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Abstract: Ferroptosis has recently been associated with immunological changes in sepsis. However,
the clinical significance of ferroptosis-associated genes (FAGs) remains unknown. In this paper,
a FAG-based prognostic model was constructed for sepsis patients using an integrated machine
learning approach. The prognosis model was composed of 14 FAGs that classify the patients as high
or low risk. Based on immunological study, it was found that the immune status differed between
the high-risk and low-risk clusters. Cox regression analysis revealed that FAGs were independent
risk factors for the overall survival of sepsis patients. ROC curves and nomograms revealed that
the FAG-based model was robust for prognosis prediction. Lastly, NEDD4L was identified from the
14 FAGs as a potential hub gene for sepsis prediction.

Keywords: sepsis; ferroptosis; molecular subtype; prognosis

1. Introduction

Sepsis, caused by dysregulation of the host response, can result in life-threatening
organ dysfunction [1], and has become the leading cause of mortality for patients in the
intensive care unit [2]. Approximately 50 million cases of sepsis were reported globally in
2017, with 11 million patients died, accounting for 19.7% of all global deaths [2]. According
to the World Health Organization (WHO), sepsis and sepsis-induced shock are serious pub-
lic health problems, and statistics declares that improved prevention, diagnosis, and clinical
management of sepsis and treatment are priority of healthcare worldwide [3]. According
to a recent systematic review, the mortality rate from sepsis is 27% [4]. Early intervention
for “high-risk” sepsis is deemed critical for better clinical outcomes. Accordingly, new
strategies are needed to identify patients at risk for sepsis mortality more reliability so as to
personalize treatment strategies.

Ferroptosis, a type of iron-dependent programmed cell death, has lately attracted
increasingly attention due to its intensive implication in inflammatory conditions [5], and
research on the mechanisms underlying the link between cellular ferroptosis, infection,
and inflammation is growing fast. Ferroptosis is an inflammatory and immunogenic
condition that promotes the release of pro-inflammatory cytokines and contributes to the
pathogenesis of sepsis [6]. Several studies have found that ferroptosis plays a role in
immune cell function. The number of immune cells, such as macrophages, T cells, and
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B cells, is reduced by ferroptosis. Immune cells recognize iron-depleted dead cells and
initiate a chain reaction of inflammatory or specific immune responses [7]. Therefore,
ferroptosis-associated genes (FAGs)have been recognized as promising diagnostic markers
and potential therapeutic targets for sepsis [8], and prognosis models for the sepsis of
children [9], or for sepsis-induced organ failure have been reported [10]. However, the
value of FAGs in sepsis subtype identification and prognostic prediction remains unclear.

In this study, we identified the FAG-based molecular subtypes, created a prognosis
model for sepsis patients, and investigated the relationship between FAGs and the immune
status. We evaluated the robustness of the model using an external validation set and identi-
fied one hub gene in the model. Our findings shed light on new mechanisms and ferroptosis
targets, paving the way for effective ferroptosis-targeted therapy for sepsis patients.

2. Materials and Methods
2.1. Data Sources and Preprocessing

The Gene Expression Omnibus (GEO) database provides complete RNA expression
patterns and survival information of 603 sepsis patients. After excluding patients who had
missing information on key predictors: including age, gender, and survival outcomes, a
total of 581 cases were enrolled in this study. The GSE65682 included 479 sepsis patients
who were randomly assigned to either the training (n = 360) or the test (n = 119) groups.
The GSE95233 datasets (n = 102), served as the external validation cohort for the purpose
of assessing the predictability and robustness of the ferroptosis-associated predictive risk
model. The relevant grouping information and clinicopathological characteristics are
shown in Table 1.

Table 1. Clinicopathological characteristics of the sepsis cases in GSE65682 and GSE95233.

Characteristic

GSE65682 GSE95233
Validation Cohort

(n = 102)
All GSE65682

(n = 479)
Training Cohort

(n = 360)
Testing Cohort

(n = 119)

Age (year), n%
<60 277 (40.4) 143 (39.7) 50 (42.0) 42 (41.2)
>60 408 (59.6) 217 (60.3) 69 (58.0) 60 (58.8)

Gender, n%
Male 288 (42.0) 204 (56.7) 68 (57.1) 36 (35.3)
Female 397 (58.0) 156 (43.3) 51 (42.9) 62 (60.8)
Human 0 (0.0) 0 (0.0) 0 (0.0) 4 (3.9)

OS status, n%
Alive 365 (76.2) 272 (75.6) 93 (78.2) 34 (33.3)
Dead 114 (23.8) 88 (24.4) 26 (21.8) 68 (66.7)

OS status: overall survival status.

2.2. Identification of Ferroptosis-Associated Subtypes

The FerrDB database (http://www.zhounan.org/ferrdb/current/), accessed on 28
July 2022, contained 487 unduplicated ferroptosis-related genes, including markers, drivers,
and suppressors. Together with survival data, we identified 57 of these genes associated
with survival by univariate Cox regression analysis (p < 0.05). Based on their expression
profiles, consensus clustering was performed to identify molecular subtypes associated
with ferroptosis via the “ConcensusClusterPlus” package in R software. The parameters in
this method were pam algorism with Manhattan distance, and sampling was performed
1000 times. The principal component analysis (PCA) and t-distributed stochastic neighbor
embedding analysis were performed to assess the classification of the two clusters.

2.3. Construction and Validation of a Ferroptosis-Based Risk Model

We used the least absolute shrinkage and selection operator (LASSO) regression
algorithm to develop a prognostic model. This algorithm eliminates confounding variables

http://www.zhounan.org/ferrdb/current/
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by penalizing the coefficients of the variables, screening them more rigorously while
reducing or eliminating multicollinearity. We performed ten-fold cross validation and
selected the lambda value when the partial likelihood deviation reached a minimum. All
these analyses were performed in the R package “glmnet”. Finally, our model contained
14 of the 57 FAGs. The risk score was calculated based on the linear combination of the
regression coefficient (β) from LASSO regression multiplied by gene expression levels (risk
score = ∑ βi ∗RNAi). Patients were classified into high-risk or low-risk group based on their
risk scores and maximumly selected rank statistics. A time-dependent receiver operating
characteristic (ROC) curve analysis was performed to assess the model’s prediction accuracy.
Cox regression analysis was used to examine independent prognostic significance.

2.4. Construction and Validation of a Predictive Nomogram

To screen for independent predictors of the sepsis outcome, we analyzed risk scores
and clinicopathologic characteristics, including age, sex, and site of infection in sepsis, by
univariate and multivariate Cox regression analysis. Independent variables from multivari-
ate Cox regression analysis, yielded a nomogram of 1-, 14-, and 27-day survival probability
for sepsis patients. The calibration and ROC curves were plotted to measure the clinical
benefits of the nomogram.

2.5. Immune Analysis

We performed the ESTIMATE and CIBERSORT methods to determine the relative
proportions of 22 infiltrating immune cells and their relationships with the risk score.

2.6. Gene Set Variation Analysis (GSVA) and Functional Enrichment Analysis

Gene set variation analysis (GSVA) can be used to estimate the relative enrichment
of a gene set of interest over a sample population [11]. We downloaded gene sets from
the Molecular Signatures Database (http://software.broad-institute.org/gsea/msigdb),
accessed on 28 July 2022, and then used GSVA package in R language to ascribe the
signaling pathway variation scores to the gene sets to evaluate their biological functions.

2.7. Weighted Gene Co-Expression Network Analysis (WGCNA)

Weighted correlation network analysis (WGCNA) is an extremely effective algorithm.
It can uncover modular genes related to disease characteristics and targeted therapies and
find genetic modules with highly comparable expression. To find the hub genes among
the 14 model genes, we used the complete gene expression data GSE65682 to create gene
modules using WGCNA and subsequently found the modules most associated with clinical
phenotypic risk factors. The hub genes were the intersection of 14 models and module
genes. The soft threshold was calculated using the function “power Estimate”. The gene
modules were built as follows: the weighted adjacency matrix was transformed into a
topological overlap matrix (TOM) to analyze the network connectivity, and the hierarchical
clustering method was used to construct the clustering tree structure of the TOM. Different
branches of the clustering tree represented different gene modules, and different colors
represented different modules. Tens of thousands of genes were grouped into modules
according to their expression patterns.

2.8. Statistical Analysis

Survival curves were generated by the Kaplan–Meier method and were compared by
the log-rank test. The multivariate Cox proportional hazards regression was used to identify
independent prognostic factors. The time-dependent area under the curve (AUC) of ROC
curves for survival variables was conducted by the “timeROC” package. Correlations
between two continuous variables were assessed by Pearson’s correlation coefficients. All
statistical analyses were performed in R software (v4.0). All statistical tests were two tailed,
and p < 0.05 was considered statistically significant.

http://software.broad-institute.org/gsea/msigdb
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3. Results
3.1. Identification of Prognosis-Associated Genes in Sepsis

The flow diagram (Figure S1) in Supplementary File S1 illustrates the detailed study
procedure. A total of 487 FAGs were downloaded from the ferrDB after removing duplicates,
from which, 57 prognostic genes were identified by univariate Cox regression (p < 0.05;
Supplementary File S2) based on gene expression profiles from the GSE65682 dataset.

3.2. Identification of Ferroptosis-Associated Molecular Subgroups

We divided 479 patients in the GSE65682 into different ferroptosis-associated molecular
subgroups using consensus clustering and expression patterns of 48 prognosis-associated
FAGs. As the clustering variable (k) increased, two clusters (k = 2) were found to be the
most acceptable for consensus clustering (Figure 1A). Consequently, the number (k) was
selected as two to get two molecular subtypes. The (PCA) and t-distributed stochastic neigh-
bor embedding analysis (t-SNE) both revealed substantial distinction in the two cluster
subgroups (Figures S2 and S3), with 329 patients in Cluster 1 and 150 in Cluster 2. Heatmap
visualization detected significant differences in the expressions of the 57 FAGs between
the two clusters (Figure 1B). Patients stratified into cluster 2 subtypes were associated with
high mortality (log rank test, p < 0.0001) (Figure 1C). In addition, the CIBERSORT method
was utilized to examine the differences in immune cell infiltration between the two clusters.
Figure 1D showed that cluster 1 had higher infiltration levels of CD8 T cells, Tregs cells,
monocytes, mast cells resting, mast cells activated and eosinophiles, and a lower infiltration
level of neutrophiles. The findings suggested significant heterogeneity in sepsis patients,
and FAGs played an important role in sepsis.Biomolecules 2022, 12, x FOR PEER REVIEW 5 of 15 
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Figure 1. Consensus clustering and the different immune profiles between two clusters. (A) Consen-
sus matrix heatmap indicating that the optimal value for consensus clustering is K = 2. (B) Heatmap
visualizing the different expression pattern of the 57 FAGs in the two clusters. (C) Survival curve of
the patients in the two clusters. (D) CIBERSORT analysis in the two clusters. * p < 0.05; ** p < 0.01;
*** p < 0.001.
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3.3. Functional Enrichment Analysis of Two Clutters

GSVA was performed to investigate the biological behaviors of the two ferroptosis
clusters. Go enrichment analysis showed that ferroptosis cluster 1 was associated with
positive regulation of iron-ion transmembrane transport, axon diameter regulation, and
carbon dioxide transport, whereas ferroptosis cluster 2 was associated with positive regula-
tion of interleukin 23 production, ccr4 not core complex, and negative regulation of viral
genome replication by host (Figure S4). In addition, cluster 1 was associated with natural
killer cell mediated cytotoxicity, the b cell receptor signaling pathway, and the fc epsilon ri
signaling pathway, whereas ferroptosis cluster 2 was associated with porphyrin and chloro-
phyll metabolism, proximal tubule bicarbonate reclamation, and riboflavin metabolism,
according to KEGG enrichment analysis (Figure S5).

3.4. Construction and Validation of a Prognosis-Associated Risk Model Composed of 14 FAGs

We constructed a ferroptosis-associated prognostic risk model base on 14FAGs, which
were identified by univariate LASSO Cox regression analysis. The 479 GEO patients were
randomly assigned (4:1 ratio) into the training group (n = 360) or the test (n = 119) to ensure
the similar gene expression patterns between the two groups. Each patient’s risk score
was calculated using the risk model as follows: ULK2∗ −0.722782) + ULK1∗ (0.007177) +
TRIM21∗ (−0.029375) + PROK2∗ (−0.069122) + PIEZO1∗ (−0.356316) + PARP10∗ (−0.109444)
+ NEDD4L∗ (0.116562) + KDM6B∗ (−0.117215) + GABARAPL1∗ (0.208982) + DECR1∗
(−0.156404) + DCAF7∗ (−0.090594) + CAV1∗ (0.090246) + BEX1∗ (0.089132) + BCAT2∗
(−0.073745). The patients were classified into the high-risk or low-risk group according
to maximumly selected rank statistics. Figure 2A depicts the distribution of risk score,
survival status, and expression of the 14 FAGs in the training cohort. It was discovered
that the expression of genes with hazard ratios greater than one, such as ULK1, NEDD4L,
GABARAPL1, CAV1, and BEX1 were higher in the high-risk group, while the expression of
genes with hazard ratios less than one, such as ULK2, TRIM21, PROK2, PIEZO1, PARP10,
KDM6B, DECR1, DCAF7, and BCAT2, were higher in the low-risk group. Additionally,
Kaplan–Meier curves demonstrated that the sepsis patients in the high-risk group had
considerably lower OS. The AUC values of ROC curves for 1-, 14-, and 27-day OS were 0.709,
0.746, and 0.747, respectively (Figure 2C), indicating an excellent predictive performance of
the prognosis-associated risk model.

Next, the prediction performance and robustness of the prognosis-associated risk
model were evaluated using the GSE65682 test cohort as an internal validation cohort
and the GSE95233 dataset as an external validation cohort. Following the same formula,
consistent results were obtained from the test cohort, which proved the robustness of
the risk model. The risk score distribution and gene expression profiles are displayed in
Figure 2D. The OS was considerably worse in the high-risk group than in the low-risk
group (Figure 2E). The AUC values for 1-, 2-, and 3-day OS were 0.851, 0.787, and 0.721,
respectively (Figure 2F). The external validation cohort only provided 3-day survival data,
and the AUC of the ROC values for 2-day OS were 0.706, suggesting that our prognostic
model had strong prognostic value. This results in the external validation cohort coincided
with the training cohort results. According to the risk score distribution and gene expression
profiles in Figure 2G, patients with higher risk scores showed a worse OS (Figure 2H).
These findings revealed that the risk model was capable of accurately predicting OS.
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Figure 2. Construction of the risk model in the GSE65682 training cohort and validation of the risk
model in the GSE95233 test cohort. (A,D,G) Distribution of the risk score, survival status, and gene
expression of 14 FAGs in the GSE65682 training cohort (A), GSE65682 test cohort (D) and GSE95233
cohort (G). (B,E,H) Kaplan–Meier curves of OS of patients in the high- and low risk groups in the
GSE65682 training cohort (B), GSE65682 test cohort (E) and GSE95233 cohort (H). (C,F,I) ROC curves
for predicting the 1/14-day overall survival in the GSE65682 training cohort (C), and ROC curves for
prediction the 2-day OS in the GSE95233 cohort.
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3.5. Clinical Correlations and Independent Prognosis Analysis of Risk Score

To further validate the importance of risk score in clinical practice, its correlation with
clinicopathological features was examined. Figure 3A shows that the mortality rate in
the high-risk group was higher than that in the low-risk group. In addition, high risk
scores were associated with advanced age and abdominal sepsis (Figure 3B–D, Kruskal–
Wallis rank sum tests, p < 0.05). However, there was no statistically significant difference
in risk scores between male and female. Multivariate Cox regression suggested that
risk score was independent risk factor for OS of sepsis patients (HR = 5.280, p < 0.001).
Subsequently, we constructed a nomogram by combining the risk scores with all relevant
clinical characteristics to predict the prognosis of sepsis patients to guide clinical decision
making. Nomogram indicated that the risk score had more significant effect on prognosis,
than other clinical characteristics (Figure 3F). Moreover, calibration and ROC curves for
the predicted 1-, 14-, and 27-day survival rates were created. The results revealed a high
degree of consistency between the survival prediction curve and the reference curve, as
well as a high AUC value, implying that the model performed well in survival prediction.

3.6. Relationship between Risk Score and Immune Cell Infiltration

Sepsis treatment and prognosis are influenced by immune status. To detect correlations
between risk scores and levels of immune cell infiltration, we employed two methods:
ESTIMATE and CIBERSORT. The ESTIMATES results suggested that the patients in the
high-risk group had significantly lower immune scores and estimate scores than the patients
in the low-risk group (Figure 4A,B). By digging deeper into the connections between the risk
score and immune cell content, it was found that the risk score was positively associated
with macrophages M2, T cells CD4 regulatory, T cells CD4 naive, eosinophils, and activated
mast cells, and was negatively associated with monocytes and neutrophils. Furthermore,
the most infiltrating immune cells differed in two groups according to CIBERSORT analysis:
the high-risk group had significantly higher abundances of T cells naive, T cells regulatory,
NK cells resting, NK cells activated, macrophages M0, M1, mast cells activated, and
eosinophils, whereas the low-risk group had a higher abundance of neutrophils.

3.7. Screening for Hub Genes in the Risk Model by WGCNA

We used the WGCNA to construct co-expression modules and identify modules
associated with risk score. The soft-threshold was set to seven to build a scale-free network
(Supplementary File S2: Figure S6). Then, an adjacency matrix was transformed it into
a topological overlapping matrix (TOM), based on which a total of 22 modules were
generated. The expression profile of each module was summarized by eigengenes (MEs)
and was given a numeric identifier (“M” + number) (Figure 5B). Correlation analyses
between the modules and risk score showed that the M3 module had the highest correlation
(cor = 0.49, p = 2 × 10−30), followed by the M2 module (cor = 0.43, = 6 × 10−23). To further
verify hub genes among the 14 model genes, the overlapping genes between the M3
module and the 14 model genes were screened and no overlapping was found. Then
the overlapping genes between the M2 module and the 14 module genes were screened,
and one hub gene was identified: NEDD4L (Figure 5A,B). Finally, we investigated the
relationship between NEDD4L and immune infiltrating levels. According to the findings,
NEDD4L is related to macrophages M0, mast cells activated, NK cells resting, T cells CD8
and T cells regulatory (Figure 5C). These findings suggest that NEDD4L expression levels
are associated with the prognosis of sepsis and immune status.
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Figure 3. Clinical correlations of risk score and development of the nomogram in the GSE65682
dataset. (A–D) Relationships between the risk score and clinicopathological characteristics (age, gen-
der, Infection site). (E) Multivariate analyses revealed the risk score was an independent prognostic
factor for sepsis patients. (F) Nomogram for predicting the 1-, 14-, and 27-days OS of sepsis patients.
(G) Calibration curves of the nomogram for OS prediction at 1-, 14-, and 27-days. (H) ROC curves
predicting 1-, 14-and 27- days OS. Draw a line straight upward to the point’s axis to give a score of
each variable, and finally add the score of the three variables (sepsis infectious site, age, and risk
score) to obtain the total score. The probability of survival is obtained by drawing a vertical line
down the total score. Others sepsis = Sepsis, except for pneumonia and abdominal sepsis; Age = age
in years; Risk score = risk score calculated by 14-FAG model; Pr = survival probability.
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Figure 5. Identification of one hub gene and prediction of their relationship with immune cell.
(A) Venn diagram analysis showed that the overlap of WGCNA analysis and LASSO model led to
one hub gene being identified: NEDD4L. (B) Heatmap of model trait relations. (C) Prediction of
correlations between hub genes and immune cells. * p < 0.05; ** p < 0.01; *** p < 0.001.
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4. Discussion

Sepsis patients’ clinical and biological heterogeneity has long hampered the efforts
in developing effective therapies [12]. So, there is an urgent need for a biomarker-based
risk stratification model to identify patients with a high risk of death [13]. In this study,
we identified two subtypes of sepsis associated with ferroptosis, and detected significant
differences in prognosis and immune status between two subtypes. We also developed a
prognostic model based on 14 FAGs, which demonstrated excellent predictive performance.
Finally, we identified one hub genes among the model genes using WGCNA analysis.

We identified two ferroptosis-associated clusters, which presented significant different
prognosis: The prognosis of group 2 was worse than that of group 1. The two clusters
had different immune cell components, suggesting that immune cells such as neutrophils,
monocytes, T cells regulatory, and mast cells play a role in the development of inflammatory
response and the inflammatory state of the patient. Consistent with previous studies,
lowered abundances of neutrophils [14], NK cells [15], and M1 macrophages [16] were
associated with increased mortality in sepsis patients. Regulatory T cells (Tregs) can
actively suppress immune response, resulting in septic immune dysfunction and increased
mortality [17].

In the training cohort, we performed a univariate cox and lasso regression analysis
to further evaluate the prognostic value of FAGs and constructed a prognosis model. We
created a risk model with 14 FAGs, which performed well in the training, test, and external
validation cohorts. The prognostic nomogram was proven robust for risk management
in sepsis patients after combining all significant clinical characteristics. The above results
indicate that the risk model is clinically applicable. In the view of the close connections,
we investigated the differences in immune status between the high-risk and low-risk
groups using the ESTIMATE and CIBERSORT methods. The high-risk group had a poorer
prognosis, lower immune scores, and lower estimate scores than the low-risk group. This
finding also suggests that FAGs are involved in the dysregulated response.

To further narrow down the 14 FAGs and identify hub genes, a WGNA analysis
was performed, and one hub gene named NEDD4L, was detected by overlapping the
genes in the M2 module with 14 FAGs. NEDD4L, or neural precursor cell expressed
developmentally downregulated 4-like is an E3 ubiquitin ligase [18]. NEDD4L directly
binds many iron channels, among which, the epithelial sodium channel (ENaC) is the
mostly studied one [19]. ENaC-mediated sodium transport is essential for the proper
functioning of multiple organs. For example, in the kidneys, it reabsorbs sodium and thus
maintains the body’s blood pressure [20], and in the lungs, it removes fluid from the alveolar
cavity and thus facilitates gas exchange [21]. NEDD4L accelerates the degradation of the
cardiac sodium channel Nav1.5 through ubiquitination in the heart, which is associated
with heart failure [22]. Combined our findings with the function of NEDD4L in various
organs, NEDD4L may be involved in multi-organ failure due to sepsis, but further research
is needed to validate this.

Although the clinical significance of NEDD4L in sepsis appears promising, our study
has a few limitations. First, comprehensive experimental validation is required to assess
the predictive value of NEDD4L. Second, the clinical and molecular characteristics in the
GEO database were inadequate since prognostic factors, such as infectious agents of sepsis
and background diseases were not included. Third, the significance of NEDD4L needs to
be further validated in a prospective multicenter cohort on retrospective samples.

5. Conclusions

In this study, two ferroptosis-associated subtypes were identified, and a FAG-based
risk model was constructed. The model was proven robust for predicting the prognosis of
sepsis patients. Then a hub gene, namely NEDD4L was identified among 14-FAG model.
Our study provides a new insight into potential molecular targets to combat sepsis and
contributes to the basis of further research on FAGs as well as the underling mechanism in
the pathogenesis of sepsis.



Biomolecules 2022, 12, 1479 12 of 13

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biom12101479/s1, Supplementary File S1, Figure S1: Flow chart
of the data analyzing; Supplementary File S2: significant ferroptosis gene by univariate Cox regres-
sion. Supplementary File S3, Figure S2: principal component analysis of tow clusters; Supplementary
File S3, Figure S3: tSNE analysis of tow clusters; Supplementary File S3, Figure S4: Go enrichment
analysis via gsva; Supplementary File S3, Figure S5: Kegg enrichment analysis via gsva; Supplemen-
tary File S3, Figure S6: The soft-threshold to build a scale-free network.

Author Contributions: Conceptualization, H.Y., J.C. and P.P.; methodology, H.Y., Y.C., W.P., F.Z.
and S.M.; validation, H.Y., M.R. and W.P.; formal analysis, H.Y., Y.C. and P.Z.; resources, M.R. and
P.Z.; writing, H.Y., Y.C. and W.P. All authors have read and agreed to the published version of
the manuscript.

Funding: This study was supported by National Key R&D Program of China (No. 2016YFC1304204);
National Natural Science Foundation of China (No. 81770080); Project Program of National Clinical
Research Center for Geriatric Disorders (Xiangya Hospital, Grant No. 2020LNJJ05); Emergency
Project of Prevention and Control for COVID-19 of Central South University (No.160260004); Project
of Special Program on COVID-19 of Changsha Technology Hall (No. kq2001049).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All data can be available from the public database: Gene Expres-
sion Omnibus (GEO, available at: https://www.ncbi.nlm.nih.gov/geo/), accessed on 28 July 2022,
database GSE65682 and GSE95233.

Acknowledgments: We acknowledge all the data contributors to this study and the patients and
volunteers who participated in the research. We are grateful to the High-Performance Computing
Center of Central South University for assistance with the computations.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.-D.;

Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315,
801–810. [CrossRef] [PubMed]

2. Rudd, K.E.; Johnson, S.C.; Agesa, K.M.; Shackelford, K.A.; Tsoi, D.; Kievlan, D.R.; Colombara, D.V.; Ikuta, K.S.; Kissoon, N.;
Finfer, S.; et al. Global, regional, and national sepsis incidence and mortality, 1990–2017: Analysis for the Global Burden of Disease
Study. Lancet 2020, 395, 200–211. [CrossRef]

3. Reinhart, K.; Daniels, R.; Kissoon, N.; Machado, F.R.; Schachter, R.D.; Finfer, S. Recognizing Sepsis as a Global Health Priority—A
WHO Resolution. N. Engl. J. Med. 2017, 377, 414–417. [CrossRef] [PubMed]

4. Fleischmann-Struzek, C.; Mellhammar, L.; Rose, N.; Cassini, A.; Rudd, K.E.; Schlattmann, P.; Allegranzi, B.; Reinhart, K. Incidence
and mortality of hospital- and ICU-treated sepsis: Results from an updated and expanded systematic review and meta-analysis.
Intensiv. Care Med. 2020, 46, 1552–1562. [CrossRef] [PubMed]

5. Liu, Q.; Wu, J.; Zhang, X.; Wu, X.; Zhao, Y.; Ren, J. Iron homeostasis and disorders revisited in the sepsis. Free Radic. Biol. Med.
2021, 165, 1–13. [CrossRef]

6. Conrad, M.; Angeli, J.P.F.; Vandenabeele, P.; Stockwell, B.R. Regulated necrosis: Disease relevance and therapeutic opportunities.
Nat. Rev. Drug Discov. 2016, 15, 348–366. [CrossRef]

7. Chen, X.; Kang, R.; Kroemer, G.; Tang, D. Ferroptosis in infection, inflammation, and immunity. J. Exp. Med. 2021, 218, e20210518.
[CrossRef]

8. Lei, X.L.; Zhao, G.Y.; Guo, R.; Cui, N. Ferroptosis in sepsis: The mechanism, the role and the therapeutic potential. Front. Immunol.
2022, 13, 956361.

9. Li, Z.; Zhang, C.; Liu, Y.; Wang, F.; Zhao, B.; Yang, J.; Zhao, Y.; Zhao, H.; Wang, G. Diagnostic and Predictive Values of
Ferroptosis-Related Genes in Child Sepsis. Front. Immunol. 2022, 13, 881914. [CrossRef]

10. Gong, C.-W.; Yuan, M.-M.; Qiu, B.-Q.; Wang, L.-J.; Zou, H.-X.; Hu, T.; Lai, S.-Q.; Liu, J.-C. Identification and Validation of
Ferroptosis-Related Biomarkers in Septic Cardiomyopathy via Bioinformatics Analysis. Front. Genet. 2022, 13, 827559. [CrossRef]

11. Hänzelmann, S.; Castelo, R.; Guinney, J. GSVA: Gene set variation analysis for microarray and RNA-Seq data. BMC Bioinform.
2013, 14, 7. [CrossRef] [PubMed]

12. Marshall, J.C. Why have clinical trials in sepsis failed? Trends Mol. Med. 2014, 20, 195–203. [CrossRef] [PubMed]
13. Stanski, N.L.; Wong, H.R. Prognostic and predictive enrichment in sepsis. Nat. Rev. Nephrol. 2019, 16, 20–31. [CrossRef]

https://www.mdpi.com/article/10.3390/biom12101479/s1
https://www.mdpi.com/article/10.3390/biom12101479/s1
https://www.ncbi.nlm.nih.gov/geo/
http://doi.org/10.1001/jama.2016.0287
http://www.ncbi.nlm.nih.gov/pubmed/26903338
http://doi.org/10.1016/S0140-6736(19)32989-7
http://doi.org/10.1056/NEJMp1707170
http://www.ncbi.nlm.nih.gov/pubmed/28658587
http://doi.org/10.1007/s00134-020-06151-x
http://www.ncbi.nlm.nih.gov/pubmed/32572531
http://doi.org/10.1016/j.freeradbiomed.2021.01.025
http://doi.org/10.1038/nrd.2015.6
http://doi.org/10.1084/jem.20210518
http://doi.org/10.3389/fimmu.2022.881914
http://doi.org/10.3389/fgene.2022.827559
http://doi.org/10.1186/1471-2105-14-7
http://www.ncbi.nlm.nih.gov/pubmed/23323831
http://doi.org/10.1016/j.molmed.2014.01.007
http://www.ncbi.nlm.nih.gov/pubmed/24581450
http://doi.org/10.1038/s41581-019-0199-3


Biomolecules 2022, 12, 1479 13 of 13

14. Drew, W.; Wilson, D.V.; Sapey, E. Inflammation and neutrophil immunosenescence in health and disease: Targeted treatments to
improve clinical outcomes in the elderly. Exp. Gerontol. 2018, 105, 70–77. [CrossRef] [PubMed]

15. Jensen, I.J.; Winborn, C.S.; Fosdick, M.G.; Shao, P.; Tremblay, M.M.; Shan, Q.; Tripathy, S.K.; Snyder, C.M.; Xue, H.-H.;
Griffith, T.S.; et al. Polymicrobial sepsis influences NK-cell-mediated immunity by diminishing NK-cell-intrinsic receptor-
mediated effector responses to viral ligands or infections. PLoS Pathog. 2018, 14, e1007405. [CrossRef]

16. Ardura, J.A.; Rackov, G.; Izquierdo, E.; Alonso, V.; Gortazar, A.R.; Escribese, M.M. Targeting Macrophages: Friends or Foes in
Disease? Front. Pharm. 2019, 10, 1255. [CrossRef] [PubMed]

17. Monneret, G.; Debard, A.-L.; Venet, F.; Bohe, J.; Hequet, O.; Bienvenu, J.; Lepape, A. Marked elevation of human circulating
CD4+CD25+ regulatory T cells in sepsis-induced immunoparalysis. Crit. Care Med. 2003, 31, 2068–2071. [CrossRef]

18. Goel, P.; Manning, J.A.; Kumar, S. NEDD4-2 (NEDD4L): The ubiquitin ligase for multiple membrane proteins. Gene 2014, 557,
1–10. [CrossRef]

19. Ishigami, T.; Kino, T.; Minegishi, S.; Araki, N.; Umemura, M.; Ushio, H.; Saigoh, S.; Sugiyama, M. Regulators of Epithelial Sodium
Channels in Aldosterone-Sensitive Distal Nephrons (ASDN): Critical Roles of Nedd4L/Nedd4-2 and Salt-Sensitive Hypertension.
Int. J. Mol. Sci. 2020, 21, 3871. [CrossRef]

20. Garty, H.; Benos, D.J. Characteristics and regulatory mechanisms of the amiloride-blockable Na+ channel. Physiol. Rev. 1988, 68,
309–373. [CrossRef]

21. Matalon, S.; O’Brodovich, H. Sodium Channels in Alveolar Epithelial Cells: Molecular Characterization, Biophysical Properties,
and Physiological Significance. Annu. Rev. Physiol. 1999, 61, 627–661. [CrossRef] [PubMed]

22. Luo, L.; Ning, F.; Du, Y.; Song, B.; Yang, D.; Salvage, S.C.; Wang, Y.; Fraser, J.A.; Zhang, S.; Ma, A.; et al. Calcium-dependent
Nedd4-2 upregulation mediates degradation of the cardiac sodium channel Nav1.5: Implications for heart failure. Acta Physiol.
2017, 221, 44–58. [CrossRef] [PubMed]

http://doi.org/10.1016/j.exger.2017.12.020
http://www.ncbi.nlm.nih.gov/pubmed/29288715
http://doi.org/10.1371/journal.ppat.1007405
http://doi.org/10.3389/fphar.2019.01255
http://www.ncbi.nlm.nih.gov/pubmed/31708781
http://doi.org/10.1097/01.CCM.0000069345.78884.0F
http://doi.org/10.1016/j.gene.2014.11.051
http://doi.org/10.3390/ijms21113871
http://doi.org/10.1152/physrev.1988.68.2.309
http://doi.org/10.1146/annurev.physiol.61.1.627
http://www.ncbi.nlm.nih.gov/pubmed/10099704
http://doi.org/10.1111/apha.12872
http://www.ncbi.nlm.nih.gov/pubmed/28296171

	Introduction 
	Materials and Methods 
	Data Sources and Preprocessing 
	Identification of Ferroptosis-Associated Subtypes 
	Construction and Validation of a Ferroptosis-Based Risk Model 
	Construction and Validation of a Predictive Nomogram 
	Immune Analysis 
	Gene Set Variation Analysis (GSVA) and Functional Enrichment Analysis 
	Weighted Gene Co-Expression Network Analysis (WGCNA) 
	Statistical Analysis 

	Results 
	Identification of Prognosis-Associated Genes in Sepsis 
	Identification of Ferroptosis-Associated Molecular Subgroups 
	Functional Enrichment Analysis of Two Clutters 
	Construction and Validation of a Prognosis-Associated Risk Model Composed of 14 FAGs 
	Clinical Correlations and Independent Prognosis Analysis of Risk Score 
	Relationship between Risk Score and Immune Cell Infiltration 
	Screening for Hub Genes in the Risk Model by WGCNA 

	Discussion 
	Conclusions 
	References

