
MicroRNA profiling reveals that miR-21, miR486 and
miR-214 are upregulated and involved in cell survival in
Sézary syndrome

MG Narducci1, D Arcelli1, MC Picchio1, C Lazzeri1, E Pagani1, F Sampogna1, E Scala1, P Fadda1, C Cristofoletti1, A Facchiano1,

M Frontani1, A Monopoli1, M Ferracin2, M Negrini2, GA Lombardo1, E Caprini1 and G Russo*,1

Sézary syndrome (SS) is an incurable leukemic variant of cutaneous T-cell lymphoma and its pathogenesis is still unknown.
Diagnosis/prognosis may strongly ameliorate the management of SS individuals. Here, we profiled the expression of 470
microRNAs (miRNAs) in a cohort of 22 SS patients, and we identified 45 miRNAs differentially expressed between SS and
controls. Using predictive analysis, a list of 19 miRNAs, including miR-21, miR-214, miR-486, miR-18a, miR-342, miR-31 and let-7
members were also found. Moreover, we defined a signature of 14 miRNAs including again miR-21, potentially able to
discriminate patients with unfavorable and favorable outcome. We validated our data for miR-21, miR-214 and miR-486 by qRT-
PCR, including an additional set of array-independent SS cases. In addition, we also provide an in vitro evidence for a
contribution of miR-214, miR-486 and miR-21 to apoptotic resistance of CTCL cell line.
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Sézary syndrome (SS) is a rare and aggressive leukemic
variant of cutaneous T-cell lymphoma (CTCL) characterized
by the presence of neoplastic lymphocytes named Sézary
cells, in the skin, lymph nodes and peripheral blood.1

Consistently with the complex phenotype observed,
SS is associated with a poor clinical outcome with an
estimated 5-years survival of only 25%.2 Until now, no specific
therapy is available for this disease.3 Although numerous
efforts have been made to identify pathogenically relevant
genes, the cause of SS is still unknown. With this aim, high
throughput analyses have been recently done on whole
genome and transcriptome of CTCL identifying regions of
recurrent allelic imbalance and altered profiles of gene
expression.4–7

miRNAs control gene expression at the posttranscriptional
level by causing mRNA degradation and/or repressing mRNA
translation. They have a wide recognized role in development,
differentiation, growth, apoptosis and stress responses, as
well as in T-cell homeostasis.8–11 A growing number of studies
indicate that deregulated miRNAs have a key role in cancer
development, acting both as oncogenes and as tumor
suppressor genes. This evidence is also supported by the
fact that more than 50% of miRNA-encoding loci reside in
chromosomal regions unbalanced during tumorigenesis.
Furthermore, miRNA expression profiles are able to predict
disease status and clinical outcome, as well as tumor
progression and therapeutic responses.12

Expression patterns of miRNAs and their role in the
pathogenesis of SS have only recently been addressed.13

Here, we present a miRNA profile of 22 SS patients
identifying a signature that distinguishes malignant from
healthy lymphocytes, as well as a series of miRNAs
associated with disease and clinical outcome, and an in vitro
evidence for a contribution of miR-214, miR-486 and miR-21
to apoptotic resistance of CTCL cell line.

Results

Differential miRNA expression between SS and normal T
cells. To identify miRNA signature in SS, we profiled the
expression of 28 SS samples (22 patients and 6 follow-up)
and six healthy controls (HCs) by the means of microarray
analysis containing 470 human miRNAs. To determine
whether global miRNA profiling could distinguish molecular
groups, we performed an unsupervised analysis using heat
map package of bioconductor. As showed by dendrogram
(Figure 1a and Supplementary Figure S1) miRNAs
separated the HCs from SS samples. In particular, HCs
(n¼ 6) were clearly grouped and statistically validated in a
distinct sub-branch, whereas SS patients were sub-divided in
four distinct clusters (correlation¼ 0.95). The first one, very
close to normal controls, contained 4 SS samples and the
other three clusters comprised 9, 6 and 9 SS samples,
respectively. Four of six follow-up (mSS43_1, 30_1, 39_1
and 33_1) were clustered together with the respective
original specimen, whereas mSS38_1 and 38_2 clustered
in a different group, indicating that a change might have
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occurred in these patients. Statistical analysis performed to
validate the four subgroups of SS patients is shown in
Supplementary Table S2.

A class comparison analysis between HCs and SS lead us
to identify the 45 most deregulated miRNAs (Pr0.01) able to
discriminate the two groups; 21 miRNAs were upregulated
and 24 downregulated. They are displayed in the heat map of
Figure 1b and listed in Table 1.

By using a prediction analysis of BRB array tools (see
Materials and Methods), we identified an additional list of 19
miRNAs able to predict in which class (SS or HC) one sample
could be enclosed relatively to its expression profile (Figure 1c
and Supplementary Table S3). This list included miRNAs
already highlighted among the 45 most deregulated miRNAs.
Most of them were reported to function either as oncogenes
like miR-21,14 miR-214,15 miR-48616 and miR-18a belonging
to miR-17-92 cluster, or tumor suppressors like let-7 members
and miR-31.17

miRNA expression profiling delineates also survival
classes in SS. We next sought to determine whether the
four groups of SS samples identified by unsupervised
analysis were associated with prognosis. As clinical data,
including those regarding the survival, were available for the
SS patients enrolled in this study (see Supplementary Table
S1), we used these four SS clusters to evaluate their survival
by Kaplan–Meier (KM) estimator. As shown in Figure 1d, we
found that four groups of SS patients displayed four different
survival curves, resulting in a statistical correlation (Wilcoxon
test P¼ 0.047) with a median for survival (MS) time of 71,
38.8, 77 and 57.7 months, respectively (compare matching
colors in Figures 1a and d). These data indicate that cluster
n.1 (yellow), the closest one to normal controls, and cluster
n.3 (blue) represented the patients with longer survival (MS
of 77 and 71, respectively), followed by cluster n.4 (violet)
with a MS of 57.73. Conversely, cluster n.2 (green) showed a
marked survival decrease with an MS of 38.84 (Figure 1d).
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Figure 1 Analysis of miRNA expression profiles and survival curves in the SS cohort hierarchical clustering of the samples, showing the most significant miRNAs
(Pr0.01) (patients in columns, miRNAs in rows). (a) Dendrogram obtained using Pearson centered correlation distance metric and average linkage cluster method (for the
correlated heat map see Supplementary Figure S1). (b) Heat map of the 45 miRNAs differentially expressed between SS and HC. (c) Heat map of predictive analysis between
HC and SS miRNAs selected by class prediction analysis. (d) KM analysis performed on four clusters of SS patients identified by unsupervised hierarchical cluster analysis
showing the corresponding MS time (Wilcoxon test P¼ 0.047). (e) KM analysis performed with cluster n.2 (green) versus cluster n. 1, 3 and 4 showing an MS time of 38.84 and
74.57 months, respectively (Wilcoxon test P¼ 0.011)
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To increase class numbers and simplify data analysis, we
compared the survival time of SS patients belonging just to
cluster n.2 (green) with all other patients. The resulting KM
analysis delineated the cluster n.2 as the group of SS
patients with the worst outcome, showing an MS of 38.84
versus a group with MS of 74.57 (P¼ 0.011) (Figure 1e).

We also asked which miRNAs could discriminate these two
different survival groups. For this reason, we performed a class
comparison between the patients belonging to cluster n.2 (mSS
n.43, 30, 22, 32, 39 and 45) versus all other patients (clusters 1,
3 and 4). In this way, we identified a list of 47 miRNAs, all
upregulated in individuals with the worse outcome (Table 2).

As we observed a significant association between miRNA
expression profiles and SS survival, we tried to establish if a

limited number of miRNAs might be used to build a predictive
model for SS clinical outcome. To identify the most predictive
miRNAs, we used the survival risk prediction algorithm
implemented in BRB-ArrayTools18 on SS samples described
above. The methodological principles of this algorithm have
been described.19 In brief, high- and a low-risk survival groups
were defined by a multivariate model based on gene
expression levels contained in each gene signature, the Cox
regression coefficient for each gene (supervised principal
component method) and two covariates as sex and age.This
multivariate model was used in a leave-one-out cross
validation process to assign risk-group membership for
clinical samples. Statistical significance of the survival groups
was assessed by the log-rank test. The top-ranking miRNAs

Table 1 The 45 most significant miRNAs (Po0.01) identified by class
comparison analysis performed between HCs an SS

Unique id Chromosomal
location

Fold-
change

FDR Parametric
P-value

hsa-miR-214 1q24.3 51.78 0.00214 1.02E-04
hsa-miR-199a* 19p13.2 37.85 0.00343 2.76E-04
hsa-miR-199a 1q24.3 10.27 0.00898 1.55E-03
hsa-miR-142-3p 17q22+ 5.19 0.00357 3.35E-04
hsa-miR-486 8p11.21+ 5.08 0.00398 4.81E-04
hsa-miR-29b 7q32.3 4.83 0.00898 1.57E-03
hsa-miR-146a 5q33.3 4.46 0.00898 1.38E-03
hsa-miR-34a 1p36.22 4.23 0.00995 1.86E-03
hsa-miR-18a 13q31.3 4.12 0.00034 4.60E-06
hsa-miR-21 17q23.1+ 2.65 0.00995 1.87E-03
hsa-miR-590 7q11.23 2.62 0.00898 1.55E-03
hsa-miR-106b 7q22.1 2.41 0.00357 3.21E-04
hsa-miR-32 9q31.3� 2.30 0.01507 3.64E-03
hsa-miR-181c 19p13.13 2.13 0.00696 8.87E-04
hsa-miR-17-3p 13q31.3 2.08 0.01358 2.82E-03
hsa-let-7i 12q12 2.05 0.01358 2.83E-03
hsa-miR-7 9p21.32/

15q26.1 /
19p13.3

2.04 0.01358 2.66E-03

hsa-miR-301 17q22+ 1.95 0.01478 3.47E-03
hsa-miR-130b 22q11.21 1.88 0.01739 4.55E-03
hsa-miR-181d 19p13.13 1.82 0.01478 3.47E-03
hsa-miR-331 12q22 1.68 0.02152 6.21E-03
hsa-miR-132 17p13.3� -1.35 0.00343 2.70E-04
hsa-miR-564 3p21.31 -1.37 0.00103 3.46E-05
hsa-miR-335 7q32.2 -1.42 0.01474 3.17E-03
hsa-miR-296 20q13.32 -1.48 0.01587 3.96E-03
hsa-miR-30e-3p 1q34.2 -1.51 0.02491 7.36E-03
hsa-miR-324-3p 7p13.1 -1.59 0.02152 5.86E-03
hsa-miR-92 13q31.3 -1.66 0.03171 9.58E-03
hsa-miR-23b 9q22.32� -1.70 0.01587 4.05E-03
hsa-miR-30c 1p34.2/6q13 -1.74 0.00398 4.38E-04
hsa-miR-494 14q32.31 -1.75 0.01476 3.27E-03
hsa-miR-509 Xq27.3 -1.77 0.00214 9.43E-05
hsa-miR-202 10q26.3� -1.80 0.00698 9.84E-04
hsa-let-7a 9q22.32� -1.86 0.00698 9.78E-04
hsa-miR-320 8p21.3+ -1.90 0.00898 1.47E-03
hsa-miR-361 Xq21.2 -1.96 0.00214 1.19E-04
hsa-miR-197 1p13.3 -2.08 0.00101 2.61E-05
hsa-miR-342 12q22 -2.26 0.00398 4.71E-04
hsa-miR-31 9p21.3� -2.30 0.02152 6.12E-03
hsa-miR-193b 16p13.12 -2.30 0.00214 1.29E-04
hsa-miR-145 5q32 -2.48 0.00369 3.71E-04
hsa-miR-125b 11q24.1 -2.49 0.00034 2.90E-06
hsa-miR-223 Xq12 -2.69 0.02152 6.03E-03
hsa-let-7c 21q21.1 -3.04 0.00101 2.70E-05
hsa-let-7b 22q13.31 -3.27 0.00343 2.31E-04

Abbreviations: HCs, healthy controls; miRNA, microRNA; SS, Sézary
syndrome.
In bold are indicated chromosomal regions involved in gains (+) and losses (�)
in SS.

Table 2 miRNAs differentially expressed between SS patients with unfavorable
and favorable outcome

Unique id Chromosomal
location

Fold-
change

FDR Parametric
p-value

hsa-miR-199a* 19p13.2 18.39 6.42E-03 8.08E-04
hsa-miR-214 1q24.3 13.70 1.21E-02 3.56E-03
hsa-miR-199a 1q24.3 11.33 3.78E-03 1.40E-04
hsa-miR-146a 5q33.3 4.30 5.60E-03 3.07E-04
hsa-miR-29b 7q32.3 4.01 1.08E-02 1.90E-03
hsa-miR-142-3p 17q22+ 3.66 7.96E-03 1.17E-03
hsa-miR-486 8p11.21+ 3.64 1.06E-02 1.73E-03
hsa-miR-155 21q21.2 3.30 5.60E-03 3.75E-04
hsa-miR-30e-5p 1q34.2 3.12 1.11E-02 2.21E-03
hsa-miR-101 1p31.3 2.97 1.21E-02 3.45E-03
hsa-miR-32 9q31.3� 2.69 2.37E-03 7.03E-05
hsa-miR-142-5p 17q22+ 2.60 5.81E-03 5.59E-04
hsa-let-7i 12q12 2.58 1.35E-04 1.00E-06
hsa-miR-21 17q23.1+ 2.56 5.81E-03 6.51E-04
hsa-miR-29a 7q33 2.39 7.03E-03 9.38E-04
hsa-miR-374 Xq21.1 2.33 1.43E-02 4.99E-03
hsa-miR-590 7q11.23 2.21 1.31E-02 4.36E-03
hsa-miR-192 11q13.1 2.13 1.11E-02 2.14E-03
hsa-miR-17-3p 13q31.3 2.11 5.60E-03 4.52E-04
hsa-miR-106b 7q22.1 2.09 5.60E-03 3.96E-04
hsa-miR-16 13q31 2.08 7.99E-03 1.24E-03
hsa-miR-20a 13q31.3 2.06 1.20E-02 2.86E-03
hsa-miR-26a 3p22.2 2.05 1.22E-02 3.69E-03
hsa-let-7g 3p21 2.01 1.24E-02 3.86E-03
hsa-miR-18a 13q31.3 2.00 1.43E-02 4.96E-03
hsa-miR150 19q13.33 1.97 1.20E-02 2.76E-03
hsa-miR210 11p15.5 1.94 6.57E-04 1.46E-05
hsa-let-7f 9q22.32� 1.93 1.20E-02 2.94E-05
hsa-let-7e 19q13.41 1.90 5.81E-03 6.73E-04
hsa-miR-34b 11q23.1 1.89 1.31E-02 4.36E-03
hsa-miR-301 17q22+ 1.86 1.20E-02 2.89E-03
hsa-miR-194 1q41/11q13.1 1.83 1.20E-02 2.65E-03
hsa-miR-195 17p13.1� 1.82 5.81E-03 6.89E-04
hsa-miR-181c 19p13.13 1.81 1.31E-02 4.31E-03
hsa-miR-181c 19p13.13 1.80 5.60E-03 4.57E-04
hsa-miR-28 3q28 1.76 1.21E-02 3.25E-03
hsa-miR-107 10q22.31� 1.74 5.81E-03 6.51E-04
hsa-miR-185 22q11.21 1.71 1.08E-02 2,00E-903
hsa-miR-30b 8q24.22+ 1.71 1.21E-02 3.04E-03
hsa-miR-25 7q22.1 1.70 5.60E-03 3.42E-04
hsa-miR-331 12q22 1.69 1.21E-02 3.30E-03
hsa-let-7d 9q22.32� 1.61 1.08E-02 1.96E-03
hsa-miR-215 1q41 1.58 7.96E-03 1.18E-03
hsa-miR-30d 8q24.22+ 1.57 1.20E-02 2.75E-03
hsa-miR-191 3p21.31 1.56 1.21E-02 3.40E-03
hsa-miR-148b 12q13.13 1.53 1.21E-02 3.60E-03
hsa-miR-769-5p 19q13.32 1.40 1.96E-04 2.90E-06

Abbreviations: miRNA, microRNA; SS, Sézary syndrome.
In bold are indicated chromosomal regions involved in gains (þ ) and losses (�)
in SS.
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selected by this analysis were 23 (Po0.042). Among them,
miR-30d and miR-486 appeared the most significantly risk-
associated (Pr0.0007) (Table 3a). In good agreement with
our previous KM survival analyses (Figures 1d and e), we
observed that five out six SS patients (83%) showing poor
outcome were classified as high-risk patients using this
prediction model. Moreover, we obtained a consistent
classification into low-risk group for 9/15 SS patients (60%)

previously associated with a favorable outcome (Figures 1a
and d). The misclassification of 4/7 (mSS 48, 21, 25 and 51)
remaining patients might be explained by the moderate risk of
disease observed for these individuals (Figures 1a and d), as
also indicated by their intermediate survival time showed in
Table 3b. These data obviously require further validations in
independent sets of samples in order to develop an accurate
and unbiased classification profile that might be used to
predict at which risk-class a future patient will be associated.

With the aim to further restrict the list of prognostic miRNAs,
we also intersected the list of the 47 miRNAs showed in
Table 2 and the list of 23 miRNAs obtained by Risk prediction
analysis (Table 3a). This approach highlighted 14 common
miRNAs, such as let-7d, let-7f, let-7i, miR-107, miR-142-5p,
miR-155, miR-16, miR17-3p, miR-181c, miR-18a, miR-21,
miR-301, miR-30d and miR-486 (Figure 2).

Validation of the miRNA signatures by qRT-PCR. To
confirm the miRNA array data, we performed a qRT-PCR
using CD4þ purified from PBMCs. We investigated the
expression of miR-21, miR-214 and miR-486 on a total of 23
samples, of which 11 were new cases (samples SS41 and
from SS52 to SS 64). Of these, 10 are alive (24–36 months
follow-up), whereas SS63 has 68 months of survival.
(Figures 3a–c). We also validated miR-18a, miR-342, let7b
and let7c in three HCs and nine SS patients (Supplementary
Figure S2).

MiR-21 (Figure 3a) showed upregulation in 10 out of 21
samples (48%) (with an FC ranging from 1.4 to 4) (Po0.03).
Interestingly, it resulted overexpressed (with an FC ranging
from 1.4 to 3) in five of five patients (100%) associated with a
poor prognosis (mSS 30, 32, 39, 43 and 45), and at levels
comparable to healthy donors in six of seven patients (86%)
associated with a better outcome. These findings seem to
indicate miR-21 as a more strictly potential prognostic marker
in SS. In addition, as miR-21 maps at chromosome 17q23, a
region frequently found amplified in SS,6 we tried to correlate
the miR-21 expression with gains on 17q23 (highlighted with
black bars, in Figure 3a), but we did not observe any
significant correlation. miR-214 resulted over-expressed (with
an FC ranging from 2 to 2000) in 17 of 22 cases (73%)
(Pr0.004), whereas miR-486 was upregulated (with an FC
ranging 1.8 to 29) in 18 of 23 patients (83%) (Pr0.0038).
These data suggest that both these miRs represent useful
diagnostic markers for SS. Moreover, interestingly, miR-214
resulted absent or at very low level (comparable to HCs) in five
of six long survivors (SS26, 36, 40, 51, 59 and 63) analyzed by
qRT-PCR, suggesting its active role in SS pathogenesis.

MiR-21, miR-214 and miR-486 promote cell survival in
Hut78 cell line. Because miR-21, miR-214 and miR-486
overexpression were identified in this study as predictive of
SS disease and associated to an unfavorable outcome, we
investigated the potential effect on apoptosis and cell survival
on the HUT78 CTCL cell line by modulating their expression.
Hut78 shows miR-21 expression levels comparable to HCs,
whereas it does not express miR-214 and miR-486
(Figure 3). For these reasons, we followed an miR-21 loss-
of-function and an miR-214 and miR-486 gain-of-function
approaches. For miR-21 analysis, we transfected cells with

Table 3 Survival risk prediction analysis based on miRNA expression (a) and
age and sex covariates (b)

(a)

miRNA IDa Chromosome
location

% CV
Support

P-value

hsa-miR-30d 8q24.2 100 0.0004324
hsa-miR-486 8p11.21 100 0.0007376
hsa-let-7d 9q22.32 100 0.0010049
hsa-miR-454-3p 17q22 100 0.0018857
hsa-miR-93 7q22.1 100 0.0024554
hsa-miR-15b 3q25.33 100 0.0050818
hsa-miR-155 21q21.2 100 0.0057033
hsa-miR-16 13q14.2 100 0.0071815
hsa-miR-21 17q23.1 95.24 0.0101705
hsa-miR-31 9p21.3 95.24 0.0142497
hsa-miR-107 10q23.31 100 0.015934
hsa-miR-422b 5q33.1 95.24 0.0213468
hsa-miR-15a 13q14.2 90.48 0.0221395
hsa-miR-142-5p 17q22 90.48 0.0251359
hsa-miR-18a 13q31.3 85.71 0.0263155
hsa-let-7a 9q22.32 80.95 0.0272317
hsa-miR-301 17q22 90.48 0.0274629
hsa-miR-34b 11q23 90.48 0.0281414
hsa-let-7i 12q14.1 71.43 0.029799
hsa-miR-181c 19p13.13 57.14 0.0392069
hsa-miR-33 22q13.2 42.86 0.0410688
hsa-let-7f 9q22.31 57.14 0.0433045
hsa-miR-17-3p 13q31.3 47.62 0.0445715

(b)

Sample Survival time
(months)

Censoring
indicator
(0¼ alive,
1¼dead)

Predicted
risk

mSS-04 54 1 High
mSS-40 81 0 Low
mSS-26 71 1 High
mSS-49 74 1 Low
mSS-30 88 0 Low
mSS-22 30 1 High
mSS-32 40 1 High
mSS-39 26 1 High
mSS-43 38 1 High
mSS-45 42 1 High
mSS-33 66 0 Low
mSS-51 68 1 High
mSS-27 174 1 Low
mSS-02 75 1 Low
mSS-23 79 1 Low
mSS-01 90 1 Low
mSS-25 26 1 High
mSS-21 44 1 High
mSS-38 101 0 Low
mSS-36 72 0 Low
mSS-48 48 1 High

Abbreviation: miRNA, microRNA.
aList of 23 genes selected by fitting Cox proportional hazards models to be the
best risk classifiers (alpha¼ 0.05).
In bold are indicated miRNAs mapping on chromosomal regionsof gain or loss.
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anti-miR-21 LNA-knockdown probe and a control-scrambled
oligonucleotide to assess the biological effects 48 h post-
transfection (n¼ 6). Transfection efficiency was 490% as
determined by FACS analysis, and the resulting miR-21
modulation was assessed by qRT-PCR (Supplementary
Figure S3). MiR-21 knockdown significantly enhanced the
apoptosis in transfected cells compared with controls as
determined by the quantification of cytoplasmic histone-
associated DNA fragments (Figure 4a) and by Annexin V/PI
staining (Figures 4b and c). Conversely we did not observe a
significant effect on cell proliferation as determined by MTT
assay (not shown).

For miR-214 and miR-486 studies, we transfected cells with
pre-miR-214 and pre-miR-486 oligos and at 48 h post-
transfection, we measured apoptosis (Figure 4D) and cell
viability by MTT assay (Figure 4e) (n¼ 3). Results obtained
revealed a decreased cell death associated to an increase
of cell viability in miR-214 and miR-486 transfected cells
compared with control. All these findings indicate that miR-21,
miR-214 and miR-486 contribute to the apoptotic resistance of
CTCL cell line.

Discussion

miRNA whole gene analysis has proven to be a valid tool to
identify diagnostic and disease progression signatures in
several tumors and especially in hematological malignancies.
In the present study, we have profiled for miRNA expression
28 SS samples and six HCs, using microarray technology. A
total of 45 miRNAs were the most significant among those
differentially expressed between SS patients and HCs.
Furthermore, we were able to identify 19 miRNAs with a
potential ability of disease prediction. Until now, only one
study has been done on miRNA expression for SS.13 In this
investigation, a set of 114 deregulated miRNAs able to
distinguish SS from HCs was identified and 20 were the most

discriminatory. Our results confirm, in part, these data
showing a concordant increased expression of miR-214,
miR-199a* and miR-7, along with the decrease of miR-342,
miR-223, miR-92, miR-181a and miR-191. Conversely, a
discordant expression level was observed for miR-145 and
miR-18a. However, we have also found a large fraction of non-
overlapping deregulated miRNAs that might be explained
with the different methodological approaches used, such as
miRNA platforms, the bioinformatics and statistical methods
employed to analyze data and particularly to identify
diagnostic and prognostic signatures.

Our unsupervised analysis identified four sub-groups of SS
patients and, thus, we wondered whether these different
clusters were associated to any clinical parameters such as
tumor progression, tumor burden, CD4/CD8 ratio, dominant
TCR-V beta rearrangement, genetic lesions and survival.
Interestingly, we observed a correlation with clinical outcome,
recognizing a group of patients (belonging to cluster n.2) with
the shortest survival respect to all other individuals enrolled in
this study. We thus compared miRNA expression data with
survival time using class comparison and risk prediction
analysis. Following this approach, we obtained two indepen-
dent lists of miRNAs differentially expressed between patients
with unfavorable and favorable outcome (Table 1 and 2a).
In the first one, miR-214 together with miR-199a and miR-
199a* appeared the most significantly deregulated. The
intersection of these two lists, identified 14 miRNAs (Figure 2).
Among them, interestingly, we observed again miR-21 and
miR-486 that we have studied in detail, miR-155 involved in a
variety of tumors20 and miR-16 already found deregulated in
SS.13 Interestingly, many of these potentially prognostic
miRNAs map to gain/loss genomic regions frequently found
unbalanced in SS,6 suggesting that also genomic alterations
might contribute to miRNA deregulation in SS.

Several transcriptional or epigenetic mechanisms may
influence miRNA changes. Narrowing our attention to the 19
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predictive miRNAs, we noted that miRNA 214/199a cluster
and 199a* are co- expressed in our sample set (Figure 1b) and
they were previously found to be upregulated by Twist1.21

This is a transcription factor found overexpressed in SS,5 so
that it might control the upregulation of miR-214/199a/199a* in
this lymphoma. As a large fraction of our SS patients were
already profiled for gene expression,6 we matched miRNA
and mRNA results; in this manner, we noted that expression
levels of miR-30c correlated with the expression of its
host genes NFYC, suggesting a control at level of primary
transcription rates. Similarly, miR-342 correlated with its host
gene EVL that in turn is downregulated by 199a*.13 Moreover,
we observed a number of tumor-related miRNAs like miR-
18a, belonging to cluster 17-92, and miR-106b (cluster 106b-
25) strongly involved in lymphoproliferative diseases.9,22

Additional members of the same clusters, such as miR-17-
3p and miR-18a (cluster 17–92) and miR-93 (cluster 106b-
25), are included in the list of prognostic miRNAs (Table 1 and
2a). The genetic loci encoding the miR-17-92 (13q31) and
106b-25 (7q22) clusters do not appear among the chromo-
somal region recurrently altered in SS;6 therefore, their
deregulation should be attributable to other mechanisms.
For example, by c-Myc, found overexpressed in SS,5 that is
able to induce the expression of these miRNAs in several
tumors and animal models.23

In our dataset, we observed a diminished expression of let-
7a, let-7b and let-7c (Figure 1b and c). Let-7 family members
are widely viewed as tumor suppressor miRNAs and they are
strongly downregulated in many cancers and during tumor
progression.24 Conversely, an upregulation of let-7d, let-7f
and let-7i was mainly found in patients with unfavorable
prognosis (Table 1 and 2a). A downregulation of miR-31 was
observed in 22 out of 28 (79%) SS patients. miR-31 is an
antimetastatic miRNA and its downregulation or deletion of its
genomic locus at 9p21 (recurrently observed in SS) promotes
invasion/metastasis of cancer.25 These findings suggest
that, similarly to other cancers, downregulation of miR-31
might contribute to the atypical trafficking ability of these
malignant lymphocytes, and might represent another potential
diagnostic in SS.

In this study, we focused our attention on miR-21, miR-214
and miR-486, because they most significantly correlated with
diagnosis and prognosis of SS. Results indicated that miR-
214 and miR-486 were over-expressed in the majority of SS
patients therefore more likely related to diagnosis, whereas
miR-21 upregulation is detected in a smaller number of
patients thereby more probably associated to prognosis of
SS. Moreover, performing functional experiments, we
observed that all these miRs are able to promote cell survival
in Hut78 cell line. Interestingly, miR-21 was also recently
described to increase survival in another CTCL cell line,26

whereas miR-486 and miR-214 have been recently asso-
ciated to clinical outcome of many tumors.15,16,27,28 Moreover,
miR-214 over-expression has also been recently described
to promote proliferation of healthy T lymphocytes via PTEN
targeting.29 Among the thousands of miR-21 gene targets,
one of the best characterized and involved in neoplastic
transformation is PTEN. Thus, it is possible that a concurrent
over-expression of miR-21 and miR-214 increases SS cell
survival, repressing the PTEN function. In conclusion, our

findings indicate that miR-21, miR-214 and miR-486 might
represent novel diagnostic/prognostic biomarkers for this
incurable variant of CTCL.

Materials and Methods
Patients and healthy controls. Peripheral blood samples from 22 SS
cases, six follow-ups of patients SS30, 33, 38, 39, 43 and six HCs were analyzed. All
patients were enrolled in this study approved by the Ethical Committee of the Istituto
Dermopatico dell’Immacolata and informed consent was obtained in accordance
with the Declaration of Helsinki. Diagnosis of SS was based on described criteria.30

The major clinical and immunological characteristics have been reported in
Supplementary Table S1 and obtained as described.6

miRNA expression profiling. Neoplastic and healthy lymphocytes were
purified by dynabeads according to manufacturer’s instructions (Invitrogen, Oslo,
Norway) and total RNA extracted and quantified as already described in details.6

Labeled RNA was then hybridized on Agilent Human V1 miRNA microarray (Agilent
Technologies, Santa Clara, CA, USA), consisting of 470 miRNA probes, according
to the manufacturer’s procedure. Agilent scanner and the Feature Extraction 10.5
software (Agilent Technologies) were used to obtain the microarray raw-data.

Bionformatics analysis. Data analysis was performed, by using customized
R language-based script (www.r-project.org), using the Bioconductor packages
(www.bioconductor.org). Quality control analysis, data normalization and
hierarchical cluster were performed as described.31 Data matrix of normalized
values was subjected to class comparison and prediction analysis using BRB-
ArrayTools version 3.9.0.18 Class comparison allowed identifying the miRNAs
differentially expressed between SS patients and HCs using a univariate
two-sample t-test with a significance threshold of 0.01, while controlling either the
number or proportion of false discoveries. Class prediction was assessed to classify
and to predict in which class was enclosed a sample in relation to its expression
profile, using multivariate classification methods showed in Supplementary Table
S4. Hierarchical clustering of the data was performed with the bioconductor
heatmap package, using centered correlation and complete linkage similarity metric.
Cluster Stab bioconductor package was used to compute cluster stability scores. In
addition, we performed a survival risk prediction using BRB-ArrayTools version
3.9.0.18 This tool was used to directly predict the survival risk group based on
expression data and two covariates as sex and age.MiR-21 target genes have been
predicted applying miR and an algorithm-associated MirBase software (http://
microrna.sanger.ac.uk).

Survival and statistical analyses. A time-to-event analysis was performed
using nonparametric KM product-limit survival estimates, and differences between
KM survival curves were analyzed using the Wilcoxon test. Statistical analyses were
performed using Statistical Package SPSS v.13.0. Results of qRT-PCR were
expressed as mean plus or minus S.D. Statistical analysis was performed using the
two-tailed Student t-test or one-way ANOVA.

Quantitative real-time PCR (q-RT-PCR). qRT-PCR was used to confirm
our microarray data. Selected mature miRNAs were analyzed using TaqMan
microRNA assay (Applied Biosystems, Foster City, CA, USA). Z30 was used as an
internal normalized reference. Quantitative analysis was performed by the DCT
method as described.32

Cell line transfections, cell viability and apoptosis. Hut-78 cell line
established from peripheral blood of CTCL patient from American Type Culture Collection
(TIB161) was grown in RPMI (Sigma Aldrich Biochemicals, St. Louis, MO, USA),
supplemented with 10% heat-inactivated FCS and antibiotics at 371C in a humidified air
atmosphere at 5% CO2. LNA-knockdown miR-21 or LNA-Knockdown probe Scramble
molecules 50fluorescein (Exiqon, Vedbaek, Denmark), pre-miR-214 and miR-486 or FAM
Pre-miR-scrambled negative control (Ambion, Foster City, CA, USA) were transfected using
the Amaxa Biosystems nucleofector electroporation system as described.33 Briefly, 2� 106

of Hut78 were resuspended in 100ml of nucleofection R, with oligos used at 30 nM. After
electroporation, the cells were seeded into 24-well plates and the medium was refreshed
B8 h after transfection. The cell viability and apoptosis were examined 48 h post-
transfection with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction
(Sigma –Aldrich Biochemicals) and quantifying cytoplasmic histone-associated DNA
fragments (Roche Molecular Biochemicals, Manneheim, Germany) assays as described.34
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Flow cytometry. Flow cytometric analysis for apoptotic cells was performed by
staining cells with FITC-Annexin V and propidium iodide, using the apoptosis
detection kit (Clontech, Mountainview, CA, USA) Samples were acquired on a flow
cytometer (FacsCalibur, BD Biosciences, San Jose, CA, USA), and analyzed using
CellQuest software (BD Biosciences).
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