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Abstract 

Alzheimer’s disease (AD) diagnosis often requires invasive examinations (e.g., liquor analyses), expensive tools (e.g., 
brain imaging) and highly specialized personnel. The diagnosis commonly is established when the disorder has 
already caused severe brain damage, and the clinical signs begin to be apparent. Instead, accessible and low-cost 
approaches for early identification of subjects at high risk for developing AD years before they show overt symptoms 
are fundamental to provide a critical time window for more effective clinical management, treatment, and care plan-
ning. This article proposes an ensemble-based machine learning algorithm for predicting AD development within 9 
years from first overt signs and using just five clinical features that are easily detectable with neuropsychological tests. 
The validation of the system involved both healthy individuals and mild cognitive impairment (MCI) patients drawn 
from the ADNI open dataset, at variance with previous studies that considered only MCI. The system shows higher lev-
els of balanced accuracy, negative predictive value, and specificity than other similar solutions. These results represent 
a further important step to build a preventive fast-screening machine-learning-based tool to be used as a part of 
routine healthcare screenings.
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1  Introduction
Alzheimer’s disease (AD) is the most worldwide dif-
fused neurodegenerative disorder affecting elders [1, 2]. 
It causes progressive impairments of memory, language, 
visuospatial skills, and executive functions together 
with progressive reduction of functional autonomy in 
daily life. Depression and apathy are also frequent in 
the early and middle stages of the disease, whereas neu-
rological signs and motor impairments (e.g., dystonia, 
tremor) could emerge in later stages [3]. AD diagnosis 

is commonly based on the analysis of the patient’s medi-
cal history, clinical tests, clinical and neurological exams, 
and brain imaging data. Usually, the diagnostic evalua-
tions are started when the first clinical symptoms begin 
to manifest. However, the progressive neurocognitive 
diseases underlying AD starts 10–15 years before deficits 
become clinically noticeable and disease is diagnosed [4]; 
therefore the diagnostic process takes usually place when 
severe damages of brain are already present [5–8].

The early, pre-clinical identification of individuals at 
high risk for developing AD is fundamental to provide a 
critical time window for early clinical management, treat-
ment, and care planning, thus also reducing healthcare 
costs. Indeed, when supplied at the earlier pre-clinical 
disease phases, treatments could produce more impor-
tant benefits [9, 10]. Moreover, during the pre-clinical 
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stages lifestyle changes can be made that will slow or 
prevent AD development. For example, it could be pos-
sible to delay neurodegeneration by early modifying the 
exposure to certain risk factors such as hypertension, 
smoking, obesity, and diabetes [11, 12]. An early diag-
nosis and subsequent access to the proper services could 
help people live independently in their own homes for 
longer time and maintain a good quality of life for them-
selves, their families, and caregivers; also, it could allow 
people to plan and participate in their own legal, finan-
cial, and future support/care options and treatment when 
they still have the capacity to do so [13]. Early diagnosis 
gives patient’s relatives the time to adjust to the changes 
in function, mood, and personality that will occur when 
facing AD and their transition to a caregiver role, thus 
allowing them to feel more competent, acquire specific 
skills, reduce the stress and, as a consequence to suffer 
less from psychological problems such as anxiety and 
depression [14, 15].

Currently, MCI represents the earliest detectable stage 
of a potential ongoing progression toward AD. How-
ever, data indicate that only 20–40% of MCI individu-
als will convert to AD within 3 years from diagnosis [16, 
17]. Researchers are investigating several promising bio-
marker candidates for AD onset anticipation, includ-
ing brain imaging, proteins in cerebrospinal fluid (CSF), 
blood and urine tests, and genetic risk profiling [7, 8, 18]. 
Accuracy and timing are two critical aspects of these 
diagnostic approaches. While the literature shows that 
changes in biomarkers correlate with AD development, 
no single biomarker adequately predicts the conver-
sion to AD of MCI patients and of healthy individuals, 
with an acceptable level of accuracy and well in advance 
with respect to the first manifestation of AD overt signs. 
Another critical aspect of current diagnostic approaches 
is that they require expensive tools (e.g., brain imaging), 
invasive clinical exams (amyloid-PET scan, CSF analysis), 
often also involving highly specialized personnel [13, 14].

Recent works support the use of Machine Learn-
ing (ML) tools into AD research and clinical practice to 
provide predictions with a certain degree of confidence, 
pivoting on information about the specific person (per-
sonalized medicine; [19–21]). These predictions sup-
port improved and more effective decision-making by 
researchers and clinicians [22, 23]. So far, many of these 
AI tools focus on predicting the AD conversion in MCI 
patients using different combinations of data from differ-
ent sources, including genotyping, CSF biomarkers, brain 
imaging, demographic and clinical information, and cog-
nitive performance ([18, 24–29]; see [30, 31], for recent 
reviews). Although some of these models could reach 
high levels of accuracy [32], consistency regarding what 
combination of features is more informative to predict 

AD as well as the translation into clinical practice are 
still lacking. One possible reason for this is that current 
AI algorithms still generally rely on expensive and inva-
sive predictors, such as brain imaging or CSF biomark-
ers. As such, these studies only serve the purpose of a 
proof of concept, but do not represent a viable substitute 
of standard approaches with which they share applica-
tion complexities and economic costs. To overcome these 
limitations, recent works proposed ML algorithms elabo-
rating only non-invasive and easy-to-collect predictors 
(e.g., neuropsychological test scores, sociodemographic 
and clinical features, blood biomarkers) [20, 33].

In this paper, we developed, tested, and compared sev-
eral ML algorithms and a weighted average rank ensem-
ble ML system on the predictions provided by the various 
algorithms. The computer simulations show how the 
ensemble-based approach is a valuable AI tool for early 
detection of subjects at risk for developing AD. In par-
ticular, our system has four critical added values com-
pared with similar approaches proposed in the literature. 
First, it extends the cohort of subjects by considering 
both healthy individuals and MCI patients drawn from 
the ADNI open dataset whereas previous studies mainly 
focused on MCI population; in this view, the system we 
proposed is aimed to provide a support for the early diag-
nosis in pre-clinical stages of AD in absence of MCI, that 
lacked in previous attempts. Second, it employs indi-
viduals whose diagnostic follow-up was available within 
9 years after the baseline assessment. Most of the ML 
works proposed in literature focus on identifying bio-
markers for early diagnosis starting from individuals 
whose diagnostic follow-up reached up to 3 years after 
the baseline assessment and mainly using a combination 
of neuroimaging, genetic and clinical data [34–36]. To 
the best of our knowledge, only few works investigated a 
greater time window to study the time point for conver-
sion (from normal/MCI to AD) over 8 years using a com-
bination of multi-scale genetic, neuroimaging and clinical 
data [37] or up to 5 years using MRI data [38]. The ML 
algorithm we proposed allows us to reach similar time 
windows (up to 9 years), but using only non-invasive and 
easily detectable clinical features. Third, it uses an opti-
mized feature selection procedure to identify only five 
very easy-to-collect predictors based on neuropsycholog-
ical test scores. This number of features is lower than that 
used by similar AI approaches [20, 33]. Finally, it shows 
higher balanced accuracy, negative predictive value, and 
specificity than previous similar approaches. Overall, 
these aspects make the AI system we propose here a clin-
ically translatable early diagnostic tool to predict the con-
version to AD within 9 years of healthy individuals and 
MCI patients, based on a low number of cost-effective, 
fast and easily collectable predictors.
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2 � Materials and methods
2.1 � ADNI dataset
The data used in the preparation of this paper were 
obtained from the Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI) database (adni.loni.usc.edu). 
The ADNI was launched in 2003 as a public–private 
partnership, led by Principal Investigator Michael W. 
Weiner, MD. The primary goal of the ADNI project has 
been to test whether serial magnetic resonance imag-
ing (MRI), positron emission tomography (PET), other 
biological markers, and clinical and neuropsychological 
assessment can be combined to measure the progres-
sion of MCI and early AD. For the selection and extrac-
tion of the dataset, the data were imported into a MySql 
database. In order to obtain the best possible dataset, 
the imported data were checked, cleaned from errors 
and missing data (such as checking for null values), and 
organized for the next stage of processing to eliminate 
redundant or incomplete data and select high-quality 
data. The database consisted of several tables, one table 
for each file downloaded from ADNI. The cleaned and 
selected data were collapsed into a single table through 
SQL and exported to a single CSV file for subsequent 
processing.

2.2 � Cohort chosen for the study
For this study, we employed data from n =  525 partici-
pants, using identification numbers (RID; each uniquely 
assigned to a subject). The data were downloaded on Jan 
30, 2021. We first manually select 69 features (i.e., test 
scores) from the ADNI database based on their avail-
ability and facility administration in the clinical context 
(most are already routinely assessed in clinical practice, 
see below). We used data chosen from ADNI 1 first exam 
date, then we extracted the data on the same patients 
(based on RID) in ADNI 2 collected at last 5 years apart. 
We indicate each feature with the same name used in 
ADNI. In particular, for each recording related to each 
patient, we combined demographic measures (sex, age, 
marital status, handedness, education) (Table  1), data 
from different neuropsychological tests such as:

•	 American National Adult Reading Test (ANAR-
TERR) which is used to estimate premorbid verbal 
levels of intelligence in dementing individuals [39].

•	 Boston Naming Test (BNTTOTAL) which is used to 
assess naming ability [40].

•	 Category Fluency Test 
(CATANIMSC,CATANINTR,CATANPERS) which 
is a test used to measure ability to spontaneously 
generate a set of semantically related words in 1 min 
[39].

•	 Clinical Dementia Rating (CDR) which is a five-point 
semi-structured interview between the patient and a 
reliable informant (e.g., caregivers) designed to stage 
the severity of dementia considering different aspects 
(memory (CDMEMORY), orientation (CDORI-
ENT), judgment and problem solving (CDJUDGE), 
community affairs (CDCOMMUN), home and hob-
bies (CDHOME), personal care (CDCARE), global 
summary (CDGLOBAL)) [41, 42].

•	 Clock Drawing Test (CLOCKSCOR, COPYSCOR) in 
which subjects draw a clock and set the hands to 10 
after 11 [43]

•	 Cognitive Subscale Alzheimer’s Disease Assessment 
Scale (ADAS14) (85 points including Q4 (Delayed 
Word Recall) and Q14 (Number Cancellation)) 
which is composed of two parts, the noncognitive 
subscale and the cognitive subscale, and returns a 
measure index of global cognition [44, 45].

•	 Geriatric Depression Scale (GDTOTAL) which is a 
self-report assessment used to identify mood changes 
in elderly patients [46].

•	 Neuropsychiatric Inventory Questionnaires, a short 
version of the Neuropsychiatric Inventory (NPIS-
CORE), which is a brief self-administered question-
naire [47].

•	 Mini Mental State (MMSCORE) which is a brief 
questionnaire measuring the global cognitive impair-
ment [48].

•	 Rey Auditory Verbal Learning Test (RAVLT_forget-
ting_bl, RAVLT_immediate_bl, RAVLT_learning_bl, 
RAVLT_perc_forgetting_bl) that is a cognitive test 
used to evaluate verbal learning and memory [49].

•	 Trail Making Test (TRAASCOR,TRABSCOR), a test 
with two parts, the first is relative to psychomotor 

Table 1  Subjects composition

EMCI: early MCI; LMCI: late MCI; SMC: subjective memory complaints; NT: 
normotypical

Variable

Male 292

Female 233

Age (years) [55 to 90]; mean 73

Married 397

Divorced 43

MCI 241 (EMCI = 55; LMCI = 186); 
conv. to AD 104

NT 284 (SMC = 59); conv. to AD 20

Right hand 474

Left hand 51

Education (years) [6 to 20]; mean 16

Evaluation time lap (years) [5 to 13]; mean 9
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process, the second is relative to cognitive flexibility 
[50].

And other data such as:

•	 Family history (FHQMOM  =  mother, FHQ-
DAD  =  father, FHQSIB  =  siblings) relative to 
dementia.

•	 Comorbidity with Parkinson’s disease (DXPARK).
•	 Medical history diseases (psychiatric (MHPSYCH), neu-

rological (MH2NEURL), head problem (MH3HEAD), 
cardiovascular (MH4CARD), respiratory (MH5RESP), 
hepatic (MH6HEPAT), dermatological (MH7DERM), 
musculoskeletal (MH8MUSCL), endocrine-meta-
bolic (MH9ENDO), gastrointestinal (MH10GAST), 
hematopoietic-lymphatic (MH11HEMA), renal 
(MH12RENA), allergies (MH13ALLE), alcohol abuse 
(MH14ALCH), smoking (MH16SMOK), malignancy 
(MH17MALI), other kind of problems (MH19OTHR)).

•	 Physical and neurological exams (general appearance 
(PXGENAPP), head general aspect (PXHEADEY), 
neck (PXNECK), chest (PXCHEST), heart 
(PXHEART), abdomen (PXABDOM), peripheral 
vascular (PXPERIPH), musculoskeletal (PXMUS-
CUL), visual (NXVISUAL) and auditory (NXAU-
DITO) impairment, tremor (NXTREMOR), cranial 
nerves (NXNERVE), motor strength (NXMOTOR), 
Cerebellar—Finger to Nose (NXFINGER), Cerebel-
lar—Heel to Shin (NXHELL), sensory (NXSENSOR), 
deep tendon reflexes (NXTENDON), plantar reflexes 
(NXPLANTA), gait (NXGAIT)).

2.3 � Data pre‑processing
A logistic lasso regression method was applied as super-
vised feature selection method with L1 regularization [51, 
52]. We used this regularization method because it has 
the effect of keeping in the final model only the most 
significant features, in particular the method forces the 
coefficients of less discriminating features toward zero. 
Furthermore, to face the dataset unbalance we applied 
the class weights technique modifying the training algo-
rithm to take into account the different numerosity of 
the classes, giving different weights to the majority and 
minority classes [53]. Before applying the method all data 
were subject to standardization (null mean and standard 
deviation equal to one) in order to homogenize the fea-
ture scale. The classification used two classes, ‘convert to 
Alzheimer’ and ‘non convert to Alzheimer’, as indicated 
by the last test of each participant of her/his dataset after 
the evaluation time lapse. As shown in Eq. 1, the logistic 
regression estimates a binary decision function where the 
logit can be modeled as a linear function of features:

where “i” is the index of sample, “q” the index of feature, 
and β0 is the intercept and βj is coefficient of jth feature 
and pβ(xi) = P(Y = 1|xi) with Y∈ {0, 1} . The L1 pen-
alty parameter is introduced into the model to reduce 
the estimates of the regression coefficients towards zero 
and to set some of them against the maximum likelihood 
estimates:

where L is the log-likelihood function and � is the regu-
larization parameter. We also perform standard statistical 
data analysis (Tables 2 and 3).

We selected the best parameter C = 1
�
 weighting the 

effect of the regularization of the feature selection algo-
rithm through a tenfold cross-validation grid search on 

(1)log
( pβ(xi)

1− pβ(xi)

)

= β0 +
∑

x
T
i,jβj ,

(2)β̂ = −L(β0,βj)+ ��β�1,

Table 2  Descriptive statistics for the ordinal data of all subjects 
(525)

In bold the feature selected by the optimized procedure used for the features 
selection

Feature Min Max Mean Std. dev.

ADAS14 1 40 15.79 8.64

AGE 55 90 73.27 6.54

ANARTERR 0 47 10.78 8.39

BNTTOTAL 11 30 27.61 2.83

CATANIMSC 6 38 19.39 5.35

CATANINTR 0 6 0.06 0.46

CATANPERS 0 13 0.74 1.25

CDCARE 0 1 0.01 0.12

CDCOMMUN 0 1 0.07 0.18

CDGLOBAL 0 0.5 0.23 0.25

CDHOME 0 1 0.07 0.18

CDJUDGE 0 1 0.16 0.25

CDMEMORY 0 2 0.25 0.29

CDORIENT 0 2 0.10 0.22

CLOCKSCOR 1 5 4.59 0.71

COPYSCOR 0 5 4.81 0.50

GDTOTAL 0 6 1.13 1.29

MMSCORE 24 30 28.44 1.58

NPISCORE 0 17 1.25 2.23

PTEDUCAT​ 6 20 16.28 2.74

RAVLT_forgetting_bl − 3 15 4.31 2.51

RAVLT_immediate_bl 13 70 40.72 11.24

RAVLT_learning_bl 0 11 5.15 2.58

RAVLT_perc_forgetting_bl − 37.5 100 47.18 31.46

TRAASCOR 13 150 36.01 15.35

TRABSCOR 32 300 90.92 47.92
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a range of the parameter described by the Python func-
tion logspace (0.1, 4, 20) that generates a row vector of 
20 logarithmically spaced points between decades 100.1 
and 104 . Small values of C imply a strong regularization 
which leads to find simple models underfitting the data. 
Large values of C imply a low regularization which allows 
a higher complexity of the model overfitting the data.

The features selection process used a tenfold cross-val-
idation method. To this purpose, we divided the data into 
tenfolds (sets). Out of the tenfolds, nine sets were used 
for training while the remaining set was used for testing; 
this process was then repeated 10 times using a differ-
ent fold for each test. The score used in the test directed 
to isolate the best C was based on the average recall of 
the two classes. This process led to find C = 2.019 as the 
regularization value leading to the maximum scores. To 
select only the most relevant features and implement a 
tighter dimensionality reduction on the method with the 
best parameter C, we selected only features with a coef-
ficient greater than 0.5. In this way, we apply a stricter 
feature selection by selecting only those features that 
have an odds ratio greater than e0.5 = 0.64 and so a odds 
to have a discriminating impact greater of %60 , in fact 
(1.64 − 1) = 1.64.

2.4 � Classification model
To face the binary classification problem we used an 
Multi-Experts Ensemble model (MEE) composed of 
a random forest  [54], a Neural Net  [55], and a Support 
Vector Machine  [56]. Ensemble methods usually pro-
duce more accurate solutions than single models do. This 
approach obtains the final prediction in the test phases by 
averaging the predictions of three classifiers with the hard 
majority voting rule. In developing the assembled classi-
fier in addition to preliminary results, we chose a combi-
nation of classifiers that would allow us to analyze three 
different feature representation spaces based on the main 
learning paradigms Decision Tree (RF), Kernel Method 
(SVM) and Deep Learning (NN). To train the system 
and evaluate its performance we used the 10-Repeated-
Nested-10-Fold-Cross-Validation procedure. In particu-
lar, we used this method to select the hyperparameters of 
each model of the ensemble classifier, and to achieve the 
average performance of ensemble method [57, 58]. In this 
way, we avoid model overfitting and optimistically biased 
estimates of model performance.

This procedure was composed of two cross-validation 
(CV) loops, each implementing a tenfold stratified CV:

•	 In the outer CV loop designed to obtain an unbiased 
estimate of model performance, the dataset was par-
titioned into the ‘Model Development Set’ and the 

Table 3  Descriptive statistics for the nominal data of all subjects 
(525)

In bold the feature selected by the optimized procedure used for the features 
selection

Feature Mode Min Max

DXPARK 0 0 1

FHQDAD 0 0 2

FHQMOM 0 0 2

FHQSIB 1 0 1

MHPSYCH 0 0 1

MH2NEURL 0 0 1

MH3HEAD 1 0 1

MH4CARD 1 0 1

MH5RESP 0 0 1

MH6HEPAT 0 0 1

MH7DERM 0 0 1

MH8MUSCL 1 0 1

MH9ENDO 0 0 1

MH10GAST 0 0 1

MH11HEMA 0 0 1

MH12RENA 0 0 1

MH13ALLE 0 0 1

MH14ALCH 0 0 1

MH16SMOK 0 0 1

MH17MALI 0 0 1

MH19OTHR 0 0 1

NXVISUAL 1 1 2

NXAUDITO 1 1 2

NXTREMOR 1 1 2

NXNERVE 1 1 2

NXMOTOR 1 1 2

NXFINGER 1 1 2

NXHEEL 1 1 2

NXSENSOR 1 1 2

NXTENDON 1 1 2

NXPLANTA 1 1 2

NXGAIT 1 1 2

PTGENDER 1 1 2

PTHAND 1 1 2

PTMARRY​ 1 1 5

PXGENAPP 1 1 2

PXHEADEY 1 1 2

PXNECK 1 1 2

PXCHEST 1 1 2

PXHEART​ 1 1 2

PXABDOM 1 1 2

PXPERIPH 1 1 2

PXMUSCUL 1 1 2
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‘Test Set’. This is schematized in the upper left part of 
Fig. 1;

•	 For each iteration of outer CV loop, an entire inner 
CV loop was performed. The inner CV loop was 
designed to select the optimal hyperparameters for 
the final model through a Grid Search technique 
with the accuracy on validation set as selection score 
[59]. The ‘Model Development Set’ was further parti-

tioned into the ‘Training Set’ and ’Validation Set’. This 
is schematized in the upper right part of Fig. 1.

The above reported whole procedure was repeated 10 
times to verify the robustness of the method and the low 
influence of the initial random choice of the samples in 
the tenfolds. The completed procedure is outlined in the 
lower part of Fig.  1. Table  4 shows details of the three 

Fig. 1  Nested tenfold cross-validation (CV) procedure for model development and evaluation. In the outer CV loop (on top left), the dataset was 
partitioned into the ‘Model Development Set’ and ‘Test Set’. In the inner CV loop (on top right), the ‘Model Development Set’ was further partitioned 
into the ‘Training Set’ and ‘Validation Set’. The inner loop was composed of tenfold cross-validation Grid Search with the aim of obtaining the best 
parameters for each of the three classifiers assembled. On the bottom of figure, the procedure for one single iteration of the outer CV loop is 
graphed in diagram form

Table 4  Hyperparameters of the three models forming the MEE, and their range used by the grid search method

Models Hyperparameters Range

Ensemble proposed Neural Net Optimizer {‘SGD’, ‘Adagrad’, ‘Adadelta’, 
‘Adam’, ‘Adamax’, ‘Nadam’}

Batch size {10, 20, 40, 60, 80, 100}

Epochs {10, 50, 100}

Number of hidden units {2:2:50}

Random Forest Max depth {5, 20, 50, 80, 110}

Min samples for leaf {3, 4, 5, 10]}

Min samples for split {8, 10, 12, 24, 32}

Number of estimators {30, 200, 300, 1000}

Support Vector Machine C parameter {0.1,1, 10, 100}

γ parameter {1, 0.1, 0.01, 0.001}

Kernel {‘linear’, ‘poly’, ‘rbf’, ‘sigmoid’}
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models forming the ensemble as well as the ranges of 
the hyperparameters used for the grid search. The neural 
network we used was composed of one hidden layer with 
rectified linear units, and one output layer with 2 logistic 
units. The network size was set small due to the small size 
of the input patterns and to avoid overfitting.

3 � Results and discussion
All tests were developed in Python and used Scikit-learn 
and Keras as main libraries [60]. The first key result of 
our study comes from the optimized procedure used 
for the features selection. This isolated only five criti-
cal features (on 69 initially considered, see Sect. 2.2) for 
very early prediction of AD development: one from the 
CDR, one from the ADAS14, two from the medical his-
tory questionnaires (MH3HEAD for Head, Eyes, Ears, 
Nose and Throat problems, and MH12RENA for Renal-
Genitourinary problems), and one from neurological 
exams (NXHELL Cerebellar Heel to Shin, for cerebel-
lar dysfunction). CDR and ADAS14 are two of the most 
common tests used in clinical practice for AD diagnosis 
and evaluation. CDR is a global clinical scale to evalu-
ate different cognitive performances through six specific 
subscales with established diagnostic and severity-rank-
ing utility and used for research in epidemiological stud-
ies and clinical trials as well as for patient evaluation in 
clinical practice  [41, 61]. In particular, the optimized 
feature selection procedure described in Sect.  2 identi-
fied the CDR memory subscale (CDMEMORY) as one 
of the most relevant features to predict AD development. 
This result agrees with data suggesting that early episodic 
memory impairments related to pathologic changes in 
the hippocampus and entorhinal cortex are common AD 
initial symptoms. Several data show that memory impair-
ment could be a good predictor for the conversion of 

MCI in AD [62], and memory dysfunctions could appear 
up to 7 years before AD diagnosis  [63]. Aside from 
CDMEMORY, the features selection procedure under-
lined how the ADAS14 score is another critical feature 
to predict AD development. This result is in line with 
the crucial role that ADAS14 plays as a gold standard for 
assessing the efficacy of antidementia treatments [44, 45].

The optimized feature selection procedure also evi-
denced how some impairments (apparently) far from 
traditional AD neurodegenerative processes, like head 
injury and renal and cerebellar dysfunctions, could be 
critical features to predict AD development. Several 
studies support this result. Head injuries could lead to 
long-term problems with cognitive functioning and 
increase the risk of cognitive decline, which progresses 
faster in older individuals who suffer from head injuries 
than in those who did not [64, 65]. In addition, traumatic 
brain injuries could contribute to AD development, and if 
present in early or middle life, could increase the risk of 
late-life AD occurring [66–69].

There is complex pathophysiology of cognitive decline 
in chronic kidney disease (see [70] for a review). Kidney 
dysfunctions could contribute to impairments in seman-
tic, episodic, and working memory. Furthermore, a lower 
estimated glomerular filtration rate at baseline was asso-
ciated with a more rapid rate of cognitive decline [71].

Genetic mutations in Presenilin-1 protein have been 
described both in patients with cerebellar ataxia and in 
early AD onset [7, 72, 73]. In addition, MCI patients show 
lower cerebellar grey matter volumes compared with age-
matched individuals, and total cerebellar grey matter vol-
ume decreases as the disease evolves. Furthermore, the 
decrease of cerebellar grey matter volume appears to be 
a predictable pattern to cerebellar grey matter atrophy in 
AD. This cerebellar impairment first affects the vermis 

Table 5  Performance of the ML algorithms

Sensitivity: ratio between the AD converter subjects correctly labeled by the algorithm and all subjects that actually converted; Specificity: ratio between the non-AD 
converter subjects correctly labeled by the algorithm and all subjects that have not actually converted; Precision: ratio between the correctly AD converter subjects 
labeled by the algorithm and the AD converters; Negative predictive value (NPV): the proportion of predicted negatives which are real negatives. It reflects the 
probability that a predicted negative is a true negative; Balanced accuracy (BA): the average between sensitivity and specificity; F1-score: the harmonic average of the 
sensitivity and precision

Classifier models Sensitivity (%) Specificity (%) Precision (%) NPV (%) BA (%) F1-score

MEE proposed 73.5 88.3 68.3 91.5 80.9 70.8

AdaBoost 54.2 93.3 73.8 87.0 73.7 62.5

MLP 76.3 78.4 54.4 91.6 77.4 63.5

NB 48.5 90.0 61.1 85.4 69.4 54.1

DT 59.1 87.0 66.0 87.5 73.1 62.4

KNN 52.8 93.5 73.4 87.4 74.6 61.4

LR 75.0 79.5 55.2 91.3 77.3 63.6

RF 68.6 86.0 63.1 89.9 77.3 65.7

SVM 65.6 89.0 66.9 89.4 77.3 66.2
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and the posterior lobe and then the anterior lobe (for a 
review see [74]). Overall, these results suggest framing 
AD according to a system-level perspective, where the 
interactions between brain–body dysfunctions could be 
critical for early diagnosis [19, 75].

The second interesting result of the present study comes 
from the analysis of the predictive power of the ML algo-
rithms. The first row of Table  5 reports the performance 
achieved by the proposed system in terms of sensitivity, 

specificity, accuracy, negative predictive value, balanced 
accuracy, and F1-score. To develop a complete comparison, 
we tested and optimized other classifiers belonging to differ-
ent learning paradigms, including a Multi-Layer Perceptron 
(MLP) as a neural network, a k-Nearest Neighbor (kNN) 
as an instance-based classifier, a Support Vector Machine 
(SVM) as a kernel machine, a Naive Bayes (NB) as a Bayesian 
classifier, a Decision Tree (DT) as a non-parametric classifier 
model, a Logistic Regression (LR) as a probabilistic regres-
sion model for classification, and finally a Random Forest 
(RF) and a Adaptive Boosting (AdaBoost) as a classification 
ensemble. All these systems were tested and trained with the 
same technique described in Sect. 2.4.

For all systems, the values of the hyperparameters that 
were most frequently found to be optimal during the opti-
mization procedure and the average score obtained with the 
grid search are reported in Table  6, whereas their perfor-
mance is reported in the remaining rows of Table 5.

Table 5 shows that the ensemble solution produces, on 
average, better predictive performances than the other 
algorithms we tested. In addition, compared with similar 
works that used only non-invasive and easily detectable 
clinical features [20], our system has a better negative 
predictive power. In particular, it can predict if a subject 
will not develop AD with higher performances in terms 
of specificity, negative predictive value, and balanced 
accuracy. This result could be critical for developing fast-
screening protocols. The other metrics (sensitivity, pre-
cision, and F1-score) are similar to those obtained with 
similar approaches proposed in literature. These works, 
however, used a substantially larger number of features, 
prediction windows up to 3 years, and focused only on 
MCI patients. The ensemble-based ML algorithm pro-
posed here can predict AD development within 9 years 
from first overt signs not only in MCI patients, but also 
in healthy individuals.

Despite these encouraging results, future improve-
ments of our approach, for example in terms of 
generalization, could be obtained by enhancing the het-
erogeneity of the training set, and including data from 
different countries (e.g., Asia and Europe). In this way, it 
would be possible to detect different lifestyle and epige-
netic elements that could act as risk or protective factors 
in AD development.

4 � Conclusion
The current approaches for AD diagnosis often require 
invasive and expensive tools (e.g., brain imaging) and 
highly specialized personnel, and start at a time-point 
where the disorder has already caused severe brain dam-
ages, the underlying neuropathology may be less sensitive 
to treatment and the clinical signs are apparent [5, 6, 8]. 

Table 6  Reports for each method the average score obtained 
during Grid Search and values of hyperparameters most 
frequently selected during k-fold nested-cross-validation

Classifier models Average score
Accuracy on 
validation set 
(%)

Best 
hyperparameters

Ensemble 
proposed

NN 78.5 Optimizer: Adam

Batch size: 60

Epochs: 100

Number of hidden 
units: 32

RF 81.7 Max depth: 80

Min samples for leaf: 3

Min samples for split: 
12

Number of estimators: 
100

SVM 83.5 C: 0.1;

γ : 1;

Kernel: radial basic 
function

AdaBoost 80.6 Algorithm: SAMME

Learning rate: 0.1

Number of estimators: 
250

MLP 72.3 Activation: identity

Batch size: 20

Epochs: 80

Optimizer: Adam

Number of hidden 
units: 16

NB – –

DT 78.3 Criterion of split: Gini

Max depth: 2

Min samples for leaf: 5

Split method: best

KNN 54.2 Distance metric: 
manhattan

Number of neighbors: 
19

LR 78.6 C: 0.0885

Penalty: L1

Solver: Newton-cg
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A critical challenge of our years is to develop an artificial 
tool able to detect AD onset with many years of advances 
in order to limit or stop symptoms altogether ([36] for 
a review). Several works try to answer this question by 
integrating different aspects of AD pathophysiology, such 
as neuroimaging, plasma biomarkers, and genetic data 
[76–79]. The proposed approaches could be very accu-
rate, but also expensive. This aspect could limit their use 
since another challenge is to make early diagnosis acces-
sible to all [80]. Moreover, most of the ML works pro-
posed in literature focus on identifying biomarkers for 
early diagnosis starting from individuals whose diagnos-
tic follow-up reached up to 3 years [34, 35].

This article proposes an ensemble-based ML algorithm 
for predicting AD development within 9 years from first 
overt signs and using only five non-invasive and easily 
detectable clinical tests. The results we obtained rep-
resent a first important step towards building a preven-
tive fast-screening machine-learning tool usable as part 
of a routine healthcare visit. In this way, it could help to 
identify individuals that might develop AD at an early 
pre-clinical stage and in cost-effective ways without rais-
ing undue anxiety associated with attending a specialized 
clinic [13].
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