confusion matrix elements: the true 
positives (TP), the false positives (FP), the true negatives (TN), 
and the false negatives (FN), we calculated different metrics to 
assess models’ performances, namely, sensitivity (also called 
recall), specificity, precision, balanced accuracy, and the 
F1-score.

The best classifier(s) were then used to identify potential 
anti-Leishmania effectors within the FDA-approved drugs col-
lection for which suitable FPs were generated. For each mole-
cule, probabilities of being classified as active and inactive are 
calculated.

All simulations were run on one machine with the following 
specifications: Hardware (CPU—Inteli7-9750H @ 5.00 Ghz, 
RAM-32GB DDR4) and Software (Ubuntu 20.04 LTS, 
Python-3.6, RDkit 2017.09.1, Scikit-Learn 0.23.1, Matplotlib 
3.2.2, Numpy 1.19.0).

Reverse docking.  Crystal structures of Leishmania proteins that 
are considered as potential drug targets for anti-Leishmania 
therapeutics were retrieved from the Protein Data Bank (PDB). 

http://www.rdkit.org
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These were the pteridine reductase 1 (PTR1; PDBid: 2BFM), 
the trypanothione reductase (TR; PDBid: 2KJ6), the dihy-
droorotate dehydrogenase (DHODH; PDBid: 3MJY), the 
mitogen-activated protein kinase 10 (MAPK10; PDBid: 
3UIB), the arginase (PDBid: 4IU0), the UDP-glucose pyroph-
osphorylase (UDP-GP; PDBid: 5NZL) and the N-myristoyl-
transferase (NMT; PDBid: 6QD9).

All structures were retrieved from the PDB using their IDs 
and prepared for docking simulations using the Open Babel 
software.8 Water molecules and co-crystallized ligands were 
removed. Explicit hydrogens were added and atomic charges 
were calculated using the Gasteiger model. Prepared structures 
will be here referred to as receptors. On each receptor, we 
defined the docking space as a large virtual box that included 
the catalytic site, based on the 3D coordinates of the co-crystal 
ligand atoms. Drug molecules were also prepared for docking 
simulations through adding hydrogen atoms and Gasteiger 
atomic charges, using Open Babel. They will be here referred 
to as ligands. Docking of all ligands were performed against all 
receptors using the AutoDock Vina program.9

The docking outputs were analyzed and scores from all 
simulations were retrieved. The minimum, the maximum, and 
the mean value of all docking scores were calculated to assess 
their distribution and interval of variation.

In addition, a contact analysis was performed to assess for 
each receptor the list of residues within 3.5 Å of both the co-
crystal ligand and the docked drug considering the best scored 
pose. For co-crystal ligands and docked drugs, we calculated a 
contact rate (CR) as the fraction between the total number of 
contacts established between the target and the ligand divided 
by the total number of the ligand atoms. The software PyMol, 
Schrödinger & DeLano10 was used for visualization of the 
docking outputs and figures generation.

Results
Datasets presented a satisfactory chemical diversity

The first dataset (AID 1063) contained 47 427 inactive compounds 
and 17 630 active compounds; indicating a non-equilibrated 

state, with 72.9% of inactive versus 27.1% of active molecules. 
We further explored the content of this dataset to estimate its 
chemical diversity prior to its use for the training of the ML 
models. We calculated pairwise chemical similarity of the mol-
ecules using the RDkit FPs as embedding function and the 
Tanimoto coefficient as a distance metric. The pairwise dis-
tance histogram showed that the dataset presents a satisfactory 
chemical diversity with an average value of the Tanimoto coef-
ficient equal to 0.28 +/– 0.08 and too few values higher than 
0.6 (Figure 1).

Through 2 equilibration simulations based on oversampling 
and undersampling methods, we generated the ROS and RUS 
datasets, respectively. Then, we randomly subsampled 10% and 
1% of the RUS dataset with respect to class equilibration to 
obtain the RUS_10% and RUS_1% datasets, respectively. The 
4 equilibrated datasets presented equivalent class sizes of 
47 427, 17 630, 1736, and 177 for ROS, RUS, RUS_10%, and 
RUS_1%, respectively (Figure 1).

RF and SVM were identif ied as the best 
performing models

For the 5 datasets derived from the AID1063 bioassay, we 
generated molecular FPs based on the molecules’ SMILES. 
Five molecular FPs were used to encode all molecules, 
namely: ECFP4, ECFP6, RDFP, APFP, and TTFP. Each 
encoded dataset was split into a training, a validation and a 
test set with 80/10/10 proportions. The training sets were 
used to train 4 ML algorithms and the validation sets were 
used for hyperparameters optimization. We performed cross-
validation with 5-fold stratification and estimated the mod-
els’ accuracy. Figure 2 shows the obtained results for each 
algorithm trained on all datasets encoded through the differ-
ent molecular FPs. Accuracy distributions obtained by each 
ML model revealed similar distributions for all types of FPs 
suggesting little impact on the models’ performances (Figure 
2A; Supplementary Figure S1A). On the other hand, the size 
and composition of the datasets appeared to be the most 
influencing condition on accuracy distributions (Figure 2B; 

Figure 1.  Datasets descriptive statistics. (A) Histogram of the chemical similarity distribution calculated pairwise between molecules constituting the 

dataset. (B) Bar plots of the proportions of active and inactive molecules within each dataset. RUS indicates random undersampling.
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Supplementary Figure S1B). When comparing the models’ 
performances, GB presented the least accuracy values, fol-
lowed by LR while RF and SVM exhibited the highest accu-
racy values overall (Figure 2; Supplementary Figure S1C). 
Noticeably, the ROS dataset encoded with the APFP dem-
onstrated the highest accuracy value of 0.89 obtained with 
both RF and SVM, while the 10% and 1% subset of the RUS 
dataset led to values lower that 0.70 (Figure 2B; 
Supplementary Table S1). Overall, the original dataset pre-
sented a comparable accuracy distribution with the ROS 
dataset, while the RUS dataset led to slightly lower values 
with the highest obtained with RF and SVM. We chose to 
focus on these 2 models trained on the original, the ROS and 
the RUS datasets for further validation.

We aimed at further assessing the impact of the size and the 
imbalance of the data on models’ performances. We generated 
the ROC and the precision–recall (PR) curves for each model 
trained on the original, the ROS and the RUS datasets and 
calculated their AUC scores. All simulations induced compara-
ble performances in terms of AUC_ROC and AUC_PR scores 
(Figure 3). The highest AUC scores were obtained with the 
ROS dataset for both models. Nonetheless, simulations on the 
ROS dataset revealed an overfitting of the models with AUC 
scores of 0.99 and 0.98 on the training sets with RF and SVM, 
respectively. Training the models on the original and RUS 
datasets induced no overfitting with AUC_ROC scores on the 
training sets ranging from 0.79 to 0.81 and AUC_PR scores 
ranging from 0.80 and 0.85 for both models. Thus, we retained 
models trained on the original dataset for further validation.

External validation revealed satisfactory predictive 
power

The original dataset contained activity information on 65 057 
molecules obtained through a preliminary screening (AID 1063).  

A subset of 1122 molecules was subject to a confirmatory 
screening (AID 1258). The results led to confirming 146 active 
molecules, 963 inactive molecules and 13 molecules with 
inconclusive activity outcome. We randomly extracted 73 out 
of the confirmed actives, and 482 out of the inactive molecules 
from the original dataset to constitute an external validation 
set. Then, we retrained the RF and SVM models with their 
optimal parameters on the truncated original dataset using the 
AID 1063 activity outcome data. RF and SVM achieved TP 
counts of 59 and 62 out of 73 and FP counts of 193 and 174, 
respectively (Table 1). As the data are imbalanced, we calcu-
lated the balanced accuracy to assess whether the models are 
correctly classifying both active and inactive molecules. RF and 
SVM both achieved scores of 0.72. We also calculated the F1-
score that balances precision and recall on the positive class and 
obtained scores of 0.37 and 0.39 for RF and SVM, respectively. 
Both models achieved high FP counts, which is common in 
cases where class imbalance is important. Nonetheless, we con-
sider the predictive power of both models satisfying with 
regards to the fraction of active molecules equal to 13% 
(73/555) of the total test set.

Application of the selected models to FDA-
approved collection suggested repurposing some 
drugs against Leishmaniasis

At last, we used the optimized SVM and RF model previously 
trained on the original dataset to predict which of 1 065 FDA-
approved drugs can be considered as anti-Leishmania effectors. 
We sorted the molecules predicted as potentially Leishmanicidal 
according to their probability of being active and selected the 
top 10 candidates for each model (Table 1). For RF, literature 
review demonstrated that 5 out of the top 10 molecules were 
indeed described as anti-Leishmania agents, namely, albenda-
zole,11 pyrazinamide (Mendez et al., 2009)19, domperidone,12-14 

Figure 2.  Algorithms’ accuracy obtained with the different ML models on the 5 datasets encoded through 5 molecular fingerprints. All simulations 

included hyperparameters’ tuning through a five-fold cross-validation. (A) ML models’ accuracy distribution for each type of fingerprints. (B) ML models’ 

accuracy distribution for each dataset. GB indicates gradient boosting; LR, linear regressor; ML, machine learning; RF, random forest; ROS, random over 

sampling; SVM, support vector machine.
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Figure 3.  ROC and PR curves of the optimized RF and SVM optimized on the original dataset. (A) ROC curves for models trained on the ROS dataset. 

(B) PR curves for models trained on the ROS dataset. (C) ROC curves for models trained on the original dataset. (D) PR curves for models trained on the 

original dataset. (E) ROC curves for models trained on the RUS dataset. (F) PR curves for models trained on the RUS dataset. AUC indicates area under 

the curve; PR, precision–recall; RF, random forest; ROC, receiver operating characteristic; ROS, random over sampling; SVM, support vector machine.

Table 1.  RF and SVM models’ performances when trained on the original dataset. For each model TP, FP, TN, and FN counts were reported. 
Percentages of the TP and TN (shown between parentheses) were calculated as the fraction: (predicted count/real count) × 100.

Model TP (/73) FP TN (/482) FN Sensitivity Specificity Balanced accuracy F1-score

RF 59 (81%) 193 292 (61%) 11 0.84 0.60 0.72 0.37

SVM 62 (85%) 174 303 (63%) 16 0.79 0.64 0.72 0.39

Abbreviations: FN, false negatives; FPs, fingerprints; RF, random forest; SVM, support vector machine; TN, true negatives, TP: true positives.



6	 Bioinformatics and Biology Insights ﻿

dibucaine15, and lidocaine.16,17 For SVM, three molecules out 
of the 10 were described as anti-Leishmania effectors, namely, 
phenelzine,18 domperidone,12-14 and rifabutin.19 Noticeably, 
domperidone has been selected by both models. Its potential to 
treat Leishmaniasis was investigated up to clinical trial 
phases.12-14 Albendazole was explored for its anti-Leishmania 
effects until it proved of limited efficacy in hamster models.11 
Also pyrazinamide, an anti-tuberculosis drug showed promis-
ing results in early stages of drug discovery investigations.20 On 
the other hand, investigations of dibucaine’s effects had stopped 
at preclinical stages in hamster models.15 Lidocaine was 
described as enhancing the outcome of first line anti-Leishma-
nia treatment antimonials through clinical trials.16,17 Rifabutin 
was validated for inhibiting intracellular parasite growth and 
had promising pharmacokinetic properties.19 Finally, phenel-
zine is an antidepressant molecule with validated anti-Leish-
mania effects in vitro and in vivo.18 To conclude, 7 out 19 
FDA-approved drugs predicted by RF and SVM were preced-
ingly described for their anti-Leishmania effect. This further 
validated our approach toward the identification of novel anti-
Leishmania drug candidates either within the FDA-approved 
drugs collection or within other chemical collections for lead 
discovery in future studies.

Reverse docking predicted targets among selected Leishmania  
proteins.  The approach used herein to identify novel anti-
Leishmania effectors is a top-down approach, also called 
ligand-based drug discovery. It permits the prediction of mol-
ecules activity with no prior knowledge on their molecular tar-
gets within the cell. Through this method, we were able to 

identify, although with no prior knowledge on the targets, 19 
drugs among which a set of 7 were previously described in the 
literature as being anti-Leishmania effectors. This constituted 
a solid confirmation of the proposed approach.

In addition to these confirmed anti-Leishmania molecules, 
the second set of 12 drugs thus corresponds to novel potential 
effectors. Drugs from both sets have unknown molecular tar-
gets. Thus, we performed additional analyses using in silico 
reverse docking simulations of these 19 potential anti-Leish-
mania drugs against a series of Leishmania enzymes identified 
as potential drug targets, having available crystal structures in 
complex with ligands in the PDB database. The score values 
for all molecules docked on all targets followed a Gaussian-like 
distribution (Supplementary Figure S2), with a maximal value 
of –6.8 kcal/mol, a minimal value of –13.9 kcal/mol, and a 
mean value of –9.6 kcal/mol, that we set as a threshold (T) to 
define relevant docking poses as those with scores inferior to T.

For each (target and drug) pair, we identified the best 
docking pose as the one exhibiting the lowest docking score 
(Figure 4). Noticeably, rifabutin and domperidone exhibited 
the lowest scores on all receptors. Targets 3MJY, 4IU0, and 
5NZL had docking scores mostly higher or equal to the 
threshold T, except with rifabutin and domperidone (Figure 4). 
On the other hand, 2JK6 followed by 2BFM and 6QD9 
presented the lowest scores for all docked ligands, overall.

To identify the most relevant (target and drug) pairs based 
on the docking results, we calculated the CRs of each docked 
drug. We then compared them to those observed with the co-
crystal ligands of each receptor. Drugs presenting a CR with a 
given target that is higher or equal to 50% of the CR of the 

Figure 4.  Docking scores for each (receptor, ligand) pair. Scores from the best poses (lowest scores) were retrieved. The threshold value T = –9.6 kcal/mol 

is also indicated for reference.
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corresponding co-crystal ligand, were retained, which led to 
identify 4 potential (target and drug) pairs, namely: (2BFM/
PTR1, ganciclovir), (2JK6/TR, domperidone), (3UIB/
MAPK10, prilocaine), and (6QD9/NMT, albendazole). 
Corresponding docking scores were, respectively, –10.1, –10.2, 
–10.3, and –12.2 kcal/mol for ganciclovir, albendazole, prilo-
caine, and domperidone, indicating high affinity between the 
drugs and their predicted targets (Table 2). Visual examination 
of the docking poses from the above-mentioned (target and 
drug) pairs revealed superimposition of common chemical sub-
structures with the co-crystal ligand (Figure 5), suggesting 
similar receptor-ligand interactions between the co-crystal 
ligands and the predicted drugs.

Discussion
DD is a lengthy and costly process that also suffers from a high 
attrition rate. Classical approaches to drug discovery refer to 

screening chemical libraries using either phenotypic or enzy-
matic assays according to different ligand- or structure-based 
pipelines.21 To reduce time and cost, computational and artifi-
cial intelligence approaches are increasingly involved in the 
drug development process.22 The most common applications 
of such approaches are (1) novel hit compound identification 
through docking simulations on targets and (2) predictive ana-
lytics of molecules’ biological activity based on their chemical 
structures. The first approach, structure-based, is heavily 
focused on known targets and aims at identifying potential 
inhibitors of its biochemical and/or biological activity. The sec-
ond approach, called ligand-based, focuses on ligands, and uses 
their chemical structure/properties toward assessing their 
potential as novel hits with no prior knowledge of their target. 
For these ligand-based approaches, combined chemoinformat-
ics and ML are now rapidly evolving toward successful drug 
discovery research outcomes.23-25 Many groups developed 

Table 2.  List of the top 10 FDA-approved drugs with the highest probabilities of being anti-Leishmania effectors that were predicted by RF and SVM 
trained on the original dataset encoded using the atom-pair fingerprints. The compounds already described as anti-Leishmania appear in bold. Four 
drugs matched with Leishmania targets in our docking experiments. Their docking scores with the identified potential targets are indicated along 
with the PDB structure used for the reverse docking simulations.

Model Drug name 
(chemical class)

Probability  
of being  
anti-Leishmanial

Reference if 
previously described 
as anti-Leishmanial

Predicted 
target 
reference

Best docking 
score  
(kcal/mol)

RF Albendazole 0.97 11 6QD9 –10.2

Pyrazinamide 0.97 20  

Acebutolol 0.94 —  

Ethacrynic acid 0.94 —  

Ganciclovir 0.94 — 2BFM –10.1

Domperidone 0.93 12-14 2JK6 –12.2

Benzthiazide 0.92 —  

Betazole 0.92 —  

Dibucaine 0.92 15  

Lidocaine 0.92 16  

SVM Bethanidine 0.84 —  

Phenelzine 0.83 18  

Ethionamide 0.82 —  

Phenylephrine 0.82 —  

Domperidone 0.821 12-14 2JK6 –12.2

Rifabutin 0.81 19  

Amphetamine 0.81 —  

Prilocaine 0.80 — 3UIB –10.3

Tranylcypromine 0.80 —  

Dextroamphetamine 0.80 —  

Abbreviations: FDA: Food and Drug Administration; PDB, Protein Data Bank; RF, random forest; SVM, support vector machine.
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sophisticated deep learning architectures that shall outperform 
classical ML algorithms. Besides the algorithm performances, 
the molecular descriptors and/or FPs that are used to encode 
the chemical structures of the molecules are of utmost impor-
tance within the process.26-28 In fact, the hypothetical basis of 
such approaches considers that molecules with similar chemi-
cal structures and properties are likely to have similar biological 
activities through similar molecular interactions with key pro-
teins (targets).

In this context, we implemented a ligand-based approach 
for the identification of novel drugs and treatments against 
Leishmaniases, a group of infectious diseases for which this 
aim continues to be a challenge and a priority.29-31 We pre-
sented a proof of concept that classic ML algorithms can 
achieve satisfying results. In fact, we have put together a pipe-
line to compare and optimize the combination of the molecular 
FPs and an ML algorithm to achieve the highest accuracy. In 
our specific case, RF and SVM demonstrated the highest 

accuracy scores on data encoded using the APFPs. Moreover, 
we performed a series of data stratification to assess the impact 
of data size and content on algorithms. Results supported the 
importance of data size toward high accuracy of all ML algo-
rithms tested in the present work. Conversely, data encoding 
systems (FPs) had no impact on models’ performances. 
Surprisingly, data imbalance also had no significant effect on 
the performances of the best models, RF and SVM. In fact, 
most equilibration techniques add novel entries to the dataset 
through duplication-based algorithms, and are less likely to 
add new information.

Best performing algorithm, SVM, demonstrated an accu-
racy of 0.89 and AUC_ROC score of 0.82. Other groups used 
similar approaches to train and validate ML algorithms RF, 
SVM, Bayesian models, etc using the CDD TB database 
Collaborative Drug Discovery Inc toward antimalarial com-
pounds identification.25 Using 4 different datasets of sizes 
between 1248 and 2273, the authors obtained comparable 

Figure 5.  Docking poses of the predicted target–drug pairs using reverse docking simulations. All figures show the protein targets in cyan cartoon 

representation, with superimposed co-crystal ligands in yellow licorice and docked drugs in magenta. (A) Docking of ganciclovir on the pteridine 

reductase 1 (PDBid: 2BFM). (B) Docking of domperidone on the trypanothione reductase (PDBid: 2JK6). (C) Docking of prilocaine on the MAPK10 

(PDBid: 3UIB). (D) Docking of albendazole on the N-myristoyltransferase (PDBid: 6QD9). MAPK10 indicates mitogen-activated protein kinase 10.
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AUC_ROC scores for 4 ML algorithms varying between 0.57 
and 0.86. These authors have found that no specific model 
could be considered as outperforming the others and that the 
chemical diversity and content of the training dataset was the 
most important parameter. This is in line with our hypothesis 
and findings as we were able to validate the robustness of our 
models across the different datasets derived through stratifica-
tion and balancing techniques. Through an external validation, 
we were able to provide reliable proof on the models’ perfor-
mances in classifying drugs into active vs inactive against 
Leishmania. We also assessed the models’ performances 
through the balanced accuracy and the F1-score. Although 
highly dependent on the number of TP, the F1-score is 
weighted by the number of FN and FP. Moderate F1-score 
values are often obtained with unbalanced datasets. Korotcov 
et al32 obtained F1-scores for a series of ML models trained on 
multiple unbalanced datasets that varied between 0.2 and 0.8. 
Lowest F1-scores 0.2–0.4 correlated with high imbalance rates 
of the data. In the specific case studied herein, where the active 
class represents only 13% of the test set, low to medium F1-
scores 0.37–0.39 appeared acceptable. These figures were 
mainly due to the high number of FP, a recurrent issue with 
imbalanced sets-based classification in drug discovery,28,33,34 
even when random oversampling techniques are applied toward 
equilibration.3 We used the optimized RF and SVM models to 
predict potential anti-Leishmania molecules within the FDA-
approved drugs collection. The top 10 predicted molecules by 
each of the RF and SVM models, respectively, contained 5 and 
3 molecules with confirmed anti-Leishmania effects.

Our approach has the advantage to overcome the need for a 
preconceived knowledge about the molecular targets. It uses 
data from phenotypic screens to train the algorithms and iden-
tify active molecules within collections of compounds. We 
herein used the FDA-approved drugs collection to predict 
novel anti-Leishmania effectors. Nonetheless, the models 
could be tested on natural products databases or other large 
chemical collections. This highlights the potential of bioinfor-
matics and artificial intelligence in drug discovery and design. 
Furthermore, for neglected diseases, such as Leishmaniases, lit-
tle knowledge on drug targets is available. Despite the recent 
progress on Leishmania species genomes elucidation,35 too few 
Leishmania proteins have resolved crystal structures or are 
validated as drug targets. Through our AI-based approach (ie, 
based on a phenotypic drug screening), we were able to over-
come this knowledge shortage and predict novel potential anti-
Leishmania effectors.

Molecules

We complemented these findings with target predictions using 
reverse docking by referring to the crystal structure of well-
defined Leishmania drug targets, expecting that some of these 
could constitute targets for the set of selected molecules. 

Despite the current limitations, it was possible to identify some 
of the selected molecules as potential binders to 4 out of 7 
known Leishmania targets. Four target and drug pairs were 
predicted, namely, TPR1, ganciclovir, TR, domperidone, 
MAPK10, prilocaine, and NTM, albendazole. The docking 
highlighted alignment of substructures of the co-crystal ligands 
and the docked drugs. This brings novel insights about the pre-
dicted compounds and their potential targets. It also confirms 
the relevance of using chemical similarity of known active mol-
ecules to predict novel bioactive entities. Owing to literature 
validation of the selected molecules as potentially relevant to 
DD pipeline to fight Leishmaniases, the developed approach 
appears accurate. The other novel drugs herein predicted as 
potential anti-Leishmanial will need to be investigated in the 
future. This work supports the suggestion of drug repurposing 
as a new strategy for discovering anti-Leishmanial candidates36 
or optimizing them. It combined both ligand- and structure-
based approaches to validate ML models, identify novel poten-
tial anti-Leishmania drugs and provide exploratory data on 
their potential targets in Leishmania.

Conclusions
Machine learning has proved its interest and power in the field 
of drug discovery and development. With the rise of data cura-
tion and centralization efforts and the democratization of 
computational power, it is evolving toward more effectiveness. 
We herein demonstrated the usefulness of state of the art ML 
algorithms combined with suitable molecular embedding func-
tions to efficiently predict biological activity of molecules based 
on their chemical structure. Data availability, size, and content 
remain a cornerstone in this field. Further development can be 
made toward quantitative activity predictions, for which dedi-
cated datasets are a prerequisite.
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