
F1000Research

Open Peer Review

F1000 Faculty Reviews are commissioned
from members of the prestigious F1000

. In order to make these reviews asFaculty
comprehensive and accessible as possible,
peer review takes place before publication; the
referees are listed below, but their reports are
not formally published.

, Katholieke UniversiteitRob Lavigne

Leuven Belgium

, University ofSam R Nugen

Massachusetts USA

, Institut PasteurLaurent Debarbieux

France

Discuss this article

 (0)Comments

3

2

1

REVIEW

Bacteriophage-based tools: recent advances and novel
 applications [version 1; referees: 3 approved]

Lisa O'Sullivan ,    Colin Buttimer , Olivia McAuliffe , Declan Bolton , Aidan Coffey1

Department of Biological Sciences, Cork Institute of Technology, County Cork, Ireland
Biotechnology Department, Teagasc, Moorepark Food Research Centre, Fermoy, County Cork, Ireland
Division of Food Safety, Teagasc, Food Research Centre, Ashtown, County Dublin, Ireland

Abstract
Bacteriophages (phages) are viruses that infect bacterial hosts, and since their
discovery over a century ago they have been primarily exploited to control
bacterial populations and to serve as tools in molecular biology. In this
commentary, we highlight recent diverse advances in the field of phage
research, going beyond bacterial control using whole phage, to areas including
biocontrol using phage-derived enzybiotics, diagnostics, drug discovery, novel
drug delivery systems and bionanotechnology.
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Introduction
Bacteriophages (phages) are viruses that specifically infect  
bacteria. After their discovery in 1915 by Twort and 1917 by 
d’Herelle, these agents were initially used to treat bacterial infec-
tions, although widespread acceptance was limited owing to 
lack of understanding of phage biology and the development of  
antibiotic therapy in the 1940s1. With antibiotic resistance becom-
ing problematic in the late twentieth century2, there was a renewed 
interest in phage therapy research. Alongside this application, 
and indeed the fundamental role that phage research played in  
the understanding of molecular biology, phage research has led 
to the development of new technologies not only for therapy and  
biocontrol but also for bacterial detection, drug delivery, drug  
discovery, and nanotechnology.

Antibacterials and biocontrol
In addition to the well-documented cases of using wild-type  
phages as tools to eliminate pathogenic bacteria in infected  
humans3 and in foods4, the phage-encoded peptidoglycan hydro-
lases called endolysins have also been exploited in purified 
form to rapidly lyse bacterial cells5. The Gram-positive phage 
endolysins generally contain at least one enzymatic domain and a  
cell-wall-binding domain. Chimeric endolysins have recently been 
developed by fusing enzymatic domains to alternative cell-wall-
binding determinants, thus altering endolysin behaviour and host 
range6. In the case of Gram-negative bacteria, the outer membrane 
is a barrier to exogenously added endolysin reaching the pepti-
doglycan target. Thus, the fusion of polycationic peptides to the 
Gram-negative endolysin facilitates outer membrane penetration  
allowing these new so-called Artilysin®s access to the Gram-
negative peptidoglycan7. Recent research has also reported a 
phage endolysin (from a Streptococcus pyogenes phage) with the  
ability to cross mammalian cell membranes. Its endolysin, PlyC, 
was found to consist of two subunits, one of which is proposed 
to bind to the eukaryotic cell membrane, facilitating entry by  
endocytosis8. These are major breakthroughs in endolysin  
research, and, with further investigation and testing, similar 
enzymes may be discovered/engineered and used in the future to, 
respectively, treat infections caused by Gram-negative bacteria  
and intracellular bacterial infections.

A recent advance in the area of antibiotic therapy has been the 
exploitation of phages to control antibiotic-resistant bacteria. 
Phages have been engineered to deliver CRISPR-Cas nucleases 
into antibiotic-resistant bacterial cells, and, in doing so, researchers 
have been able to harness the specific DNA-cleaving capacity 
of CRISPRs to knock out antibiotic resistance sequences, render-
ing resistant organisms antibiotic sensitive9. The use of phages 
as delivery vehicles ensures the specificity required in biocontrol. 
The wider exploitation of phages as delivery systems is discussed 
below.

Bacterial diagnostics
Phage virions and their encoded proteins can also be useful for 
the detection and specific identification of bacteria. The sim-
plest of these is where a standard number of specific phages are 
incubated with a food material or some other test sample. If the  
bacterial target is present and viable, detectable phage numbers will 

increase through amplification on the pathogen. Modifications of 
this method can generate results more rapidly, and in the case of 
Yersinia pestis, Sergueev et al., for example, developed a quantita-
tive real-time PCR to detect the increase in phage DNA instead of 
traditional plaque assays10. Reporter phages can also detect bacteria 
through infection without needing cell lysis and progeny phages. 
In this case, the phage genomes are modified to carry a biolumi-
nescence or fluorescence gene that the phage alone cannot express. 
Upon injection of the phage DNA into its host, active biolumi-
nescent or fluorescent proteins are synthesized, facilitating visual 
detection. Recently, Zhang et al. engineered an Escherichia coli 
0157:H7 reporter phage containing Luciferase NanoLuc (Nluc)11 
and with it detected as few as five CFU of the E. coli by biolumines-
cence in a complex food matrix within nine hours12.

Reporter phage assays have also been adapted to assess drug  
sensitivity in the target bacterium. A Mycobacterium tuberculosis 
(TB) fluorophage, ϕ2GFP10, has been shown to detect TB in the 
complex matrix of a sputum sample, but also when rifampin or 
kanamycin are included in the assay, fluorescence was shown to 
be detectably diminished in sensitive cells in comparison with  
antibiotic-resistant variants13. Advantages of using whole phages 
for the detection of bacteria are that only viable bacterial cells 
are detected, bacterial host specificity is excellent, and phage  
cultivation is relatively inexpensive (however, lytic activity of 
a reporter phage should ideally be inactivated to ensure that the  
bacterial targets are not prematurely destroyed).

Phage receptor-binding proteins (RBPs) have also been used 
successfully in bacterial detection and identification. The  
receptor-binding domain of the RBP in Campylobacter phage 
NCTC12673 was used to create a simple glass slide agglutina-
tion test for Campylobacter, and when fused to green fluorescent 
protein, the receptor-binding domain allowed the detection of 
Campylobacter jejuni and Campylobacter coli isolates through 
fluorescent microscopy14. Phages, because of their vast diver-
sity, provide a plentiful source of host-specific proteins to create  
simple identification tests such as the agglutination assay men-
tioned above specifically for Campylobacter. In this regard, whole  
phage and phage RBPs have been successfully attached to biosens-
ing surfaces for bacterial detection, allowing for high specificity. 
Of the two, the RBPs are simpler and easier to attach. In addi-
tion, they can be recombinantly produced and are reported to have  
better stability than antibodies15. Optimization of phage densities 
and attachment to biosensing surfaces is still ongoing16.

In the context of detection, the phage endolysins (discussed  
earlier) can also have a role when used instead of traditional 
DNA extraction reagents. It was shown that the peptidoglycan of  
Staphylococcus aureus is degraded more rapidly by staphylococ-
cal endolysin ClyH than by lysostaphin, thus shortening the DNA 
sample preparation for real-time PCR when the endolysin was 
employed17. Phage display, which involves genetically modifying 
a phage virion so that a foreign peptide is displayed on the surface 
(discussed further below), can also be exploited in bacterial 
detection systems. Lee et al. created a phage that displayed two 
different peptides, one with an affinity to gold nanoparticles and 
another with specificity to a target protein. By measuring the 
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ultraviolet absorbance of this phage, they could detect as little as 
25 femtomoles of their target antigen18. These modified phages 
have also been incorporated into systems capable of in-the-field 
real-time detection using engineered phage displaying peptides 
capable of binding to a magnetoelastic resonator as well as the 
target analytes, such as bacteria and endospores19–21.

Drug discovery and phage-based drug delivery systems
Since phage display was first described in 1985 by Smith22, it has 
seen numerous applications in the identification of receptor and  
ligand interactions of infectious diseases and cancers23,24, with these 
developments allowing for drug discovery25 and vaccine design26. 
Phage display is now allowing the modification of phages into 
vehicles (nanocarriers) for chemotherapeutic drug delivery by 
the attachment of a drug to the phage surface and presentation of 
peptides on the surface of that phage with specificity to a ligand  
of interest. Such constructs have even been designed to target  
non-host bacteria, including mammalian cells27. These phages, 
displaying therapeutic peptides, can even be designed to pass 
the blood–brain barrier28, and such constructs could thus have 
potential in the treatment of diseases such as Alzheimer’s and 
Parkinson’s. Phages with an affinity to specific cell receptors, such 
as those overexpressed in cancer cells, may be exploited beyond 
drug delivery to allow for simultaneous target detection by 
displaying diagnostic reporter molecules or by detection of bound 
phage DNA by real-time PCR29,30.

Empty phage capsids are also being employed as carriers, with 
studies demonstrating the potential to encapsulate RNA mol-
ecules, peptides, and therapeutic compounds31–33. Phage capsids 
or virus-like particles (VLPs) have also been modified to present 
ligands on their surface to allow the delivery of encapsulated RNA-
guided endonucleases to specific cell types for in situ genome  
editing34. When phages are used as nanocarriers to deliver chemo-
therapeutic drugs for cancer treatment, drug half-life is extended 
and toxicity is focused only on the site of interest, lessening  
damage to body tissues35. Capsid-based carriers have also been 
developed by fusing drug-loaded liposomes to capsid proteins dis-
playing peptides with binding specificity to a particular target36.

Biotechnology
Genetically modified filamentous phages have been used in  
material synthesis to construct nanowires and films for semi-
conductor applications37, piezoelectric energy generation38, and  

photo-response properties39. These materials have been used to 
create devices such as ion batteries and catalysts40,41, with phage  
M13-based nanowires also being constructed into scaffolding to 
allow guided cell growth for human tissue formation42.

Phage-derived enzymes, which have formed part of a core  
toolbox in traditional molecular biology, are now being applied 
to novel concepts. Phage RNA polymerase and ribonuclease  
H are being used to create in vitro genetic circuits that have 
potential future applications in nanodevices and the regulation of 
processes within artificial cells43. Recombinases are seeing use 
in these constructions by extending memory capabilities to these  
circuits44. These enzymes are also being used to create novel tools 
for bacterial genome editing and accelerated evolution45,46. It is 
noteworthy that many past phage-dedicated reviews have not sat-
isfactorily encompassed the recent advances of phage applications  
in nanomedicine; a recent excellent article comments in a  
comprehensive way on the many roles and opportunities of phages 
as nano-therapeutics, bioimaging probes, biomimetic biomateri-
als, tissue regenerative scaffolds, matrices for directing stem cell  
fate, and probes for detecting disease biomarkers, among numerous 
others47.

Summary
This commentary provides a snapshot of the increasing diversity 
of phage research in recent years and shows that it is advancing 
rapidly and that new applications are being reported frequently. 
Since the discovery of phages a century ago, their research focus 
has diversified from applying these agents to simply treat bacterial 
infections to a broad range of useful functions including biocontrol, 
diagnostics, drug discovery, and drug delivery as well as several 
applications in nanomedicine.
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