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Introduction

Mathematical modeling techniques have been applied to 
study many aspects of ruminant and nonruminant animal pro-
duction systems at different levels of organization. France and 
Kebreab (2008) argued that biology, including animal nutrition, 
is notable for its many organizational levels. The system can be 
organized from tissue level going down to cell, organelle, and 
molecule and could also go up to organ, organism, and herd 
levels—eventually simulating an entire farm or even an entire 
region. Although several models that describe part of the dairy 

system exist (e.g., Gregorini et al., 2015), whole-farm models 
are required to evaluate connections between system compo-
nents that field research cannot practically investigate. Dairy 
farms are complex systems that require sophisticated manage-
ment to meet sustainable production and environmental goals. 
Whole-farm models are valuable because they can evaluate 
many farm types and management practices and provide infor-
mation cheaper and faster than physical experimentation. Our 
objective in this article is to describe a new whole-farm mod-
eling framework that can be used to holistically assess dairy 
farm management practices and response to stresses (e.g., cli-
mate, disease, and resource availability) under diverse manage-
ment and physical settings. The modeling system will be able 
to inform farm-level decisions to support more economically 
and environmentally sustainable dairy production systems. The 
animal module will be described in detail in this article, but due 
to space limitations, only short overviews of the other modules 
within the whole-farm dairy systems model framework will be 
presented.

Model Categories—Strengths and Limitations

Three categories of models can potentially be applied in 
agricultural sciences, which are teleonomic, empirical, and 
mechanistic (France and Kebreab, 2008). Teleonomic mod-
eling, which models goal-directed behavior of a system, has 
not yet been applied to problems in animal nutrition and 
physiology, though it has been used in plant and crop mode-
ling (Thornley and France, 2007). Empirical models have been 
used in the field of animal nutrition for over a hundred years, 
particularly in development of feeding systems. These types of 
models use experimental data to directly quantify relationships 
that are usually based at a single level. For example, Niu et al. 
(2018) developed a series of empirical models to describe the 
relationship between enteric methane emissions with explan-
atory variables including daily feed intake, nutrient compo-
sition of the diet, and level of milk production. Empirical 
modeling describes data by accounting for inherent variation 

Implications

•	 A system approach is needed to enhance understand-
ing of the nature of interactions among the different 
elements of the food and agricultural system that can 
be leveraged to increase overall farms’ system efficien-
cy, resilience, and sustainability.

•	 The application and integration of data sciences, soft-
ware tools, and systems models will enable advanced 
analytics for managing the food and agricultural sys-
tem.

•	 The goal of whole-farm system modeling is to help de-
velop sustainable dairy production systems, including 
the wider societal benefit of more efficient production 
systems while reducing negative environmental im-
pacts.
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in the data; therefore, it is based on observation and experiment 
and not necessarily on understanding of underlying biologi-
cal processes. Advances in precision agriculture technologies 
are bringing the methods and potential benefits of big data to 
the dairy world (Bewley, 2017). At their core, big data meth-
ods to extract information from large, often noisy datasets are 
empirical models. These methods can be powerful tools to sup-
port and improve animal husbandry (e.g., Stangaferro et al., 
2016; Borchers et al., 2017) However, empirical models have 
a number of basic limitations that can only be accommodated 
through development and utilization of knowledge of underly-
ing physiological and metabolic processes (Baldwin, 1995).

A mechanistic (process-based) model is constructed by look-
ing at the underlying structure of the system under investigation, 
dividing it into its key components, and analyzing the behavior 
of the whole system in terms of its individual components and 
their interactions with one another (France and Kebreab, 2008). 
For example, Dijkstra (1994) developed a dynamic mechanistic 
model that simulates rumen digestion, absorption, and outflow 
of nutrients. The model is driven by inputs of nutrients and con-
sists of 19 state variables representing nitrogen fractions, carbo-
hydrates, fatty acids, and microbial biomass. Mills et al. (2001) 
estimated enteric methane emissions by describing the fate of 
excess hydrogen produced during fermentation in the rumen 
and hindgut, from the synthesis of lipogenic volatile fatty acids, 
and during microbial growth from amino acids. Because the 
Dijkstra (1994) and Mills et al. (2001) models were developed 
on biological principles, Kebreab et al. (2004) were able to inte-
grate them and extended the integrated model to build a deci-
sion support system to analyze nutrient partitioning between 
the animal and its environment. If properly constructed, mech-
anistic models would probably give more accurate estimates 
of the system functions and can be extrapolated beyond the 
range of data used for construction. For example, Kebreab et 
al. (2008) showed that mechanistic models were better than 
empirical models in predicting methane emissions from U.S. 
cattle and were more suited to assessing the effectiveness of 
mitigation options implemented at a whole farm or national 
level. Although mechanistic models of ruminant digestion and 
metabolism have advanced our understanding of the processes 
underlying ruminant animal physiology, they have traditionally 
ignored factors such as genetic, behavior, environment/manage-
ment health, and other inherent variation within and among 
individual animals and thus cannot assess how sources of error 
influence model outputs (Reed et al., 2016a). The authors fur-
ther argue that predictions using Bayesian calibration of math-
ematical models that are expressed as probability distributions 
convey significantly more information than point estimates 
regarding uncertainty. This is still a new area of modeling in 
animal nutrition and needs to be further developed.

Whole-Farm Dairy Systems Model

Existing whole-farm models, such as the Integrated Farm 
Systems Model (Rotz et al., 2013), DairyMod (Johnson et al., 
2008), DyNoFlo (Cabrera et al., 2006), and SIMS(DAIRY) 

(Del Prado et al., 2011), have structural and functional limita-
tions in representing modern farms and may not be able to take 
advantage of the vast amount of data currently collected on 
commercial farms. Existing whole-farm models are inflexible in 
their structure and options. For instance, researchers are unable 
to integrate new modules due to intractable code bases so users 
cannot accommodate all evolving management options. In 
addition, documentation and reported evaluations for existing 
whole-farm models are often incomplete and/or insufficient to 
support appropriate, intelligent use beyond the original mode-
ling group. Moreover, existing models are restricted to relatively 
narrow geographic locations (Schils et al., 2007). As a conse-
quence, these become rapidly outdated as they cannot keep 
pace with new technological developments such as precision 
agriculture or big data science. New algorithms and modern 
code and structure are required to advance to the next level in 
dairy model development and prediction goals. There is a need 
to develop a next-generation, whole-farm dairy model that rep-
resents a significant advancement over existing models. This will 
allow for holistic assessment of management practices under 
diverse geographic and management scenarios that may not 
be investigated under field conditions fully. Therefore, a model 
system that simulates flows of carbon, nitrogen, phosphorus, 
and water through the dairy system to identify ways to improve 
whole-farm production efficiency and minimize environmental 
impacts is required. In response to this situation, a Ruminant 
Farm System modeling environment should be developed by 
employing modern computer coding practices, emphasizing 
model clarity and adaptability to achieve flexibility and prac-
tical applications in research and industry. Furthermore, this 
next-generation model should be able to incorporate sensor 
data and take full advantage of big data artificial intelligence, 
which are part of modern dairy farm systems. Data mining and 
deep learning should guide model development and validate 
performance. To integrate information gained from on-farm 
data streams into a system analysis, a process-based simulation 
model core that starts with a mass and energy balance of farm 
nutrient, energy, and water cycles is essential.

Rigorous adherence to well-defined, modern model develop-
ment methodologies is essential for a successful next-generation 
dairy systems model that avoids the pitfalls of its predeces-
sors. Well-structured and well-documented code is fundamen-
tal to model transparency; intelligent, widespread application; 
and adaptation to future knowledge. Jones et al. (2001) identi-
fied seven facets of a modular structure that will lead to model 
adaptability, interdisciplinary use, and endurance. Examples of 
effective implementation of modular model development exist in 
other disciplines (Jones et al., 2003; Arnold et al., 2012) but have 
not yet seen success in animal agriculture systems. For this rea-
son, we have defined the following systematic, interdisciplinary 
model development and documentation methodology (Figure 1):

•	 Description of the underlying biological system: Subject-
matter experts in disciplines relevant to each module draw 
information from existing models and recent literature to de-
scribe all necessary processes with appropriate mathematical 
algorithms, emphasizing simplicity as a driving paradigm.
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•	 Development of pseudocode and information flow charts: 
Detailed, uniformly formatted documentation for all parts 
of the model serve as the documentation foundation. De-
scription of and references for each simulated process in the 
pseudocode combined with multilevel information flow dia-
grams will facilitate model clarity and use.

•	 Translation of pseudocode into code: Pseudocode and flow 
charts will be translated into code by trained programmers 
in collaboration with discipline experts. Emphasis should 
be placed on the clarity of code through code structure and 
logical and detailed commenting.

•	 Evaluation of submodel functions with existing datasets: As 
development proceeds, module evaluation for individual 
and combinations of processes using existing experimental 
and literature-based datasets is essential. Evaluation data-
sets should stress the system by pushing the model to oper-
ate at the edges of the biological limits at which the under-
lying process models were developed. All model evaluation 
datasets will be made available to the public.

•	 Incorporation of submodules into modules and systems model: 
When the basic function of submodules and modules have 
been verified, routine incorporation into the larger systems 
model and retesting after merging should occur.

•	 Evaluation of model structure and outputs for user applica-
tion: As submodules and modules progress, simulation of 
partial and complete model function should be demonstrat-
ed and further evaluated with new datasets.

The model development strategy is designed to produce 
clear documentation and a readable, readily adaptable code-
base of a modular dairy farm system model.

As described by Jones et al. (2001), there are many benefits 
of the modular format which, we believe, will help prevent limi-
tations of past whole-farm models. The same paradigm applied 
to each module and submodule strengthens model clarity and 
adaptability by enabling individual modules and submodules 
to be evaluated, updated, or exchanged for new ones as knowl-
edge of a particular farm component advances. Furthermore, 
modularity ensures future updates to specific parts of the dairy 
systems model can be made without significantly disrupting 
other modules and for simulated processes to be replaced by 

knowledge of constituent farm, where available. The latter 
attribute will be increasingly valuable as a means to integrate 
the growing streams of sensor data collected on farms for 
improved whole-farm decision-making.

Another key advantage of the adaptable, modular nature of 
the model is that the level of detail required for and from model 
inputs and outputs can be tailored to meet the needs of the 
investigator; this feature will contribute to broader adoption 
and widespread application. For example, someone interested 
in assessing the efficiency of a specific crop rotation may not 
be interested in specifying reproductive protocols for each ani-
mal or group of animals or in simulated results of reproductive 
efficiencies. In this case, standard sets of inputs and outputs 
governing the animal management portion of the model can be 
selected by the user with more specialized user input directed 
toward the Crop and Soil module.

By combining a range of scientific expertise with experi-
enced programmers, the resulting model will have a sound 
foundation in both modern science and program structure that 
can be widely used and easily adapted as our knowledge of the 
dairy system advances.

The model foundation will be four integrated biophysical 
modules (Animal, Manure, Soil and Crop, and Feed Storage) 
that follow carbon and nutrients (nitrogen, phosphorus, potas-
sium) as they cycle through the dairy system and three modules 
(Economic Accounting, Energy, and Water Balance) that syn-
thesize information from each of the four biophysical modules 
(Figure 2).

The biophysical modules will simulate inputs, transactions, 
exports, and losses of water, carbon, nitrogen and phospho-
rus with process-based modeling to account for social (man-
agement), built (infrastructure), and environmental (weather) 
impacts on biological (crop and animal growth; milk production) 
and geophysical (soil emission) processes that occur on the dairy 
farm. Major inputs to the four biophysical modules include daily 
weather (precipitation, air temperatures, wind speed, humidity, 
radiation); soil physical and chemical properties; numbers and 
breeds of cattle; and management practices governing manure 
management, crop production and storage, and animal breed-
ing, handling, and milking. The Economic, Energy, and Water 
modules use inputs of management practices and outputs from 

Figure 1. Diagram illustrating the interaction between subject-matter experts and programmers in the model development process.
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the biophysical modules alongside adjustable libraries of mone-
tary and energetic costs of common practices and commodities 
to enable integrated evaluation of dairy management systems for 
environmental, social, and economic sustainability. Simulating 
the entire dairy nutrient, water, and energy cycle with process 
models will enable whole-system impact assessment of manage-
ment and environmental changes. Examples of scenario assess-
ments of which the model will be capable include:

1.	 How does herd health management (e.g., disease incidence, 
nutrition) affect animal productivity and nutrient use 
efficiency, nutrient excretion in manure, potential nutrient 
recovery in manure processing, and nutrient fate in crop up-
take and loss after application of manure?

2.	 How do changes in soil health parameters (erosion, soil car-
bon) influence crop growth and farm productivity? What are 
the impacts of environment, soils, and management on crop 
feed quality?

3.	 How do farm strategies (e.g., large confinement operations 
vs. small grazing farms) affect whole-farm sustainability 
metrics including food production, energy use or produc-
tion, and water and nutrient use efficiency and availability?

In addition, the model will be able to assess these manage-
ment and geophysical scenarios under varying climate condi-
tions, including future climate change projections.

Animal Module
This module will consist of three primary submodules: 

1) Animal Life Cycle, 2) Nutrition and Production, and 3) 
Management and Facilities (Figure 3).

The Animal Life Cycle submodule will be a stochastic 
Monte-Carlo model of a dairy cow’s life events from birth to 
culling or death. The animal module takes information about 
feed, weather, and management from the user and other mod-
ules to stochastically simulate growth, production, and repro-
duction of individual cows daily. The life cycle submodule 
simulates animal states and herd dynamics, which can then be 
used for ration formulation, milk and manure production, and 
economics. Future performance is uncertain and dependent on 
probabilistic outcomes, which is better captured by stochastic 
probabilistic models (Calsamiglia et al., 2018) when compared 
with deterministic or conventional models. Stochastic models 
simulate probabilistic distribution of events and also reports a 
distribution of possible outcomes, which better represent real-
ity. Prior distributions inform posterior outcomes and include 
all the possible interactions among parameters (Baudracco et 
al., 2013). Different than dynamic programming (De Vries, 
2006) or Markov-chain-based (Cabrera, 2012) models, which 
have been widely used to simulate dairy herds, stochastic 
Monte-Carlo models have the advantage of simulating each 
animal individually and still accommodate the interactions of 
the herd dynamics. With improved computational power, big 
continuous data for parameterization, and opportunity for 
individual- and herd-level permanent operational and stra-
tegic decision-making, stochastic Monte-Carlo models seem 

to be the most adequate framework (Kalantari et al., 2016; 
Calsamiglia et al., 2018). A simulation example is as follows: 
a calf  is generated with a selected breed (e.g., Holstein), semen 
type (e.g., sexed semen), and birth weight (e.g., 40.8 kg). Sex is 
randomly determined with probabilities of the chosen semen 
type (e.g., 90% female for sexed semen). Male calves are sold; 
female calves enter the herd. The calf ’s weight changes based 
on the breed’s average daily gain (e.g., 0.9 kg/d). When the calf  
reaches 400 d, first ovulation occurs with a lognormal distri-
bution of logN (19, 11) and starts an estrus cycle with length 
distributed as N (21, 4). An example breeding method is the 
estrus detection-artificial insemination method in which the 
probability of heat detection during estrus is set at 60%. When 
heat is detected, insemination proceeds with a conception rate 
of 33.9% for the first insemination and decreases by 2.6% for 
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each subsequent insemination. After insemination, there are 
three pregnancy diagnoses on days 32, 91, and 200. Between 
the first and second, and second and third diagnoses, the 
chances of daily pregnancy loss are 0.96% and 0.17%, respec-
tively. Gestation length is distributed as N (278, 6). A cow not 
detected as in heat or pregnant goes into the next estrus cycle. 
If  the heifer grows to 650 d or the cow reaches over 300 d in 
milk without getting pregnant, it is culled. Lactation starts at 
calving and follows either Wood’s or MilkBot curve with spe-
cific breed, parity, and production parameters (Li et al., 2018). 
Six additional culling reasons are implemented: lameness, 
injury, mastitis, other diseases, udder problems, or unknown. 
For each reason, the probability of culling is compared with 
a stochastic number from U (0, 1) to determine whether the 
cow is culled in its lifetime. The age of culling is determined 
by the inverse comparison of another random draw from U (0, 
1) with an empirical cumulative distribution function for the 
probability of culling occurring on each day (Kalantari et al., 
2016). Genetics will also be included as factors that influence 
the animal’s life cycle, and the model will have the ability to 
utilize parameters set by the user or import herd-specific values.

The Nutrition and Production submodule will be further 
subdivided into two primary user-driven options: 1) ration 
formulation to meet potential milk production and 2) user-de-
fined ration to mechanistically predict milk production (nutri-
ent-based prediction system). The former feeding strategy uses 
linear programming to find the optimal diet that meets the 
nutrient requirements for a given milk production. It includes 
constraints regarding available feeds, as well as animal, feed, 

and specific nutrient intake constraints. Additional nonlinear 
ration optimization strategies including maximizing income-
over-feed-costs and minimizing nitrogen excretion will also 
be investigated to diversify feed-strategy options. Nutrient 
requirements are based on those of the upcoming release of 
the eighth edition of Nutrient Requirements of Dairy Cattle 
(National Academy of Science, Medicine and Engineering, 
in preparation) and the most recent version of the Cornell 
Net Carbohydrate and Protein System (http://blogs.cornell.
edu/cncps/home/). The second option in the Nutrition and 
Production submodule uses a mechanistic approach. Several 
mechanistic models are available (e.g., Kebreab et al. 2004; 
Gregorini et al., 2015) that can be integrated for use in the 
submodule. However, models that are capable of representing 
technologies such as rumen protected amino acids to improve 
protein utilization in dairy cattle (e.g., Reed et al., 2016b) or 
impact of feed additives in reducing methane emissions are 
preferred.

The individual animal structure of  the Animal Life Cycle 
submodule will give the Nutrition and Production submod-
ule flexibility to investigate feeding strategies that range from 
daily formulation of  individual cow rations to group feeding 
with ration updates at any time scale. By further giving the 
user an opportunity to define their own ration, the second 
feeding strategy allows for investigations into system-wide 
impacts of  specific diets. The model will allow estimates of 
how much water is likely to be consumed for a given level 
of  production using databases on water requirements for 
crops that are included in the ration. The model will also 

Figure 3. Schematic of information flows in the Animal module.

http://blogs.cornell.edu/cncps/home/
http://blogs.cornell.edu/cncps/home/
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estimate the amount of  manure excreted based on the work 
by Appuhamy et al. (2018). Furthermore, the trade-off  of 
methane emitted through enteric fermentation or shift to 
manure based on the amount of  volatile solids excreted can 
also be evaluated as it will have an impact on the amount of 
energy generated if  the manure were to be used as input for 
biogas production.

The Management and Facility submodule is a barn-level 
simulation that focuses on the interaction of environment and 
human intervention with the herd. It processes the manage-
ment choices together with environmental factors to inform the 
Animal Life Cycle iteration and output energy and water use 
to the system balance modules. The Management and Facility 
submodule will use weather information, on-farm facility 
information like barn structure, bedding, cooling system, and 
parlor type, and management practices like grouping strat-
egy and replacement management to determine inputs to the 
Animal Life Cycle and Nutrition and Production submodules. 
For example, it will process the weather information and barn 
ventilation/insulation properties to determine the potential for 
cold/ heat stress to affect dry matter intake, water consump-
tion, and production. In the absence of direct user input of pen 
for each animal, this submodule will also include algorithms 
for sorting cows into groups based on different nutritional 
grouping strategies.

Soil and Crop Module
The Soil and Crop module represents a two-dimensional 

soil profile and allows the user to specify the number and 
depths of  soil layers. It will use climate inputs to simulate soil 
temperature and hydrology, including evapotranspiration, sur-
face runoff  (in pseudo 3D with areal extent and layers down), 
leachate, and soil moisture. It will also simulate soil carbon, 
nitrogen, phosphorus, and potassium dynamics with different 
chemical pools to represent short and long-term dynamics and 
fate, including loss in water and air emissions (carbon dioxide, 
ammonium, nitrous oxide). The crop equations will represent 
the major crops grown on dairy farms, including corn, alfalfa, 
grass (pasture), legumes (clover), small grains, and soybeans. 
Equations will simulate crop growth and development (with 
appropriate limitations due to water, temperature, and nutri-
ent availability stresses), nutrient uptake and removal, and res-
idue decomposition. Equations will also simulate feed quality 
aspects of  crops as needed for the animal module. Existing, 
well-established equations for the soil and crop module will 
be used, so simulations are consistent with other widely used 
soil and crop production models (e.g., SWAT, DayCent). One 
particular model aspect that will draw from existing mod-
els is pasture production and animal grazing. Models in the 
UK, Australia, and New Zealand (e.g., SimsDairy) are well 
developed to simulate the intricacies of  pasture growth and 
animal feeding routines. These will be adapted for use in the 
new model framework. The model will be able to simulate a 
number of  soil type and crop combinations, so the biophysical 
variability inherent to a dairy farm fields and crop rotations is 

well represented. Finally, the module will include an irrigation 
component to evaluate new irrigation strategies to maximize 
water use efficiency.

Feed Storage Module
The Feed Storage module will simulate carbon and nitrogen 

dynamics during feed harvest and storage. The major compo-
nent of this module will estimate nutrient loss during ensil-
ing as a function of crop type, silo type, packing parameters, 
climate, moisture, inoculant, feed removal from storage, and 
feedout conditions. Carbon and nitrogen loss pathways include 
greenhouse gas and volatile organic carbon emissions, leachate, 
and degradation of feed quality that can be passed into other 
modules. In particular, loss to spoilage and protein degrada-
tion will be of critical importance to feed quality and pathogen 
load moving into the animal module. In addition to simulating 
changes to feed composition during storage, this module will 
keep track of feed stock and storage space availability for com-
munication with the Crop and Soil and Animal modules.

Water Balance Module
The Water Balance module is an overarching module that 

will use information from the four biophysical modules as well 
as user input on farm practices to simulate water use and gen-
eration by cattle, water use, and capture in cattle management 
(e.g., milking parlor wash water), water captured and used in 
manure management, water losses and additions during manure 
handling and storage as well as stormwater management, and 
water use in cropping systems, including new and improved 
irrigation technologies to improve water use efficiency.

System Integration
All the modules will be linked and organically integrated 

to ensure consistency and transparency and to streamline 
all the data input and output flows. Although we consider a 
single-farm model framework, externalities, such as climate 
and weather conditions, government policy and incentive, 
connected water systems (e.g., precipitation, evapotranspira-
tion, runoff, groundwater, etc.), energy systems (e.g., power 
grids that could accept renewable electricity generated from 
dairy manure), and food systems (e.g., agricultural operations, 
including conservation practices, of  related farms) will be sys-
tematically integrated and accounted for throughout the “cra-
dle-to-grave” life cycle. Critical components of  the systems at 
the local, regional, and global scales, as well as the interscale 
synergies and effects, should be captured in the proposed mod-
eling framework.

Summary

Our next-generation dairy systems model will fill a major 
gap in available tools to advance the frontier of knowledge in 
developing dairy systems for sustainable food production, envi-
ronmental quality, water and nutrient use efficiency, and energy 
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efficiency and production. It will provide novel information to 
the scientific community about managing dairy production at a 
farm system level instead of optimizing single-farm operations. 
The model will also help scientists better inform farmers, prac-
titioners, and industry and policy leaders on the environmental 
and economic impacts of adding, removing, or changing one 
or multiple dairy farm practices.
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